Systems Approach to Identify Common Genes and Pathways Associated with Response to Selective Serotonin Reuptake Inhibitors and Major Depression Risk
Abstract
:1. Introduction
2. Results
2.1. Systematic Search and Study Selection of Antidepressant Response Candidate Gene Studies
2.2. Data Extraction from Candidate Gene Studies of SSRI Response
2.3. Data Extraction from GWAS of SSRI Response and MDD Susceptibility
2.4. Data Processing and Genetic Co-Occurrence of SSRI Response and MDD
2.5. Functional Enrichment of SSRI Response and MDD Gene Pool
3. Discussion
4. Methodology
4.1. A systematic Review of Antidepressant Response Candidate Gene Studies
4.2. Data Extraction and Quality Assessment of Antidepressant Response Candidate Gene Articles
4.3. A Systematic Literature Search of GWAS of SSRI Response and MDD Susceptibility
4.4. Data Processing of Candidate Gene Studies for SSRI Response and GWAS of SSRI Response and MDD Susceptibility
4.5. Functional Enrichment Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bromet, E.; Andrade, L.H.; Hwang, I.; Sampson, N.A.; Alonso, J.; de Girolamo, G.; de Graaf, R.; Demyttenaere, K.; Hu, C.; Iwata, N.; et al. Cross-national epidemiology of dsm-iv major depressive episode. BMC Med. 2011, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Depression and Other Common Mental Disorders; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Amsterdam, J.D.; Hornig-Rohan, M. Treatment algorithms in treatment-resistant depression. Psychiatr. Clin. North Am. 1996, 19, 371–386. [Google Scholar] [CrossRef]
- Peyrot, W.J.; Middeldorp, C.M.; Jansen, R.; Smit, J.H.; de Geus, E.J.; Hottenga, J.J.; Willemsen, G.; Vink, J.M.; Virding, S.; Barragan, I.; et al. Strong effects of environmental factors on prevalence and course of major depressive disorder are not moderated by 5-httlpr polymorphisms in a large dutch sample. J. Affect. Disord. 2013, 146, 91–99. [Google Scholar] [CrossRef]
- Nabeshima, T.; Kim, H.C. Involvement of genetic and environmental factors in the onset of depression. Exp. Neurobiol. 2013, 22, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Tsao, T.T.; Yang, K.C.; Lin, H.; Kuo, Y.L.; Hsu, C.H.; Lee, W.K.; Huang, K.C.; Kao, C.Y. Construction and analysis of the protein-protein interaction networks for schizophrenia, bipolar disorder, and major depression. BMC Bioinform. 2011, 12, S20. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Kao, C.F.; Kuo, P.H.; Zhao, Z. A comprehensive network and pathway analysis of candidate genes in major depressive disorder. BMC Syst. Biol. 2011, 5, S12. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, L.; Xie, Z.; Zeng, C.; Shu, K. Transcriptomics evidence for common pathways in human major depressive disorder and glioblastoma. Int. J. Mol. Sci. 2018, 19, 234. [Google Scholar] [CrossRef]
- Wang, J.; Vasaikar, S.; Shi, Z.; Greer, M.; Zhang, B. Webgestalt 2017: A more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017, 45, W130–W137. [Google Scholar] [CrossRef]
- Nouraei, H.; Firouzabadi, N.; Mandegary, A.; Zomorrodian, K.; Bahramali, E.; Shayesteh, M.R.H.; Ansari, S. Glucocorticoid receptor genetic variants and response to fluoxetine in major depressive disorder. J. Neuropsychiatry Clin. Neurosci. 2018, 30, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Firouzabadi, N.; Raeesi, R.; Zomorrodian, K.; Bahramali, E.; Yavarian, I. Beta adrenoceptor polymorphism and clinical response to sertraline in major depressive patients. J. Pharm. Pharm. Sci. 2017, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Reynolds, G.P.; Yuan, Y.; Shi, Y.; Pu, M.; Zhang, Z. Tph-2 polymorphisms interact with early life stress to influence response to treatment with antidepressant drugs. Int. J. Neuropsychopharmacol. 2016, 19. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, A.; Shewade, D.G.; Rajkumar, R.P.; Adithan, S. Serotonin transporter gene (slc6a4) polymorphisms are associated with response to fluoxetine in south indian major depressive disorder patients. Eur. J. Clin. Pharmacol. 2016, 72, 1215–1220. [Google Scholar] [CrossRef]
- Paroni, G.; Seripa, D.; Fontana, A.; D’Onofrio, G.; Gravina, C.; Urbano, M.; Addante, F.; Lozupone, M.; Copetti, M.; Pilotto, A.; et al. Klotho gene and selective serotonin reuptake inhibitors: Response to treatment in late-life major depressive disorder. Mol. Neurobiol. 2017, 54, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.W.; Won, H.H.; Kim, H.; Myung, W.; Kim, S.; Kim, K.K.; Carroll, B.J.; Kim, J.W.; Kim, D.K. Genetic prediction of antidepressant drug response and nonresponse in korean patients. PLoS ONE 2014, 9, e107098. [Google Scholar] [CrossRef] [PubMed]
- Fukui, N.; Suzuki, Y.; Sugai, T.; Watanabe, J.; Ono, S.; Tsuneyama, N.; Someya, T. Promoter variation in the catechol-o-methyltransferase gene is associated with remission of symptoms during fluvoxamine treatment for major depression. Psychiatry Res. 2014, 218, 353–355. [Google Scholar] [CrossRef]
- Li, X.; Yu, T.; Huang, X.; Cao, Y.; Li, X.; Liu, B.; Yang, F.; Li, W.; Zhao, X.; Feng, G.; et al. Slc17a7 gene may be the indicator of selective serotonin reuptake inhibitor treatment response in the chinese han population. J. Clin. Psychopharmacol. 2014, 34, 331–336. [Google Scholar] [CrossRef]
- Wang, X.C.; Xu, D.J.; Chen, G.H.; Xia, Q.; Liu, L.N. Association of 2 neurotrophic factor polymorphisms with efficacy of paroxetine in patients with major depressive disorder in a chinese population. Ther. Drug Monit. 2014, 36, 612–617. [Google Scholar] [CrossRef]
- Han, K.M.; Chang, H.S.; Choi, I.K.; Ham, B.J.; Lee, M.S. Cyp2d6 p34s polymorphism and outcomes of escitalopram treatment in koreans with major depression. Psychiatry Investig. 2013, 10, 286–293. [Google Scholar] [CrossRef]
- Sahraian, S.; Babashams, M.; Reza-Soltani, P.; Najmabadi, H.; Kahrizi, K.; Gorgani, S.H. Serotonin transporter polymorphism (5-httlpr) and citalopram effectiveness in iranian patients with major depressive disorder. Iran J. Psychiatry 2013, 8, 86–91. [Google Scholar]
- Liu, Z.; Zhu, F.; Yao, L.; Yang, C.; Xiao, L.; Zhu, J.; Wang, H.; Wang, G.; Liu, W.; Xiao, Z. Pdlim5 gene polymorphisms and short term antidepressant response in chinese major depressive disorders. Int. J. Clin. Exp. Med. 2013, 6, 677–682. [Google Scholar]
