Rational Design of Modified Oxobacteriochlorins as Potential Photodynamic Therapy Photosensitizers
Abstract
:1. Introduction
2. Results and Discussion
- or for compound 3;
- or for compounds 2 and 8;
- or for compound 6;
- for all other systems.
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juze-niene, A.; Kessel, D.; et al. Photodynamic Therapy of Cancer: An Update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Allison, R.R.; Bagnato, V.S.; Sibata, C.H. Future of oncologic photodynamic therapy. Future Oncol. 2010, 6, 929–940. [Google Scholar] [CrossRef] [Green Version]
- Yano, S.; Hirohara, S.; Obata, M.; Hagiya, Y.; Ogura, S.; Ikeda, I.; Kataoka, H.; Tanaka, M.; Joh, T. Current states and future views in photodynamic therapy. J. Photochem. Photobiol. C 2011, 12, 46–67. [Google Scholar] [CrossRef]
- Dabrowski, J.M.; Arnaut, L.G. Photodynamic therapy (PDT) of cancer: From local to systemic treatment. Photochem Photobiol Sci. 2015, 14, 1765–1780. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Dominijanni, A.; Rodríguez-Corrales, J.Á.; Prussin, R.; Zhao, Z.; Li, T.; Robertson, J.L.; Brewer, K.J. Visible light-induced cytotoxicity of Ru,Os–polyazine complexes towards rat malignant glioma. Inorg. Chim. Acta 2017, 454, 155–161. [Google Scholar] [CrossRef]
- Marian, C.M. Spin-orbit coupling and intersystem crossing in molecules. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 187–203. [Google Scholar] [CrossRef]
- Banfi, S.; Caruso, E.; Caprioli, S.; Mazzagatti, L.; Canti, G.; Ravizza, R.; Gariboldi, M.; Monti, E. Photodynamic effects of porphyrin and chlorin photosensitizers in human colon adenocarcinoma cells. Bioorg. Med. Chem. 2004, 12, 4853–4860. [Google Scholar] [CrossRef]
- García-Díaz, M.; Sánchez-García, D.; Soriano, J.; Sagrista, L.; Mora, M.; Villanueva, A.; Stockert, J.; Cañete, M.; Nonell, S. Temocene: The porphycene analogue of temoporfin (Foscan®). MedChemComm 2011, 2, 616–619. [Google Scholar]
- Nanashima, A.; Abo, T.; Nonaka, T.; Nonaka, Y.; Morisaki, T.; Uehara, R.; Ohnita, K.; Fukuda, D.; Murakami, G.; Tou, K.; et al. Photodynamic therapy using talaporfin sodium (Laserphyrin®) for bile duct carcinoma: A preliminary clinical trial. Anticancer. Res. 2012, 32, 4931–4938. [Google Scholar] [PubMed]
- O’Connor, A.E.; Gallagher, W.M.; Byrne, A.T. Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy. Photochem. Photobiol. 2009, 85, 1053–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Chen, C.-Y.; Hood, D.; Taniguchi, M.; Diers, J.R.; Bocian, D.F.; Holten, D.; Lindsey, J.S. Synthesis, photophysics and electronic structure of oxobacteriochlorins. New J. Chem. 2017, 41, 3732–3744. [Google Scholar] [CrossRef]
- Tamiaki, H.; Xu, M.; Kinoshita, Y. Synthesis of oxo-, thioxo- and methylene-substituted bacteriochlorins by modifying chlorophyll-a and their electronic absorption in visible and near-infrared regions. J. Photochem. Photobiol. A Chem. 2013, 252, 60–68. [Google Scholar] [CrossRef]
- Kamkaew, A.; Lim, S.H.; Lee, H.B.; Kiew, L.V.; Chung, L.Y.; Burgess, K. BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 2013, 42, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Ramaiah, D.; Eckert, I.; Arun, K.T.; Weidenfeller, L.; Epe, B. Squaraine dyes for photodynamic therapy: Study of their cytotoxicity and genotoxicity in bacteria and mammalian cells. Photochem. Photobiol. 2002, 76, 672–677. [Google Scholar] [CrossRef]
- Loudet, A.; Burgess, K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem. Rev. 2007, 107, 4891–4932. [Google Scholar] [CrossRef]
- Patalag, L.J.; Jones, P.G.; Werz, D.B. BOIMPYs: Rapid Access to a Family of Red-Emissive Fluorophores and NIR Dyes. Angew. Chem., Int. Ed. 2016, 55, 13340–13344. [Google Scholar] [CrossRef] [PubMed]
