FKBP5 rs4713916: A Potential Genetic Predictor of Interindividual Different Response to Inhaled Corticosteroids in Patients with Chronic Obstructive Pulmonary Disease in a Real-Life Setting
Abstract
:1. Introduction
2. Results
Genotype and Association with Outcomes of Pulmonary Rehabilitation
3. Discussion
Strengths and Limitations
4. Methods
4.1. Subjects
4.2. Patient Characteristics Measured at Baseline And/Or after Completion of PR
4.3. Drug Therapy
4.4. Pulmonary Rehabilitation
4.5. DNA Extraction and Genotyping
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
6MWD | six minutes walking distance |
6MWT | six minutes walking test |
AECOPD | acute exacerbations of chronic obstructive pulmonary disease |
BMI | body mass index |
COPD | chronic obstructive pulmonary disease |
EBM | evidence-based medicine |
ECG | electrocardiography |
FEV1 | forced expiratory volume in 1 s |
CSs | corticosteroids |
GR | glucocorticoids receptor |
ICS | inhaled corticosteroids |
LTOT | long term oxygen therapy |
MMSE | mini-mental state examination |
MoCa | Montreal cognitive assessment |
MRC | medical research council |
MRF26 | Maugeri foundation respiratory failure questionnaire |
PR | pulmonary rehabilitation |
PRU | pulmonary rehabilitation unit |
QoL | quality of life |
SD | standard deviation |
SF-36 | 36-item short form health survey general |
SGRQ | Saint George’s respiratory questionnaire |
SNPs | single nucleotide polymorphisms |
Δ6MWD | delta6MWD (difference between 6MWD in dismission and admission in meters) |
ΔFEV1 | deltaFEV1 (difference between values of FEV1 in dismission and admission in percentage) |
References
- Sackett, D.L.; Rosenberg, W.M.; Gray, J.A.; Haynes, R.B.; Richardson, W.S. Evidence based medicine: What it is and what it isn’t. BMJ 1996, 312, 71–72. [Google Scholar] [CrossRef] [PubMed]
- The Centre for Evidence-Based Medicine. Available online: https://www.cebm.net/ (accessed on 27 January 2019).
- Chang, S.; Lee, T.H. Beyond Evidence-Based Medicine. N. Engl. J. Med. 2018, 379, 1983–1985. [Google Scholar] [CrossRef] [PubMed]
- European Lung Foundation. Lung Diseases COPD. Lung Disease & Information. 2012. Available online: http://www.europeanlung.org/en/lung-disease-and-information/lung-diseases/copd (accessed on 9 March 2017).
- Jensen, H.H.; Godtfredsen, N.S.; Lange, P.; Vestbo, J. Potential misclassification of causes of death from COPD. Eur. Respir. J. 2006, 28, 781–785. [Google Scholar] [PubMed] [Green Version]
- Quaderi, S.A.; Hurst, J.R. The unmet global burden of COPD. Glob. Health Epidemiol. Genom. 2018, 3, e4. [Google Scholar] [CrossRef] [PubMed]
- Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2017 Report. Available online: http://goldcopd.org/gold-2017-global-strategy-diagnosis-management-prevention-copd/ (accessed on 9 March 2017).