- Mitjans, M.; Serretti, A.; Fabbri, C.; Gasto, C.; Catalan, R.; Fananas, L.; Arias, B. Screening genetic variability at the cnr1 gene in both major depression etiology and clinical response to citalopram treatment. Psychopharmacology 2013, 227, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Myung, W.; Lim, S.W.; Kim, S.; Kim, H.; Chung, J.W.; Seo, M.Y.; Kim, J.W.; Carroll, B.J.; Kim, D.K. Serotonin transporter genotype and function in relation to antidepressant response in koreans. Psychopharmacology 2013, 225, 283–290. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Yu, Y.; Han, Y.; Wei, J.; Collier, D.; Li, T.; Ma, X. The role of single nucleotide polymorphism of d2 dopamine receptor gene on major depressive disorder and response to antidepressant treatment. Psychiatry Res. 2012, 200, 1047–1050. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, X.; Wang, Y.; Wang, J.; Xiang, B.; Wu, J.; Deng, W.; Li, M.; Wang, Q.; Li, T. Association of apc and reep5 gene polymorphisms with major depression disorder and treatment response to antidepressants in a han chinese population. Gen. Hosp. Psychiatry 2012, 34, 571–577. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Z.; Shi, Y.; Pu, M.; Yuan, Y.; Zhang, X.; Li, L.; Reynolds, G.P. Influence and interaction of genetic polymorphisms in the serotonin system and life stress on antidepressant drug response. J. Psychopharmacol. 2012, 26, 349–359. [Google Scholar] [CrossRef]
- Illi, A.; Poutanen, O.; Setala-Soikkeli, E.; Kampman, O.; Viikki, M.; Huhtala, H.; Mononen, N.; Haraldsson, S.; Koivisto, P.A.; Leinonen, E.; et al. Is 5-httlpr linked to the response of selective serotonin reuptake inhibitors in mdd? Eur. Arch. Psychiatry Clin. Neurosci. 2011, 261, 95–102. [Google Scholar] [CrossRef]
- Kishi, T.; Yoshimura, R.; Kitajima, T.; Okochi, T.; Okumura, T.; Tsunoka, T.; Yamanouchi, Y.; Kinoshita, Y.; Kawashima, K.; Naitoh, H.; et al. Htr2a is associated with ssri response in major depressive disorder in a japanese cohort. Neuromolecular Med. 2010, 12, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Liou, Y.J.; Chen, T.J.; Tsai, S.J.; Yu, Y.W.; Cheng, C.Y.; Hong, C.J. Support for the involvement of the kcnk2 gene in major depressive disorder and response to antidepressant treatment. Pharmacogenet. Genom. 2009, 19, 735–741. [Google Scholar] [CrossRef]
- Min, W.; Li, T.; Ma, X.; Li, Z.; Yu, T.; Gao, D.; Zhang, B.; Yun, Y.; Sun, X. Monoamine transporter gene polymorphisms affect susceptibility to depression and predict antidepressant response. Psychopharmacology 2009, 205, 409–417. [Google Scholar] [CrossRef]
- Kishi, T.; Kitajima, T.; Ikeda, M.; Yamanouchi, Y.; Kinoshita, Y.; Kawashima, K.; Okochi, T.; Okumura, T.; Tsunoka, T.; Ozaki, N.; et al. Clock may predict the response to fluvoxamine treatment in japanese major depressive disorder patients. Neuromolecular Med. 2009, 11, 53–57. [Google Scholar] [CrossRef]
- Tsai, S.J.; Hong, C.J.; Liou, Y.J.; Yu, Y.W.; Chen, T.J.; Hou, S.J.; Yen, F.C. Tryptophan hydroxylase 2 gene is associated with major depression and antidepressant treatment response. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Arias, B.; Serretti, A.; Mandelli, L.; Gasto, C.; Catalan, R.; Ronchi, D.D.; Fananas, L. Dysbindin gene (dtnbp1) in major depression: Association with clinical response to selective serotonin reuptake inhibitors. Pharmacogenet. Genom. 2009, 19, 121–128. [Google Scholar] [CrossRef]
- Wong, M.L.; Dong, C.; Maestre-Mesa, J.; Licinio, J. Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol. Psychiatry 2008, 13, 800–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, S.J.; Liou, Y.J.; Hong, C.J.; Yu, Y.W.; Chen, T.J. Glycogen synthase kinase-3beta gene is associated with antidepressant treatment response in chinese major depressive disorder. Pharmacogenom. J. 2008, 8, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Gau, Y.T.; Liou, Y.J.; Yu, Y.W.; Chen, T.J.; Lin, M.W.; Tsai, S.J.; Hong, C.J. Evidence for association between genetic variants of p75 neurotrophin receptor (p75ntr) gene and antidepressant treatment response in chinese major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147b, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Bozina, N.; Peles, A.M.; Sagud, M.; Bilusic, H.; Jakovljevic, M. Association study of paroxetine therapeutic response with sert gene polymorphisms in patients with major depressive disorder. World J. Biol. Psychiatry 2008, 9, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Papiol, S.; Arias, B.; Gasto, C.; Gutierrez, B.; Catalan, R.; Fananas, L. Genetic variability at hpa axis in major depression and clinical response to antidepressant treatment. J. Affect. Disord. 2007, 104, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ham, B.J.; Lee, B.C.; Paik, J.W.; Kang, R.H.; Choi, M.J.; Choi, I.G.; Lee, M.S. Association between the tryptophan hydroxylase-1 gene a218c polymorphism and citalopram antidepressant response in a korean population. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 104–107. [Google Scholar] [CrossRef]
- Choi, M.J.; Kang, R.H.; Lim, S.W.; Oh, K.S.; Lee, M.S. Brain-derived neurotrophic factor gene polymorphism (val66met) and citalopram response in major depressive disorder. Brain Res. 2006, 1118, 176–182. [Google Scholar] [CrossRef]
- Hong, C.J.; Chen, T.J.; Yu, Y.W.; Tsai, S.J. Response to fluoxetine and serotonin 1a receptor (c-1019g) polymorphism in taiwan chinese major depressive disorder. Pharmacogenom. J. 2006, 6, 27–33. [Google Scholar] [CrossRef]
- Choi, M.J.; Kang, R.H.; Ham, B.J.; Jeong, H.Y.; Lee, M.S. Serotonin receptor 2a gene polymorphism (-1438a/g) and short-term treatment response to citalopram. Neuropsychobiology 2005, 52, 155–162. [Google Scholar] [CrossRef]
- Kraft, J.B.; Slager, S.L.; McGrath, P.J.; Hamilton, S.P. Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol. Psychiatry 2005, 58, 374–381. [Google Scholar] [CrossRef]
- Yu, Y.W.; Chen, T.J.; Hong, C.J.; Chen, H.M.; Tsai, S.J. Association study of the interleukin-1 beta (c-511t) genetic polymorphism with major depressive disorder, associated symptomatology, and antidepressant response. Neuropsychopharmacology 2003, 28, 1182–1185. [Google Scholar] [CrossRef]
- Yoshida, K.; Ito, K.; Sato, K.; Takahashi, H.; Kamata, M.; Higuchi, H.; Shimizu, T.; Itoh, K.; Inoue, K.; Tezuka, T.; et al. Influence of the serotonin transporter gene-linked polymorphic region on the antidepressant response to fluvoxamine in japanese depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2002, 26, 383–386. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, X.; Huang, Y.; Sun, X. Catecholamine pathway polymorphisms and antidepressant response. Asia Pac. Psychiatry 2016, 8, 109–117. [Google Scholar] [CrossRef]
- Chang, H.S.; Lee, H.-Y.; Ham, B.-J.; Park, Y.C.; Hahn, S.-W.; Jeong, Y.-J.; Kim, B.; Lee, M.-S. Association between brain-derived neurotrophic factor v66m and treatment responses to escitalopram in patients with major depressive disorder. Asia Pac. Psychiatry 2012, 4, 241–249. [Google Scholar]