- Kasha, M. Characterization of electronic transitions in complex molecules. Discuss Faraday Soc. 1950, 9, 14–19. [Google Scholar] [CrossRef]
- El-Sayed, M.A. Triplet state. Its radiative and nonradiative properties. Acc. Chem. Res. 1968, 1, 8–16. [Google Scholar] [CrossRef]
- Pirillo, J.; Mazzone, G.; Russo, N.; Bertini, L. Photophysical properties of S, Se and te-substituted deoxyguanosines: Insight into their ability to act as chemotherapeutic agents. J. Chem. Inf. Model 2017, 57, 234–242. [Google Scholar] [CrossRef]
- Pirillo, J.; De Simone, B.C.; Russo, N. Photophysical properties prediction of seleniumand tellurium-substituted thymidine as potential UVA chemotherapeutic agents. Theor. Chem. Acc. 2016, 135, 8. [Google Scholar] [CrossRef]
- De Simone, B.C.; Mazzone, G.; Pirillo, J.; Russo, N.; Sicilia, E. Halogen atom effect on the photophysical properties of substituted aza-BODIPY derivatives. Phys. Chem. Chem. Phys. 2017, 19, 2530–2536. [Google Scholar] [CrossRef]
- De Simone, B.C.; Mazzone, G.; Russo, N.; Sicilia, E.; Toscano, M. Excitation energies, singlet–triplet energy gaps, spin–orbit matrix elements and heavy atom effects in BOIMPYs as possible photosensitizers for photodynamic therapy: A computational investigation. Phys. Chem. Chem. Phys. 2018, 20, 2656–2661. [Google Scholar] [CrossRef] [PubMed]
- De Simone, B.C.; Mazzone, G.; Russo, N.; Sicilia, E.; Toscano, M. Metal atom effect on the photophysical properties of Mg(II), Zn(II), Cd(II), and Pd(II) tetraphenylporphyrin complexes proposed as possible drugs in photodynamic therapy. Molecules 2017, 22, 1093. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2010; Available online: http://gaussian.com/ (accessed on 23 April 2019).
- Casida, M.E. Recent Advances in Density Functional Methods, Part I; Chong, D.P., Ed.; World Scientific: Singapore, 1995; pp. 155–192. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter Mater. Phys. 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Cossi, M.; Barone, V. Solvent effect on vertical electronic transitions by the polarizable continuum model. J. Chem. Phys. 2000, 112, 2427–2435. [Google Scholar] [CrossRef]
- Dalton. A Molecular Electronic Structure Program. Release Dalton. 2011. Available online: http://daltonpr ogram.org/ (accessed on 24 February 2016).
- Ågren, H.; Vahtras, O.; Minaev, B. Response theory and calculations of spin-orbit coupling phenomena in molecules. Adv. Quantum Chem. 1996, 27, 71–162. [Google Scholar]
- Koseki, S.; Schmidt, M.W.; Gordon, M.S. Effective nuclear charges for the first- through third-row transition metal elements in spin–orbit calculations. J. Phys. Chem. A 1998, 102, 10430–10436. [Google Scholar] [CrossRef]
- De Simone, B.C.; Mazzone, G.; Russo, N.; Sicilia, E.; Toscano, M. Computational investigation of the influence of halogen atoms on the photophysical properties of tetraphenylporphyrin and its Zinc(II) complexes. J. Phys. Chem. A 2018, 122, 2809–2815. [Google Scholar] [CrossRef]
- Alberto, M.E.; De Simone, B.C.; Mazzone, G.; Marino, T.; Russo, N. Photophysical properties of free and metallated mesosubstituted tetrabenzotriazaporphyrin from density functional theory investigation. Dyes Pigm. 2015, 120, 335–339. [Google Scholar] [CrossRef]
- De Simone, B.C.; Mazzone, G.; Sang-aroon, W.; Marino, T.; Russo, N.; Sicilia, E. Theoretical insight into joint photodynamic action of a gold(I) complex and a BODIPY chromophore for singlet oxygen generation. Phys. Chem. Chem. Phys. 2019, 21, 3446–3452. [Google Scholar] [CrossRef]
- Alberto, M.E.; De Simone, B.C.; Mazzone, G.; Sicilia, E.; Russo, N. The heavy atom effect on Zn(II) phthalocyanine derivatives: A theoretical exploration of the photophysical properties. Phys. Chem. Chem. Phys. 2015, 17, 23595–23601. [Google Scholar] [CrossRef]