- Calverley, P.M.; Anderson, J.A.; Celli, B.; Ferguson, G.T.; Jenkins, C.; Jones, P.W.; Yates, J.C.; Vestbo, J. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N. Engl. J. Med. 2007, 356, 775–789. [Google Scholar] [CrossRef]
- NIH Medical Rehabilitation Coordinating Committee. National Institutes of Health research plan on rehabilitation. Assist. Technol. 2017. [Google Scholar] [CrossRef]
- Wagner, A.K. TBI Rehabilomics Research: An Exemplar of a Biomarker-Based Approach to Precision Care for Populations with Disability. Curr. Neurol. Neurosci. Rep. 2017, 17, 84. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Prinzi, G.; Kisialou, A.; Cardaci, V.; Stirpe, E.; Conti, V.; Fini, M.; Bonassi, S. Action plans and coping strategies in elderly COPD patients influence the result of pulmonary rehabilitation: An observational study. Eur. J. Phys. Rehabil. Med. 2017. [Google Scholar] [CrossRef]
- Singh, D.; Miravitlles, M.; Vogelmeier, C. Chronic Obstructive Pulmonary Disease Individualized Therapy: Tailored Approach to Symptom Management. Adv. Ther. 2017, 34, 281–299. [Google Scholar] [CrossRef]
- Barnes, P.J. Glucocorticosteroids. Handb. Exp. Pharmacol. 2017, 237, 93–115. [Google Scholar]
- Cruz-Topete, D.; Cidlowski, J.A. One hormone, two actions: Anti-and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation 2015, 22, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Quax, R.A.; Manenschijn, L.; Koper, J.W.; Hazes, J.M.; Lamberts, S.W.; van Rossum, E.F.; Feelders, R.A. Glucocorticoid sensitivity in health and disease. Nat. Rev. Endocrinol. 2013, 9, 670–686. [Google Scholar] [CrossRef] [PubMed]
- Kadmiel, M.; Cidlowski, J.A. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol. Sci. 2013, 34, 518–530. [Google Scholar] [CrossRef] [Green Version]
- Maltese, P.; Palma, L.; Sfara, C.; de Rocco, P.; Latiano, A.; Palmieri, O.; Corritore, G.; Annese, V.; Magnani, M. Glucocorticoid resistance in Crohn’s disease and ulcerative colitis: An association study investigating GR and FKBP5 gene polymorphisms. Pharmacogenom. J. 2012, 12, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Tantisira, K.G.; Lasky-Su, J.; Harada, M.; Harada, M.; Murphy, A.; Litonjua, A.A.; Himes, B.E.; Lange, C.; Lazarus, R.; Sylvia, J.; et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N. Engl. J. Med. 2011, 365, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Van den Berge, M.; Hiemstra, P.S.; Postma, D.S. Genetics of glucocorticoids in asthma. N. Engl. J. Med. 2011, 365, 2434–2435. [Google Scholar] [PubMed]
- Mosteller, M.; van den Berge, M.; Hosking, L.; Timens, W.; Hiemstra, P.S.; Crim, C.; Postma, D.S.; Ghosh, S. Genetic evaluation of the effect of GLCCI1 rs37972 on corticosteroid response in chronic obstructive pulmonary disease. COPD Res. Pract. 2017, 3, 2. [Google Scholar] [CrossRef]
- Lei, Y.; Gao, Y.; Chen, J.; Li, M.; Wu, X.; Ning, Q.; Zhao, J.; Xiong, W.; Xu, Y.; Xie, J. GLCCI1 rs37972: A potential genetic predictor of therapeutic response to inhaled corticosteroids in Chinese chronic obstructive pulmonary disease patients. Sci. Rep. 2017, 7, 42552. [Google Scholar] [CrossRef]
- Drozdzik, M.; Rudas, T.; Pawlik, A.; Kurzawski, M.; Czerny, B.; Gornik, W.; Herczynska, M. The effect of 3435C>T MDR1 gene polymorphism on rheumatoid arthritis treatment with disease-modifying antirheumatic drugs. Eur. J. Clin. Pharmacol. 2006, 62, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Potocnik, U.; Ferkolj, I.; Glavac, D.; Dean, M. Polymorphisms in multidrug resistance 1 (MDR1) gene are associated with refractory Crohn disease and ulcerative colitis. Genes Immun. 2004, 5, 530–539. [Google Scholar] [CrossRef] [Green Version]
- WHO. Obesity and Overweight. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 24 October 2016).
- rs37972. Available online: https://www.ncbi.nlm.nih.gov/snp/?term=rs37972 (accessed on 5 March 2019).
- rs6189. Available online: https://www.ncbi.nlm.nih.gov/snp/?term=rs6189 (accessed on 5 March 2019).
- rs6190. Available online: https://www.ncbi.nlm.nih.gov/snp/?term=rs6190 (accessed on 5 March 2019).
- rs41423247. Available online: https://www.ncbi.nlm.nih.gov/snp/?term=rs41423247 (accessed on 5 March 2019).
- rs2032582. Available online: https://www.ncbi.nlm.nih.gov/snp/?term=rs2032582 (accessed on 5 March 2019).
- rs4713916. Available online: https://www.ncbi.nlm.nih.gov/snp/?term=rs4713916 (accessed on 5 March 2019).
- Available online: https://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?searchType=adhoc_search&type=rs&rs=rs4713916 (accessed on 29 March 2017).