- Lin, K.M.; Tsou, H.H.; Tsai, I.J.; Hsiao, M.C.; Hsiao, C.F.; Liu, C.Y.; Shen, W.W.; Tang, H.S.; Fang, C.K.; Wu, C.S.; et al. Cyp1a2 genetic polymorphisms are associated with treatment response to the antidepressant paroxetine. Pharmacogenomics 2010, 11, 1535–1543. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, M.S.; Lee, J.H.; Kim, S.W.; Kang, R.H.; Choi, M.J.; Park, S.J.; Kim, S.J.; Lee, J.M.; Cole, S.P.; et al. Mrp1 polymorphisms associated with citalopram response in patients with major depression. J. Clin. Psychopharmacol. 2010, 30, 116–125. [Google Scholar] [CrossRef]
- Tsai, S.J.; Gau, Y.T.; Hong, C.J.; Liou, Y.J.; Yu, Y.W.; Chen, T.J. Sexually dimorphic effect of catechol-o-methyltransferase val158met polymorphism on clinical response to fluoxetine in major depressive patients. J. Affect. Disord. 2009, 113, 183–187. [Google Scholar] [CrossRef]
- Yu, Y.W.; Tsai, S.J.; Liou, Y.J.; Hong, C.J.; Chen, T.J. Association study of two serotonin 1a receptor gene polymorphisms and fluoxetine treatment response in chinese major depressive disorders. Eur. Neuropsychopharmacol. 2006, 16, 498–503. [Google Scholar] [CrossRef]
- Suzuki, Y.; Sawamura, K.; Someya, T. The effects of a 5-hydroxytryptamine 1a receptor gene polymorphism on the clinical response to fluvoxamine in depressed patients. Pharmacogenom. J. 2004, 4, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Jamerson, B.D.; Payne, M.E.; Garrett, M.E.; Ashley-Koch, A.E.; Speer, M.C.; Steffens, D.C. Folate metabolism genes, dietary folate and response to antidepressant medications in late-life depression. Int. J. Geriatr Psychiatry. 2013, 28, 925–932. [Google Scholar] [CrossRef]
- Fabbri, C.; Drago, A.; Serretti, A. Early antidepressant efficacy modulation by glutamatergic gene variants in the star*d. Eur. Neuropsychopharmacol. 2013, 23, 612–621. [Google Scholar] [CrossRef]
- Glubb, D.M.; McHugh, P.C.; Deng, X.; Joyce, P.R.; Kennedy, M.A. Association of a functional polymorphism in the adrenomedullin gene (adm) with response to paroxetine. Pharmacogenom. J. 2010, 10, 126–133. [Google Scholar] [CrossRef]
- Peters, E.J.; Slager, S.L.; Jenkins, G.D.; Reinalda, M.S.; Garriock, H.A.; Shyn, S.I.; Kraft, J.B.; McGrath, P.J.; Hamilton, S.P. Resequencing of serotonin-related genes and association of tagging snps to citalopram response. Pharmacogenet. Genom. 2009, 19, 1–10. [Google Scholar] [CrossRef]
- Mrazek, D.A.; Rush, A.J.; Biernacka, J.M.; O’Kane, D.J.; Cunningham, J.M.; Wieben, E.D.; Schaid, D.J.; Drews, M.S.; Courson, V.L.; Snyder, K.A.; et al. Slc6a4 variation and citalopram response. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009, 150b, 341–351. [Google Scholar] [CrossRef]
- Kato, M.; Fukuda, T.; Wakeno, M.; Fukuda, K.; Okugawa, G.; Ikenaga, Y.; Yamashita, M.; Takekita, Y.; Nobuhara, K.; Azuma, J.; et al. Effects of the serotonin type 2a, 3a and 3b receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed japanese patients. Neuropsychobiology 2006, 53, 186–195. [Google Scholar] [CrossRef]
- McMahon, F.J.; Buervenich, S.; Charney, D.; Lipsky, R.; Rush, A.J.; Wilson, A.F.; Sorant, A.J.M.; Papanicolaou, G.J.; Laje, G.; Fava, M.; et al. Variation in the gene encoding the serotonin 2a receptor is associated with outcome of antidepressant treatment. Am. J. Hum. Genet. 2006, 78, 804–814. [Google Scholar] [CrossRef]
- Peters, E.J.; Slager, S.L.; McGrath, P.J.; Knowles, J.A.; Hamilton, S.P. Investigation of serotonin-related genes in antidepressant response. Mol. Psychiatry 2004, 9, 879–889. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Biernacka, J.; Snyder, K.; Drews, M.; Pelleymounter, L.L.; Colby, C.; Wang, L.; Mrazek, D.A.; Weinshilboum, R.M. Catechol o-methyltransferase pharmacogenomics and selective serotonin reuptake inhibitor response. Pharmacogenom. J. 2012, 12, 78–85. [Google Scholar] [CrossRef]
- Lekman, M.; Laje, G.; Charney, D.; Rush, A.J.; Wilson, A.F.; Sorant, A.J.; Lipsky, R.; Wisniewski, S.R.; Manji, H.; McMahon, F.J.; et al. The fkbp5-gene in depression and treatment response--an association study in the sequenced treatment alternatives to relieve depression (star*d) cohort. Biol. Psychiatry 2008, 63, 1103–1110. [Google Scholar] [CrossRef]
- Kraft, J.B.; Peters, E.J.; Slager, S.L.; Jenkins, G.D.; Reinalda, M.S.; McGrath, P.J.; Hamilton, S.P. Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample. Biol. Psychiatry 2007, 61, 734–742. [Google Scholar] [CrossRef]
- Binder, E.B.; Owens, M.J.; Liu, W.; Deveau, T.C.; Rush, A.J.; Trivedi, M.H.; Fava, M.; Bradley, B.; Ressler, K.J.; Nemeroff, C.B. Association of polymorphisms in genes regulating the corticotropin-releasing factor system with antidepressant treatment response. Arch. Gen. Psychiatry 2010, 67, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Garriock, H.A.; Tanowitz, M.; Kraft, J.B.; Dang, V.C.; Peters, E.J.; Jenkins, G.D.; Reinalda, M.S.; McGrath, P.J.; von Zastrow, M.; Slager, S.L.; et al. Association of mu-opioid receptor variants and response to citalopram treatment in major depressive disorder. Am. J. Psychiatry 2010, 167, 565–573. [Google Scholar] [CrossRef]
- Lin, K.M.; Chiu, Y.F.; Tsai, I.J.; Chen, C.H.; Shen, W.W.; Liu, S.C.; Lu, S.C.; Liu, C.Y.; Hsiao, M.C.; Tang, H.S.; et al. Abcb1 gene polymorphisms are associated with the severity of major depressive disorder and its response to escitalopram treatment. Pharmacogenet. Genom. 2011, 21, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Myung, W.; Kim, J.; Lim, S.W.; Shim, S.; Won, H.H.; Kim, S.; Kim, S.; Lee, M.S.; Chang, H.S.; Kim, J.W.; et al. A genome-wide association study of antidepressant response in koreans. Transl. Psychiatry 2015, 5, e633. [Google Scholar] [CrossRef] [PubMed]
- Biernacka, J.M.; Sangkuhl, K.; Jenkins, G.; Whaley, R.M.; Barman, P.; Batzler, A.; Altman, R.B.; Arolt, V.; Brockmoller, J.; Chen, C.H.; et al. The international ssri pharmacogenomics consortium (ispc): A genome-wide association study of antidepressant treatment response. Transl. Psychiatry 2015, 5, e553. [Google Scholar] [CrossRef]
- Hunter, A.M.; Leuchter, A.F.; Power, R.A.; Muthen, B.; McGrath, P.J.; Lewis, C.M.; Cook, I.A.; Garriock, H.A.; McGuffin, P.; Uher, R.; et al. A genome-wide association study of a sustained pattern of antidepressant response. J. Psychiatr. Res. 2013, 47, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Tansey, K.E.; Guipponi, M.; Perroud, N.; Bondolfi, G.; Domenici, E.; Evans, D.; Hall, S.K.; Hauser, J.; Henigsberg, N.; Hu, X.; et al. Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: A genome-wide analysis of individual-level data and a meta-analysis. PLoS Med. 2012, 9, e1001326. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Biernacka, J.M.; Hebbring, S.; Chai, Y.; Jenkins, G.D.; Batzler, A.; Snyder, K.A.; Drews, M.S.; Desta, Z.; Flockhart, D.; et al. Pharmacogenomics of selective serotonin reuptake inhibitor treatment for major depressive disorder: Genome-wide associations and functional genomics. Pharmacogenom. J. 2013, 13, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Sasayama, D.; Hiraishi, A.; Tatsumi, M.; Kamijima, K.; Ikeda, M.; Umene-Nakano, W.; Yoshimura, R.; Nakamura, J.; Iwata, N.; Kunugi, H. Possible association of cux1 gene polymorphisms with antidepressant response in major depressive disorder. Pharmacogenom. J. 2013, 13, 354–358. [Google Scholar] [CrossRef]