- Alberto, M.E.; Iuga, C.; Quartarolo, A.D.; Russo, N. Bisanthracene Bis(dicarboxylic imide)s as potential photosensitizers in Photodynamic therapy. A theoretical investigation. J. Chem. Inf. Model. 2013, 53, 2334–2340. [Google Scholar] [CrossRef] [PubMed]
- Alberto, M.E.; De Simone, B.C.; Russo, N.; Sicilia, E.; Toscano, M. Can BODIPY Dimers Act as Photosensitizers in Photodynamic Therapy? A Theoretical Prediction. Front. Phys. 2018, 6, 143. [Google Scholar] [CrossRef]
Molecule | State | ΔE | f | Transitions | λexp | |
---|---|---|---|---|---|---|
1 | S1 | 2.07 | (599) | 0.247 | H→L, 87% | 690 |
T1 | 1.31 | (948) | H→L, 93% | |||
T2 | 1.36 | (910) | H−1→L, 84% | |||
T3 | 2.01 | (617) | H→L+1, 87% | |||
2 | S1 | 1.99 | (623) | 0.244 | H→L, 80% | |
T1 | 1.22 | (1013) | H→L, 81% | |||
T2 | 1.38 | (898) | H-1→L, 59% | |||
T3 | 1.67 | (741) | H→L+1, 75% | |||
T4 | 1.82 | (682) | H-2→L, 57% | |||
3 | S1 | 1.83 | (678) | 0.000 | H-1→L, 77% | |
S2 | 1.95 | (636) | 0.279 | H→L, 79% | ||
T1 | 1.15 | (1076) | H→L, 85% | |||
T2 | 1.38 | (898) | H-2→L, 55% | |||
T3 | 1.54 | (806) | H-1→L, 70% | |||
T4 | 1.62 | (764) | H→L+1, 70% | |||
4 | S1 | 206 | (602) | 0.200 | H→L, 82% | 680 |
T1 | 1.29 | (963) | H→L, 66% | |||
T2 | 1.44 | (863) | H-1→L, 58% | |||
T3 | 1.93 | (641) | H→L+1, 84% | |||
5 | S1 | 2.02 | (613) | 0.333 | H→L, 89% | 703 |
T1 | 1.29 | (964) | H→L, 98% | |||
T2 | 1.33 | (929) | H-1→L, 87% | |||
T3 | 2.00 | (620) | H→L+1, 87% | |||
6 | S1 | 2.02 | (614) | 0.362 | H→L, 89% | |
T1 | 1.29 | (964) | H→L, 100% | |||
T2 | 1.33 | (933) | H-1→L, 90% | |||
T3 | 2.00 | (619) | H→L+1, 87% | |||
7 | S1 | 1.99 | (624) | 0.457 | H→L, 86% | 709 |
T1 | 1.26 | (988) | H→L, 88% | |||
T2 | 1.38 | (896) | H-1→L, 80% | |||
T3 | 1.98 | (627) | H→L+1, 86% | |||
8 | S1 | 1.83 | (679) | 0.000 | H-2→L, 60% | |
S2 | 1.89 | (655) | 0.373 | H→L, 82% | ||
T1 | 1.12 | (1109) | H→L, 87% | |||
T2 | 1.40 | (883) | H-1→L, 47% | |||
T3 | 1.54 | (806) | H-2→L, 53% | |||
T4 | 1.59 | (781) | H→L+1, 72% | |||
9 | S1 | 2.01 | (616) | 0.355 | H→L, 84% | 695 |
T1 | 1.23 | (1007) | H→L, 66% | |||
T2 | 1.45 | (858) | H-1→L, 63% | |||
T3 | 1.95 | (635) | H→L+1, 85% |
Cmpd | ΔES1-T1 | ΔES1-T2 | ΔES1-T3 | ΔES1-T4 | ||||
---|---|---|---|---|---|---|---|---|
1 | 2.6 | 0.8 | 1.9 | 0.7 | 0.4 | 0.1 | ||
2 | 114.7 | 0.8 | 2.2 | 0.6 | 0.6 | 0.3 | 52.2 | 0.2 |
3 | 685.8 | 0.7 | 8.4 | 0.5 | 1.5 | 0.3 | 239.5 | 0.2 |
4 | 2.1 | 0.8 | 3.2 | 0.6 | 1.0 | 0.1 | ||
5 | 2.8 | 0.73 | 2.1 | 0.69 | 0.9 | 0.0 | ||
6 | 17.4 | 0.7 | 71.1 | 0.69 | 35.2 | 0.0 | ||
7 | 0.2 | 0.8 | 0.2 | 0.61 | 0.1 | 0.0 | ||
8 | 675.4 | 0.7 | 9.2 | 0.43 | 3.9 | 0.3 | 258.6 | 0.2 |
9 | 0.1 | 0.8 | 0.1 | 0.56 | 0.2 | 0.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberto, M.E.; De Simone, B.C.; Sicilia, E.; Toscano, M.; Russo, N. Rational Design of Modified Oxobacteriochlorins as Potential Photodynamic Therapy Photosensitizers. Int. J. Mol. Sci. 2019, 20, 2002. https://doi.org/10.3390/ijms20082002
Alberto ME, De Simone BC, Sicilia E, Toscano M, Russo N. Rational Design of Modified Oxobacteriochlorins as Potential Photodynamic Therapy Photosensitizers. International Journal of Molecular Sciences. 2019; 20(8):2002. https://doi.org/10.3390/ijms20082002
Chicago/Turabian StyleAlberto, Marta Erminia, Bruna Clara De Simone, Emilia Sicilia, Marirosa Toscano, and Nino Russo. 2019. "Rational Design of Modified Oxobacteriochlorins as Potential Photodynamic Therapy Photosensitizers" International Journal of Molecular Sciences 20, no. 8: 2002. https://doi.org/10.3390/ijms20082002
APA StyleAlberto, M. E., De Simone, B. C., Sicilia, E., Toscano, M., & Russo, N. (2019). Rational Design of Modified Oxobacteriochlorins as Potential Photodynamic Therapy Photosensitizers. International Journal of Molecular Sciences, 20(8), 2002. https://doi.org/10.3390/ijms20082002