- Uher, R.; Perroud, N.; Ng, M.Y.; Hauser, J.; Henigsberg, N.; Maier, W.; Mors, O.; Placentino, A.; Rietschel, M.; Souery, D.; et al. Genome-wide pharmacogenetics of antidepressant response in the gendep project. Am. J. Psychiatry 2010, 167, 555–564. [Google Scholar] [CrossRef]
- Power, R.A.; Cohen-Woods, S.; Ng, M.Y.; Butler, A.W.; Craddock, N.; Korszun, A.; Jones, L.; Jones, I.; Gill, M.; Rice, J.P.; et al. Genome-wide association analysis accounting for environmental factors through propensity-score matching: Application to stressful live events in major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 162b, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Ripke, S.; Wray, N.R.; Lewis, C.M.; Hamilton, S.P.; Weissman, M.M.; Breen, G.; Byrne, E.M.; Blackwood, D.H.; Boomsma, D.I.; Cichon, S.; et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry 2013, 18, 497–511. [Google Scholar]
- Wray, N.R.; Pergadia, M.L.; Blackwood, D.H.; Penninx, B.W.; Gordon, S.D.; Nyholt, D.R.; Ripke, S.; MacIntyre, D.J.; McGhee, K.A.; Maclean, A.W.; et al. Genome-wide association study of major depressive disorder: New results, meta-analysis, and lessons learned. Mol. Psychiatry 2012, 17, 36–48. [Google Scholar] [CrossRef]
- Shi, J.; Potash, J.B.; Knowles, J.A.; Weissman, M.M.; Coryell, W.; Scheftner, W.A.; Lawson, W.B.; DePaulo, J.R., Jr.; Gejman, P.V.; Sanders, A.R.; et al. Genome-wide association study of recurrent early-onset major depressive disorder. Mol. Psychiatry 2011, 16, 193–201. [Google Scholar] [CrossRef]
- Shyn, S.I.; Shi, J.; Kraft, J.B.; Potash, J.B.; Knowles, J.A.; Weissman, M.M.; Garriock, H.A.; Yokoyama, J.S.; McGrath, P.J.; Peters, E.J.; et al. Novel loci for major depression identified by genome-wide association study of sequenced treatment alternatives to relieve depression and meta-analysis of three studies. Mol. Psychiatry 2011, 16, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Muglia, P.; Tozzi, F.; Galwey, N.W.; Francks, C.; Upmanyu, R.; Kong, X.Q.; Antoniades, A.; Domenici, E.; Perry, J.; Rothen, S.; et al. Genome-wide association study of recurrent major depressive disorder in two european case-control cohorts. Mol. Psychiatry 2010, 15, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.F.; de Geus, E.J.; Willemsen, G.; James, M.R.; Smit, J.H.; Zandbelt, T.; Arolt, V.; Baune, B.T.; Blackwood, D.; Cichon, S.; et al. Genome-wide association for major depressive disorder: A possible role for the presynaptic protein piccolo. Mol. Psychiatry 2009, 14, 359–375. [Google Scholar] [CrossRef]
- Rietschel, M.; Mattheisen, M.; Frank, J.; Treutlein, J.; Degenhardt, F.; Breuer, R.; Steffens, M.; Mier, D.; Esslinger, C.; Walter, H.; et al. Genome-wide association-, replication-, and neuroimaging study implicates homer1 in the etiology of major depression. Biol. Psychiatry 2010, 68, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Lopez, A.D. The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in 1990 and Projected to 2020; Harvard School of Public Health: Boston, MA, USA, 1996. [Google Scholar]
- Guin, D.; Mishra, M.K.; Talwar, P.; Rawat, C.; Kushwaha, S.S.; Kukreti, S.; Kukreti, R. A systematic review and integrative approach to decode the common molecular link between levodopa response and parkinson’s disease. BMC Med. Genom. 2017, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Zill, P.; Baghai, T.C.; Zwanzger, P.; Schule, C.; Eser, D.; Rupprecht, R.; Moller, H.J.; Bondy, B.; Ackenheil, M. Snp and haplotype analysis of a novel tryptophan hydroxylase isoform (tph2) gene provide evidence for association with major depression. Mol. Psychiatry 2004, 9, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lim, S.W.; Kim, S.; Kim, J.W.; Chang, Y.H.; Carroll, B.J.; Kim, D.K. Monoamine transporter gene polymorphisms and antidepressant response in koreans with late-life depression. JAMA 2006, 296, 1609–1618. [Google Scholar] [CrossRef]
- Kato, M.; Serretti, A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol. Psychiatry 2010, 15, 473–500. [Google Scholar] [CrossRef] [PubMed]
- Zill, P.; Baghai, T.C.; Engel, R.; Zwanzger, P.; Schule, C.; Minov, C.; Behrens, S.; Bottlender, R.; Jager, M.; Rupprecht, R.; et al. Beta-1-adrenergic receptor gene in major depression: Influence on antidepressant treatment response. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2003, 120b, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Lucae, S.; Ising, M.; Horstmann, S.; Baune, B.T.; Arolt, V.; Muller-Myhsok, B.; Holsboer, F.; Domschke, K. Htr2a gene variation is involved in antidepressant treatment response. Eur. Neuropsychopharmacol. 2010, 20, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Horstmann, S.; Lucae, S.; Menke, A.; Hennings, J.M.; Ising, M.; Roeske, D.; Muller-Myhsok, B.; Holsboer, F.; Binder, E.B. Polymorphisms in grik4, htr2a, and fkbp5 show interactive effects in predicting remission to antidepressant treatment. Neuropsychopharmacology 2010, 35, 727–740. [Google Scholar] [CrossRef]
- Illi, A.; Setala-Soikkeli, E.; Viikki, M.; Poutanen, O.; Huhtala, H.; Mononen, N.; Lehtimaki, T.; Leinonen, E.; Kampman, O. 5-htr1a, 5-htr2a, 5-htr6, tph1 and tph2 polymorphisms and major depression. Neuroreport 2009, 20, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, C.; Marsano, A.; Serretti, A. Genetics of serotonin receptors and depression: State of the art. Curr. Drug Targets 2013, 14, 531–548. [Google Scholar] [CrossRef]
- Keller, J.; Gomez, R.; Williams, G.; Lembke, A.; Lazzeroni, L.; Murphy, G.M., Jr.; Schatzberg, A.F. Hpa axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Mol. Psychiatry 2017, 22, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Young, E.A.; Lopez, J.F.; Murphy-Weinberg, V.; Watson, S.J.; Akil, H. Mineralocorticoid receptor function in major depression. Arch. Gen. Psychiatry 2003, 60, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000, 23, 477–501. [Google Scholar] [CrossRef]
- Mello, A.F.; Juruena, M.F.; Pariante, C.M.; Tyrka, A.R.; Price, L.H.; Carpenter, L.L.; Del Porto, J.A. Depression and stress: Is there an endophenotype? Braz. J. Psychiatry 2007, 29 (Suppl. 1), S13–S18. [Google Scholar] [CrossRef]
- Arnett, M.G.; Muglia, L.M.; Laryea, G.; Muglia, L.J. Genetic approaches to hypothalamic-pituitary-adrenal axis regulation. Neuropsychopharmacology 2016, 41, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Bradley, R.G.; Binder, E.B.; Epstein, M.P.; Tang, Y.; Nair, H.P.; Liu, W.; Gillespie, C.F.; Berg, T.; Evces, M.; Newport, D.J.; et al. Influence of child abuse on adult depression: Moderation by the corticotropin-releasing hormone receptor gene. Arch. Gen. Psychiatry 2008, 65, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Polanczyk, G.; Caspi, A.; Williams, B.; Price, T.S.; Danese, A.; Sugden, K.; Uher, R.; Poulton, R.; Moffitt, T.E. Protective effect of crhr1 gene variants on the development of adult depression following childhood maltreatment: Replication and extension. Arch. Gen. Psychiatry 2009, 66, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Kranzler, H.R.; Feinn, R.; Nelson, E.C.; Covault, J.; Anton, R.F.; Farrer, L.; Gelernter, J. A crhr1 haplotype moderates the effect of adverse childhood experiences on lifetime risk of major depressive episode in african-american women. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156B, 960–968. [Google Scholar] [CrossRef]
- Woody, M.L.; Kudinova, A.Y.; McGeary, J.E.; Knopik, V.S.; Palmer, R.H.; Gibb, B.E. Influence of maternal depression on children’s brooding rumination: Moderation by crhr1 tat haplotype. Cogn. Emot. 2016, 30, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Sheng, H.; Wu, T.W.; Bao, Q.Y.; Zheng, Y.; Zhang, Y.M.; Gong, Y.X.; Lu, J.Q.; You, Z.D.; Xia, Y.; et al. Crh/crhr1 mediates prenatal synthetic glucocorticoid programming of depression-like behavior across 2 generations. FASEB J. 2018, 32, 4258–4269. [Google Scholar] [CrossRef] [PubMed]
- Szczepankiewicz, A.; Leszczynska-Rodziewicz, A.; Pawlak, J.; Rajewska-Rager, A.; Wilkosc, M.; Zaremba, D.; Dmitrzak-Weglarz, M.; Skibinska, M.; Hauser, J. Epistatic interaction between crhr1 and avpr1b variants as a predictor of major depressive disorder. Psychiatr. Genet. 2013, 23, 239–246. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, W.; Gao, K.; Wan, Q.; Yang, C.; Wang, H.; Wang, X.; Wang, G.; Liu, Z. Interaction between crhr1 and bdnf genes increases the risk of recurrent major depressive disorder in chinese population. PLoS ONE 2011, 6, e28733. [Google Scholar] [CrossRef]
- Ressler, K.J.; Bradley, B.; Mercer, K.B.; Deveau, T.C.; Smith, A.K.; Gillespie, C.F.; Nemeroff, C.B.; Cubells, J.F.; Binder, E.B. Polymorphisms in crhr1 and the serotonin transporter loci: Gene x gene x environment interactions on depressive symptoms. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153B, 812–824. [Google Scholar]
- Ishitobi, Y.; Nakayama, S.; Yamaguchi, K.; Kanehisa, M.; Higuma, H.; Maruyama, Y.; Ninomiya, T.; Okamoto, S.; Tanaka, Y.; Tsuru, J.; et al. Association of crhr1 and crhr2 with major depressive disorder and panic disorder in a japanese population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2012, 159B, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Villafuerte, S.M.; Del-Favero, J.; Adolfsson, R.; Souery, D.; Massat, I.; Mendlewicz, J.; Van Broeckhoven, C.; Claes, S. Gene-based snp genetic association study of the corticotropin-releasing hormone receptor-2 (crhr2) in major depression. Am. J. Med. Genet. 2002, 114, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Anacker, C.; Zunszain, P.A.; Cattaneo, A.; Carvalho, L.A.; Garabedian, M.J.; Thuret, S.; Price, J.; Pariante, C.M. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol. Psychiatry 2011, 16, 738–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licinio, J.; O’Kirwan, F.; Irizarry, K.; Merriman, B.; Thakur, S.; Jepson, R.; Lake, S.; Tantisira, K.G.; Weiss, S.T.; Wong, M.L. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in mexican-americans. Mol. Psychiatry 2004, 9, 1075–1082. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, F.; Wang, G.; Xiao, Z.; Tang, J.; Liu, W.; Wang, H.; Liu, H.; Wang, X.; Wu, Y.; et al. Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neurosci. Lett. 2007, 414, 155–158. [Google Scholar] [CrossRef]
- Niciu, M.J.; Ionescu, D.F.; Richards, E.M.; Zarate, C.A., Jr. Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder. J. Neural. Transm. 2014, 121, 907–924. [Google Scholar] [CrossRef] [PubMed]
- Murrough, J.W.; Abdallah, C.G.; Mathew, S.J. Targeting glutamate signalling in depression: Progress and prospects. Nat. Rev. Drug Discov. 2017, 16, 472–486. [Google Scholar] [CrossRef] [PubMed]
- Popoli, M.; Yan, Z.; McEwen, B.S.; Sanacora, G. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 2011, 13, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Sawa, A.; Iyo, M. Increased levels of glutamate in brains from patients with mood disorders. Biol. Psychiatry 2007, 62, 1310–1316. [Google Scholar] [CrossRef]
- Duric, V.; Banasr, M.; Stockmeier, C.A.; Simen, A.A.; Newton, S.S.; Overholser, J.C.; Jurjus, G.J.; Dieter, L.; Duman, R.S. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int. J. Neuropsychopharmacol. 2013, 16, 69–82. [Google Scholar] [CrossRef]
- Lee, L.C.; Cho, Y.C.; Lin, P.J.; Yeh, T.C.; Chang, C.Y.; Yeh, T.K. Influence of genetic variants of the n-methyl-d-aspartate receptor on emotion and social behavior in adolescents. Neural Plast 2016, 2016, 6851592. [Google Scholar] [CrossRef]
- Feyissa, A.M.; Chandran, A.; Stockmeier, C.A.; Karolewicz, B. Reduced levels of nr2a and nr2b subunits of nmda receptor and psd-95 in the prefrontal cortex in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ju, K.; Li, Z.; He, K.; Chen, J.; Wang, Q.; Yang, B.; An, L.; Feng, G.; Sun, W.; et al. Significant association of grm7 and grm8 genes with schizophrenia and major depressive disorder in the han chinese population. Eur. Neuropsychopharmacol. 2016, 26, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Verbeek, E.C.; Bevova, M.R.; Bochdanovits, Z.; Rizzu, P.; Bakker, I.M.; Uithuisje, T.; De Geus, E.J.; Smit, J.H.; Penninx, B.W.; Boomsma, D.I.; et al. Resequencing three candidate genes for major depressive disorder in a dutch cohort. PLoS ONE 2013, 8, e79921. [Google Scholar] [CrossRef]
- Paddock, S.; Laje, G.; Charney, D.; Rush, A.J.; Wilson, A.F.; Sorant, A.J.; Lipsky, R.; Wisniewski, S.R.; Manji, H.; McMahon, F.J. Association of grik4 with outcome of antidepressant treatment in the star*d cohort. Am. J. Psychiatry 2007, 164, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Pu, M.; Zhang, Z.; Xu, Z.; Shi, Y.; Geng, L.; Yuan, Y.; Zhang, X.; Reynolds, G.P. Influence of genetic polymorphisms in the glutamatergic and gabaergic systems and their interactions with environmental stressors on antidepressant response. Pharmacogenomics 2013, 14, 277–288. [Google Scholar] [CrossRef]
- Laje, G.; Paddock, S.; Manji, H.; Rush, A.J.; Wilson, A.F.; Charney, D.; McMahon, F.J. Genetic markers of suicidal ideation emerging during citalopram treatment of major depression. Am. J. Psychiatry 2007, 164, 1530–1538. [Google Scholar] [CrossRef]
- Jaso, B.A.; Niciu, M.J.; Iadarola, N.D.; Lally, N.; Richards, E.M.; Park, M.; Ballard, E.D.; Nugent, A.C.; Machado-Vieira, R.; Zarate, C.A. Therapeutic modulation of glutamate receptors in major depressive disorder. Curr. Neuropharmacol. 2017, 15, 57–70. [Google Scholar] [CrossRef]
- Story Jovanova, O.; Nedeljkovic, I.; Derek, S.; Walker, R.M.; Liu, C.; Luciano, M.; Bressler, J.; Brody, J.; Drake, A.J.; Evans, K.L.; et al. DNA methylation signatures of depressive symptoms in middle-aged and elderly persons: Meta-analysis of multiethnic epigenome-wide studies. JAMA Psychiatry 2018. [Google Scholar] [CrossRef]
- Enatescu, V.R.; Papava, I.; Enatescu, I.; Antonescu, M.; Anghel, A.; Seclaman, E.; Sirbu, I.O.; Marian, C. Circulating plasma micro rnas in patients with major depressive disorder treated with antidepressants: A pilot study. Psychiatry Investig. 2016, 13, 549–557. [Google Scholar] [CrossRef]
- Bocchio-Chiavetto, L.; Maffioletti, E.; Bettinsoli, P.; Giovannini, C.; Bignotti, S.; Tardito, D.; Corrada, D.; Milanesi, L.; Gennarelli, M. Blood microrna changes in depressed patients during antidepressant treatment. Eur. Neuropsychopharmacol. 2013, 23, 602–611. [Google Scholar] [CrossRef]
- Glessner, J.T.; Wang, K.; Sleiman, P.M.; Zhang, H.; Kim, C.E.; Flory, J.H.; Bradfield, J.P.; Imielinski, M.; Frackelton, E.C.; Qiu, H.; et al. Duplication of the slit3 locus on 5q35.1 predisposes to major depressive disorder. PLoS ONE 2010, 5, e15463. [Google Scholar] [CrossRef] [PubMed]
- Sangkuhl, K.; Klein, T.E.; Altman, R.B. Selective serotonin reuptake inhibitors pathway. Pharmacogenet. Genom. 2009, 19, 907–909. [Google Scholar] [CrossRef]
- Lodish, M.; Stratakis, C.A. A genetic and molecular update on adrenocortical causes of cushing syndrome. Nat. Rev. Endocrinol. 2016, 12, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Dowlatshahi, D.; MacQueen, G.M.; Wang, J.F.; Young, L.T. Increased temporal cortex creb concentrations and antidepressant treatment in major depression. Lancet 1998, 352, 1754–1755. [Google Scholar]
- Odagaki, Y.; Garcia-Sevilla, J.A.; Huguelet, P.; La Harpe, R.; Koyama, T.; Guimon, J. Cyclic amp-mediated signaling components are upregulated in the prefrontal cortex of depressed suicide victims. Brain Res. 2001, 898, 224–231. [Google Scholar] [CrossRef]
- Balu, D.T.; Hoshaw, B.A.; Malberg, J.E.; Rosenzweig-Lipson, S.; Schechter, L.E.; Lucki, I. Differential regulation of central bdnf protein levels by antidepressant and non-antidepressant drug treatments. Brain Res. 2008, 1211, 37–43. [Google Scholar] [CrossRef]
- Drago, A.; De Ronchi, D.; Serretti, A. Pharmacogenetics of antidepressant response: An update. Hum. Genomics 2009, 3, 257–274. [Google Scholar] [CrossRef]
- Mamdani, F.; Berlim, M.T.; Beaulieu, M.M.; Turecki, G. Pharmacogenomic predictors of citalopram treatment outcome in major depressive disorder. World J. Biol. Psychiatry 2014, 15, 135–144. [Google Scholar] [CrossRef]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The prisma extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef]
- Ward, L.D.; Kellis, M. Haploreg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012, 40, D930–D934. [Google Scholar] [CrossRef]
- Gamazon, E.R.; Zhang, W.; Konkashbaev, A.; Duan, S.; Kistner, E.O.; Nicolae, D.L.; Dolan, M.E.; Cox, N.J. Scan: Snp and copy number annotation. Bioinformatics 2010, 26, 259–262. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The ensembl variant effect predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Gray, K.A.; Daugherty, L.C.; Gordon, S.M.; Seal, R.L.; Wright, M.W.; Bruford, E.A. Genenames.Org: The hgnc resources in 2013. Nucleic Acids Res. 2013, 41, D545–D552. [Google Scholar] [CrossRef]
No. | Study Name | Sample Size | Genes | Studied Variants | p-Value | OR (95% CI) Genotypic | OR (95% CI) Allelic | Drugs | FP | Score | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | F | Total (n) | Responder/Remitter (n) | Non Responder/Non Remitter (n) | Genotypic | Allelic | |||||||||
1 | Nouraei H et al. (2018) [10] | 33 | 67 | 100 | 70 | 30 | GCR | rs41423247 | 0.008 | 0.032 | 3.3 (1.35–8.09) | 2.2 (1.09–4.44) | Fluoxetine | 6 | 9 |
2 | Firouzabadi N et al. (2017) [11] | 25 | 75 | 100 | 33 | 67 | ADRB1 | rs1801253 | 0.003 | 0.0002 | 5.7 (1.4–23.9) | 3.3 (1.72–6.50) | Sertraline | 6 | 9 |
3 | Xu Z et al. (2016) [12] | 116 | 165 | 281 | 114 | 50 | TPH2 | rs11178998 | 0.0209 | N.A. | 2.3 (1.14–4.50) | N.A. | SSRI | 6 | 9 |
rs7963717 | 0.0239 | N.A. | 2.2 (1.09–4.35) | ||||||||||||
4 | Manoharan A et al. (2016) [13] | 35 | 67 | 102 | 56 | 46 | SLC6A4 | 5-HTTLPR | 0.0066 | N.A. | 4.0 (1.45–11.03) | N.A. | Fluoxetine | 6 | 9 |
5 | Paroni G et al. (2017) [14] | 95 | 234 | 329 | 176 | 153 | KL | rs9536314 | 0.011 | N.A. | N.A. | N.A. | Escitalopram, Sertraline, Paroxetine, Citalopram | 22 | 8 |
6 | Lim SW et al. (2014) [15] | 59 | 180 | 239 | 154 | 85 | TPH2 | rs4760815 | 0.00001 | N.A. | N.A. | N.A. | SSRI | 6 | 9 |
rs11179027 | 0.00002 | N.A. | |||||||||||||
rs17110532 | 0.00009 | N.A. | |||||||||||||
rs17110747 | 0.0002 | N.A. | |||||||||||||
GRIK2 | rs543196 | 0.00005 | N.A. | ||||||||||||
rs572487 | 0.0001 | N.A. | |||||||||||||
GAD1 | rs3828275 | 0.00007 | N.A. | ||||||||||||
rs12185692 | 0.0002 | N.A. | |||||||||||||
SLC6A4 | rs2066713 | 0.0001 | N.A. | ||||||||||||
rs2020942 | 0.0003 | N.A. | |||||||||||||
7 | Fukui N et al. (2014) [16] | 65 | 58 | 123 | 24 | 35 | COMT | rs2075507 | N.A. | 0.0036 | N.A. | N.A. | Fluvoxamine | 12 | 7 |
rs1544325 | N.A. | 0.0036 | |||||||||||||
rs5993883 | N.A. | 0.015 | |||||||||||||
8 | Li X et al. (2014) [17] | 141 | 149 | 290 | 220 | 70 | SLC17A7 | rs74174284 | 0.014 | 0.008 | 0.57 (0.38–0.87) | N.A. | SSRI | 6 | 9 |
9 | Wang XC et al. (2014) [18] | 109 | 189 | 298 | 219 | 79 | BDNF | rs6265 | 0.001 | N.A. | N.A. | N.A. | Paroxetine | 6 | 9 |
GDNF | rs2973049 | 0.005 | |||||||||||||
rs2216711 | 0.005 | ||||||||||||||
10 | Han KM et al. (2013) [19] | 13 | 81 | 94 | 37 | 19 | CYP2D6 | rs1065852 | 0.001 | 0.001 | N.A. | N.A. | Escitalopram | 12 | 9 |
11 | Shima Sahraian et al. (2013) [20] | 26 | 78 | 104 | 65 | 39 | SLC6A4 | 5-HTTLPR | 0.023 | N.A. | N.A. | N.A. | Citalopram | 14 | 8 |
12 | Liu Z et al. (2013) [21] | 72 | 113 | 185 | 98 | 87 | PDLIM5 | rs2433320 | 0.0145 | N.A. | N.A. | N.A. | Fluoxetine | 6 | 9 |
13 | Mitjans M et al. (2013) [22] | 35 | 120 | 155 | 96 | 51 | CNR1 | rs806368 | 0.029 | 0.021 | N.A. | N.A. | Citalopram | 12 | 9 |
rs806371 | 0.045 | 0.016 | |||||||||||||
rs806377 | 0.188 | 0.043 | |||||||||||||
14 | Myung W et al. (2013) [23] | 34 | 54 | 88 | 46 | 42 | SLC6A4 | 5-HTTLPR | 0.004 | N.A. | N.A. | N.A. | Sertraline, Fluoxetine | 6 | 9 |
15 | Wang Y et al. (2012) [24] | 182 | 221 | 403 | 287 | 78 | DRD2 | rs2734833 | 0.0445 | N.A. | N.A. | N.A. | SSRI | 6 | 8 |
16 | Yang Z et al. (2012) [25] | 182 | 221 | 403 | 130 | 35 | APC | rs2229992 | N.A. | 0.05 | N.A. | N.A. | SSRI | 6 | 8 |
SRP19 | rs495794 | 0.0011 | |||||||||||||
REEP5 | rs153549 | 0.0015 | |||||||||||||
rs153560 | 0.0009 | ||||||||||||||
17 | Xu Z et al. (2012) [26] | 121 | 187 | 308 | 114 | 52 | HTR1B | rs6298 | 0.023 | N.A. | N.A. | 0.39 (0.17–0.91) | SSRI | 6 | 9 |
18 | Illi A et al. (2011) [27] | 36 | 49 | 85 | 29 | 56 | SLC6A4 | 5-HTTLPR | 0.03 | N.A. | N.A. | N.A. | Citalopram, Fluoxetine, Paroxetine | 6 | 9 |
19 | Kishi T et al. (2010) [28] | 121 | 144 | 265 | 150 | 115 | HTR2A | rs1928040 | 0.054 | 0.0252 | N.A. | N.A. | Fluvoxamine, Sertraline, Paroxetine | 8 | 7 |
20 | Kishi T et al. (2010) * [28] | 121 | 144 | 265 | 150 | 115 | HTR2A | rs1928040 | 0.0910 | 0.0418 | N.A. | N.A. | Fluvoxamine, Sertraline, Paroxetine | 8 | 7 |
21 | Liou YJ et al. (2009) [29] | 186 | 263 | 449 | 42 | 117 | KCNK2 | rs6667764 | 0.046 | 0.360 | N.A. | N.A. | Citalopram, Fluoxetine | 8 | 9 |
rs10494994 | 0.05 | 0.082 | |||||||||||||
rs6686529 | 0.019 | 0.0008 | |||||||||||||
22 | Min W et al. (2009) [30] | 272 | 307 | 579 | 243 | 119 | SLC6A4 | 5-HTTLPR | 0.032 | 0.617 | N.A. | N.A. | SSRI | 6 | 9 |
23 | Kishi T et al. (2009) [31] | 60 | 61 | 121 | 60 | 61 | CLOCK | rs3736544 | 0.0043 | 0.0026 | N.A. | N.A. | Fluvoxamine | 8 | 9 |
24 | Kishi T et al. (2009) * [31] | 60 | 61 | 121 | 60 | 61 | CLOCK | rs3736544 | 0.0065 | 0.0026 | N.A. | N.A. | Fluvoxamine | 8 | 9 |
rs3749474 | 0.073 | 0.025 | |||||||||||||
25 | Tsai SJ et al. (2009) [32] | 208 | 300 | 508 | 126 | 61 | TPH2 | rs2171363 | 0.009 | 0.512 | N.A. | N.A. | Fluoxetine, citalopram | 8 | 7 |
rs4290270 | 0.019 | 0.459 | |||||||||||||
26 | Arias B et al. (2009) [33] | 114 | 33 | 147 | 96 | 52 | DTNBP1 | rs760761 | 0.03 | 0.007 | N.A. | N.A. | Citalopram | 4 | 8 |
27 | Wong ML et al. (2008) [34] | 37 | 71 | 108 | - | - | CYP3A4 | rs2242480 | N.A. | 0.02 | N.A. | N.A. | Fluoxetine | 8 | 7 |
PSMD13 | rs3817629 | 0.04 | |||||||||||||
CD3E | rs2231449 | 0.002 | |||||||||||||
PRKCSH | rs160841 | 0.02 | |||||||||||||
PSMA7 | rs2057169 | 0.004 | |||||||||||||
rs2057168 | 0.003 | ||||||||||||||
rs2281740 | 0.002 | ||||||||||||||
rs3746651 | 0.01 | ||||||||||||||
28 | Tsai SJ et al. (2008) [35] | 101 | 129 | 230 | 74 | 92 | GSK3B | rs334558 | 0.002 | 0.02 | N.A. | N.A. | Fluoxetine, Citalopram | 4 | 8 |
rs13321783 | 0.002 | 0.002 | |||||||||||||
rs2319398 | 0.011 | 0.011 | |||||||||||||
29 | Gau YT et al. (2008) [36] | 100 | 128 | 228 | 74 | 43 | NGFR | rs2072446 | 0.039 | 0.012 | N.A. | N.A. | Fluoxetine, Citalopram | 8 | 9 |
30 | Bozina N et al. (2008) [37] | 69 | 61 | 130 | 65 | 65 | SLC6A4 | 5-HTTLPR | 0.005 | 0.0004 | N.A. | N.A. | Paroxetine | 6 | 9 |
31 | Papiol S et al. (2007) [38] | 35 | 124 | 159 | 95 | 51 | CRHR2 | rs2270007 | 0.018 | 0.002 | N.A. | N.A. | Citalopram | 4 | 8 |
32 | Ham BJ et al. (2007) * [39] | 29 | 76 | 105 | 42 | 63 | TPH1 | rs1800532 | 0.047 | 0.017 | N.A. | N.A. | Citalopram | 8 | 9 |
33 | Choi MJ et al. (2006) [40] | 24 | 59 | 83 | 57 | 26 | COMT | rs6265 | 0.012 | 0.009 | N.A. | N.A. | Citalopram | 8 | 7 |
34 | Hong CJ et al. (2006) [41] | 93 | 131 | 224 | 81 | 143 | HTR1A | rs6295 | 0.009 | N.A. | N.A. | N.A. | Fluoxetine | 4 | 8 |
SLC6A4 | 5-HTTLPR | 0.001 | |||||||||||||
35 | Choi MJ et al. (2005) * [42] | 51 | 20 | 71 | 22 | 49 | HTR2A | rs6311 | 0.018 | 0.034 | N.A. | N.A. | Citalopram | 4 | 8 |
36 | Kraft JB et al. (2005) [43] | 49 | 47 | 96 | 77 | 19 | SLC6A4 | rs25531 | N.A. | 0.03 | N.A. | N.A. | Fluoxetine | 12 | 9 |
37 | Yu YW et al. (2003) * [44] | 67 | 90 | 157 | 4 | 115 | IL-1B | rs193922490 | 0.028 | N.A. | N.A. | N.A. | Fluoxetine | 4 | 7 |
38 | Yoshida K et al. (2002) [45] | 22 | 32 | 54 | 35 | 19 | SLC6A4 | 5-HTTLPR | 0.059 | 0.01 | N.A. | N.A. | Fluvoxamine | 6 | 9 |
39 | Yin L et al. (2016) [46] | 141 | 151 | 290 | 220 | 70 | DRD4 | rs1800544 | 0.03 | 0.41 | N.A. | N.A. | Fluoxetine, paroxetine, sertraline, citalopram | 6 | 9 |
40 | Hun Soo Chang et al. (2011) [47] | 16 | 99 | 115 | 49 | 25 | BDNF | rs6265 | 0.001 | 0.006 | N.A. | N.A. | Escitalopram | 8 | 9 |
41 | Lin KM et al. (2010) * [48] | 36 | 205 | 241 | 69 | 102 | CYP1A2 | rs4646425 | 0.002 | 0.03 | 2.3 (1.12–4.73) | N.A. | Paroxetine | 8 | 9 |
rs2472304 | 0.024 | 0.01 | 0.39 (0.19–0.82) | ||||||||||||
rs2470890 | 0.015 | 0.004 | 0.34 (0.16–0.74) | ||||||||||||
42 | Lee SH et al. (2010) * [49] | 17 | 47 | 64 | 35 | 29 | MRP1 | rs2239330 | 0.038 | 0.005 | N.A. | N.A. | Citalopram | 8 | 9 |
rs212087 | 0.194 | 0.052 | |||||||||||||
rs212090 | 0.133 | 0.035 | |||||||||||||
43 | Tsai SJ et al. (2009) [50] | 138 | 196 | 334 | 101 | 52 | COMT | rs4680 | 0.02 | 0.006 | N.A. | N.A. | Fluoxetine, citalopram | 8 | 9 |
44 | Yu YW et al. (2006) [51] | 94 | 128 | 222 | 83 | 139 | HTR1A | rs6295 | 0.007 | N.A. | N.A. | N.A. | Fluoxetine | 4 | 8 |
45 | Suzuki Y et al. (2004) [52] | 29 | 23 | 52 | 35 | 17 | HTR1A | rs1800042 | 0.042 | N.A. | N.A. | N.A. | Fluvoxamine | 12 | 9 |
46 | Jamerson BD et al. (2013) [53] | 44 | 60 | 104 | 55 | 49 | MTRR | rs1801394 | 0.0077 | N.A. | N.A. | N.A. | SSRI | 12 | 8 |
MTHFR | rs1801131 | 0.0313 | |||||||||||||
47 | Fabbri C et al. (2013) [54] | 598 | 943 | 1541 | 260 | 1281 | GRM7 | rs1083801 | 0.0000005 | N.A. | N.A. | N.A. | Citalopram | 2 | 8 |
GRIK2 | rs599545 | 0.0003 | |||||||||||||
rs2786247 | 0.0008 | ||||||||||||||
rs2852584 | 0.0002 | ||||||||||||||
rs2518313 | 0.0003 | ||||||||||||||
rs2786239 | 0.0006 | ||||||||||||||
GRIA4 | rs495498 | 0.0008 | |||||||||||||
rs10791773 | 0.0009 | ||||||||||||||
rs994575 | 0.0009 | ||||||||||||||
rs11226856 | 0.0002 | ||||||||||||||
PRKCE | rs505310 | 0.0005 | |||||||||||||
CAMK2D | rs12508566 | 0.0009 | |||||||||||||
48 | Glubb DM et al. (2010) [55] | N.A. | N.A. | 285 | 47 | 19 | ADM | rs11042725 | 0.001 | N.A. | N.A. | N.A. | Paroxetine | 6 | 6 |
49 | Peters EJ et al. (2009) [56] | 746 | 1207 | 1953 | N.A. | N.A. | HTR2A | rs1923884 | N.A. | 0.02 | N.A. | 0.75 (0.58–0.97) | Citalopram | 6 | 9 |
rs7997012 | N.A. | 0.0002 | N.A. | 1.43 (1.13–1.81) | |||||||||||
50 | Peters EJ et al. (2009) * [56] | 746 | 1207 | 1953 | N.A. | N.A. | HTR2A | rs1923884 | N.A. | 0.01 | N.A. | 0.72 (0.55–0.95) | Citalopram | 6 | 9 |
rs7997012 | N.A. | 3.0 × 10−5 | N.A. | 1.52 (1.20–1.95) | |||||||||||
51 | Mrazek DA et al. (2009) * [57] | 443 | 631 | 1074 | 1042 | 32 | SLC6A4 | SERTin2 | 0.041 | N.A. | N.A. | N.A. | Citalopram | 6 | 9 |
5-HTTLPR | 0.039 | ||||||||||||||
52 | Kato M et al. (2006) [58] | 44 | 56 | 100 | 57 | 23 | SLC6A4 | 5-HTTLPR | 0.043 | N.A. | N.A. | N.A. | Paroxetine, Fluvoxamine | 6 | 8 |
53 | McMahon FJ et al. (2006) * [59] | 748 | 1205 | 1953 | N.A. | N.A. | HTR2A | rs7997012 | 0.00004 | 2.0 × 10−5 | N.A. | N.A. | Citalopram | 6 | 9 |
rs1928040 | 0.0701 | 0.0446 | |||||||||||||
54 | McMahon FJ et al. (2006) [59] | 748 | 1205 | 1953 | N.A. | N.A. | HTR2A | rs7997012 | 2.0 × 10−6 | 4.0 × 10−5 | N.A. | N.A. | Citalopram | 6 | 9 |
rs1928040 | 0.0149 | 0.0709 | |||||||||||||
55 | Peters EJ et al. (2004) [60] | 47 | 49 | 96 | 77 | 19 | SLC614 | rs25533 | 0.037 | N.A. | 0.33 (0.08–1.35) | N.A. | Fluoxetine | 12 | 7 |
56 | Ji Y et al. (2012) [61] | N.A. | N.A. | 1232 | 541 | 691 | COMT | rs13306278 | N.A. | 0.04 | N.A. | 0.78 (0.62–0.99) | SSRI | 6 | 7 |
rs9332381 | N.A. | 0.006 | 1.71 (1.16–2.51) | ||||||||||||
57 | Lekman M et al. (2008) [62] | 748 | 1205 | 1953 | 954 | 415 | FKBP5 | rs4713916 | 0.0027 | 0.0007 | N.A. | N.A. | Citalopram | 6 | 7 |
58 | Lekman M et al. (2008) * [62] | 748 | 1205 | 1953 | 723 | 466 | FKBP5 | rs4713916 | 0.042 | 0.042 | N.A. | N.A. | Citalopram | 6 | 7 |
59 | Kraft JB et al. (2007) [63] | 735 | 1179 | 1914 | 991 | 669 | SLC6A4 | rs25533 | 0.05 | N.A. | 1.81 (0.92–3.56) | Citalopram | 6 | 9 | |
60 | Binder EB et al. (2010) [64] | 746 | 1207 | 1953 | 982 | 726 | CRHBP | rs10473984 | 0.0068 | 0.0044 | N.A. | 1.42 (1.11–1.81) | Citalopram | 6 | 9 |
rs10474485 | 0.018 | 0.0065 | 1.25 (1.06–1.46) | ||||||||||||
rs10055255 | 0.020 | 0.017 | 1.19 (1.04–1.39) | ||||||||||||
CRHR2 | rs2267716 | 0.024 | 0.013 | 1.20 (1.04–1.38) | |||||||||||
rs255105 | 0.043 | 0.0086 | 1.20 (1.05–1.38) | ||||||||||||
CRHR1 | rs12942300 | 0.038 | 0.0086 | 1.31 (1.07–1.60) | |||||||||||
61 | Binder EB et al. (2010) * [64] | 746 | 1207 | 1953 | 740 | 649 | CRHBP | rs10473984 | 0.0004 | 0.0006 | N.A. | N.A. | Citalopram | 6 | 9 |
rs10474485 | 0.018 | 0.0062 | |||||||||||||
rs10055255 | 0.005 | 0.0023 | |||||||||||||
CRHR1 | rs12942300 | 0.0087 | 0.0015 | ||||||||||||
CRHR2 | rs2267716 | 0.024 | 0.0098 | ||||||||||||
AVPR1A | rs7307997 | 0.047 | 0.038 | ||||||||||||
62 | Garriock HA et al. (2010) [65] | 746 | 1207 | 1953 | 531 | 790 | OPRM1 | rs562859 | N.A. | 0.002 | N.A. | 1.33 (1.05–1.69) | Citalopram | 6 | 9 |
rs1323044 | N.A. | 0.003 | 1.46 (1.15–1.85) | ||||||||||||
rs540825 | N.A. | 0.003 | 1.37 (1.07–1.75) | ||||||||||||
rs658156 | N.A. | 0.003 | 1.54 (1.18–2.00) | ||||||||||||
rs13195018 | N.A. | 0.002 | 1.60 (1.23–2.08) | ||||||||||||
rs538174 | N.A. | 0.002 | 1.57 (1.20–2.05) | ||||||||||||
rs583664 | N.A. | 0.001 | 1.61 (1.23–2.10) | ||||||||||||
rs618207 | N.A. | 0.001 | 1.47 (1.13–1.91) | ||||||||||||
63 | Garriock HA et al. (2010) * [65] | 746 | 1207 | 1953 | 531 | 669 | OPRM1 | rs562859 | N.A. | 0.002 | N.A. | 1.36 (1.06–1.74) | Citalopram | 6 | 9 |
rs1323044 | N.A. | 0.005 | 1.44 (1.12–1.85) | ||||||||||||
rs540825 | N.A. | 0.002 | 1.44 (1.12–1.86) | ||||||||||||
64 | Lin KM et al. (2011) [66] * | 19 | 81 | 100 | 48 | 26 | ABCB1 | rs1882478 | N.A. | 0.037 | N.A. | 0.35 (0.17–0.71) | Escitalopram | 8 | 8 |
rs1045642 | 0.045 | N.A. | 0.34 (0.16–0.72) | ||||||||||||
rs10256836 | 0.021 | N.A. | 3.82 (1.58–9.22) |
No. | Study Name | Study Population | Responders (n) | Remitters (n) | Non-Remitters (n) | Non-Responders (n) | Total (n) | Genotyping Platform | SNPs Studied (n) |
---|---|---|---|---|---|---|---|---|---|
1 | Myung W et al. (2015) [67] | Korean | 497 | 312 | 558 | 373 | 870 | Affymetrix Genome-Wide Human Single-Nucleotide Polymorphism (SNP) Array Chip 6.0 | 905,431 |
2 | Biernacka JM et al. (2015) [68] | Asian, European | 416 | 226 | 190 | 449 | 865 | Illumina Human—Omni Express Exome Bead Chips | 631,765 |
3 | Hunter AM et al. (2013) [69] | European | 869 | N.A. | N.A. | 247 | 1116 | Affymetrix 500 K and 5.0 Human SNP Arrays | 430,198 |
Replication data set | 706 | Illumina Human 610 Quad Bead Chip | 550,337 | ||||||
4 | Tansey KE et al. (2012) [70] | European | N.A. | N.A. | N.A. | N.A. | 2283 | Illumina Human 610 Quad Bead Chips; Illumina Human 660 W-Quad Bead Chips | 520,978 |
5 | Ji Y et al. (2013) [71] | European | 287 | 206 | 81 | 212 | 499 | Illumina Human 610-Quad Bead Chips | 550,337 |
6 | Sasayama D et al. (2013) [72] | Japanese | 61 | N.A. | N.A. | 31 | 92 | Illumina Human CNV370 Quad Bead Chips | 356,075 |
Replication data set | 136 | ||||||||
7 | Uher R et al. (2010) [73] | European | N.A. | N.A. | N.A. | N.A. | 706 | Illumina Human 610 Quad Bead Chips | 550,337 |
No. | Study Name | Study Population | Cases (n) | Controls (n) | Total (n) | Platform | SNPs Studied (n) |
---|---|---|---|---|---|---|---|
1 | Power RA et al. (2013) [74] | European | 805 | 805 | 1610 | Illumina 610 K bead array | 457,670 |
2 | Ripke S et al. (2013) [75] | European | 9240 | 9519 | 18,759 | Illumina 610 K, 317 K, 370 K, 550 K, Perlegen 600 K, Affymetrix 6.0 | >200,000 |
6783 | 50,695 | 57,478 | N.A. | 593 | |||
3 | Wray NR et al. (2012) [76] | European | 2431 | 3673 | 6104 | Illumina 317 K, Illumina 370 K, Illumina 610 K, Affymetrix 600 K | 657,366 |
4 | Shi J et al. (2012) [77] | European | 1020 | 1636 | 2656 | Affymetrix 6.0 | 671,424 |
5 | Shyn SI et al. (2011) [78] | European | 1221 | 1636 | 2857 | Affymetrix 6.0, 5.0 and 500 K, and Perlegen | 500,568 |
6 | Muglia P et al. (2010) [79] | European | 1022 | 1000 | 2022 | Illumina HumanHap550 | 551,101 |
492 | 1052 | 1544 | Affymetrix 5.0 | 370,697 | |||
7 | Sullivan PF et al. (2009) [80] | European | 1738 | 1802 | 3540 | Perlegen | 435,291 |
8 | Rietschel M et al. (2010) [81] | European | 604 | 1364 | 1968 | Illumina HumanHap 550v3, and Illumina Human 610 W Quad Bead Chips | 491,238 |
409 | 541 | 950 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, A.; Singh, P.; Gupta, H.; Kaur, H.; Kanojia, N.; Guin, D.; Sood, M.; Chadda, R.K.; Yadav, J.; Vohora, D.; et al. Systems Approach to Identify Common Genes and Pathways Associated with Response to Selective Serotonin Reuptake Inhibitors and Major Depression Risk. Int. J. Mol. Sci. 2019, 20, 1993. https://doi.org/10.3390/ijms20081993
Srivastava A, Singh P, Gupta H, Kaur H, Kanojia N, Guin D, Sood M, Chadda RK, Yadav J, Vohora D, et al. Systems Approach to Identify Common Genes and Pathways Associated with Response to Selective Serotonin Reuptake Inhibitors and Major Depression Risk. International Journal of Molecular Sciences. 2019; 20(8):1993. https://doi.org/10.3390/ijms20081993
Chicago/Turabian StyleSrivastava, Ankit, Priyanka Singh, Hitesh Gupta, Harpreet Kaur, Neha Kanojia, Debleena Guin, Mamta Sood, Rakesh Kumar Chadda, Jyoti Yadav, Divya Vohora, and et al. 2019. "Systems Approach to Identify Common Genes and Pathways Associated with Response to Selective Serotonin Reuptake Inhibitors and Major Depression Risk" International Journal of Molecular Sciences 20, no. 8: 1993. https://doi.org/10.3390/ijms20081993
APA StyleSrivastava, A., Singh, P., Gupta, H., Kaur, H., Kanojia, N., Guin, D., Sood, M., Chadda, R. K., Yadav, J., Vohora, D., Saso, L., & Kukreti, R. (2019). Systems Approach to Identify Common Genes and Pathways Associated with Response to Selective Serotonin Reuptake Inhibitors and Major Depression Risk. International Journal of Molecular Sciences, 20(8), 1993. https://doi.org/10.3390/ijms20081993