- Horsfall, L.J.; Rait, G.; Walters, K.; Swallow, D.M.; Pereira, S.P.; Nazareth, I.; Petersen, I. Serum bilirubin and risk of respiratory disease and death. JAMA 2011, 305, 691–697. [Google Scholar] [CrossRef]
- Curjuric, I.; Imboden, M.; Adam, M.; Bettschart, R.W.; Gerbase, M.W.; Künzli, N.; Rochat, T.; Rohrer, L.; Rothe, T.B.; Schwartz, J.; et al. Serum bilirubin is associated with lung function in a Swiss general population sample. Eur. Respir. J. 2014, 43, 1278–1288. [Google Scholar] [CrossRef] [PubMed]
- Apperley, S.; Park, H.Y.; Holmes, D.T.; Man, S.F.P.; Tashkin, D.; Wise, RA.; Connett, J.E.; Sin, D.D. Serum Bilirubin and Disease Progression in Mild COPD. Chest 2015, 148, 169–175. [Google Scholar] [CrossRef]
- Reinhold, D.; Morrow, J.D.; Jacobson, S.; Hu, J.; Ringel, B.; Seibold, M.A.; Hersh, C.P.; Kechris, K.J.; Bowler, R.P. Meta-analysis of peripheral blood gene expression modules for COPD phenotypes. PLoS ONE 2017, 12, e0185682. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, B.D.; de Jong, K.; Lamontagne, M.; Bossé, Y.; Shrine, N.; Artigas, M.S.; Wain, L.V.; Hall, I.P.; Jackson, V.E.; Wyss, A.B.; et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat. Genet. 2017, 49, 426–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wain, L.V.; Shrine, N.; Artigas, M.S.; Erzurumluoglu, A.M.; Noyvert, B.; Bossini-Castillo, L.; Obeidat, M.; Henry, A.P.; Portelli, M.A.; Hall, R.J.; et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat. Genet. 2017, 49, 416–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postma, D.S.; Weiss, S.T.; van den Berge, M.; Kerstjens, H.A.; Koppelman, G.H. Revisiting the Dutch hypothesis. J. Allergy Clin. Immunol. 2015, 136, 521–529. [Google Scholar] [CrossRef]
- Li, Y.; Cho, M.H.; Zhou, X. What do polymorphisms tell us about the mechanisms of COPD? Clin. Sci. 2017, 131, 2847–2863. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, S.; Ishizaki, T.; Kadowaki, M.; Akai, M.; Shiozaki, K.; Iguchi, M.; Oikawa, T.; Nakagawa, K.; Osanai, K.; Toga, H.; et al. p53 Signaling Pathway Polymorphisms Associated with Emphysematous Changes in Patients With COPD. Chest 2017, 152, 58–69. [Google Scholar] [CrossRef]
- Hansen, J.G.; Gao, W.; Dupuis, J.; O’Connor, G.T.; Tang, W.; Kowgier, M.; Sood, A.; Gharib, S.A.; Palmer, L.J.; Fornage, M.; et al. Association of 25-Hydroxyvitamin D status and genetic variation in the vitamin D metabolic pathway with FEV1 in the Framingham Heart Study. Respir. Res. 2015, 16, 81. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.; Hall, I.P.; Sayers, I. Genetic risk factors for the development of pulmonary disease identified by genome-wide association. Respirology 2018. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Lococo, F.; Kisialiou, A.; Cardaci, V.; Fini, M.; Russo, P. Pharmacological management of chronic obstructive lung disease (COPD). Focus on mutations. Curr. Med. Chem. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Sin, D.D.; Voelker, H.; Connett, J.E.; Niewoehner, D.E.; Kunisaki, K.M. COPD Clinical Research Network.Serum bilirubin and the risk of chronic obstructive pulmonary disease exacerbations. Respir. Res. 2017, 18, 179. [Google Scholar] [CrossRef] [PubMed]
- Annemans, L.; Aristides, M.; Kubin, M. Real-Life Data: A Growing Need. ISPOR. Available online: www.ispor.org/news/articles/oct07/rld.asp (accessed on 29 March 2017).
- Du Bois, R.M.; Weycker, D.; Albera, C.; Bradford, W.Z.; Costabel, U.; Kartashov, A.; Lancaster, L.; Noble, P.W.; Sahn, S.A.; Szwarcberg, J.; et al. Six-minute-walk test in idiopathic pulmonary fibrosis: Test validation and minimal clinically important difference. Am. J. Respir. Crit. Care Med. 2011, 183, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Puente-Maestu, L.; Palange, P.; Casaburi, R.; Laveneziana, P.; Maltais, F.; Neder, J.A.; O’Donnell, D.E.; Onorati, P.; Porszasz, J.; Rabinovich, R.; et al. Use of exercise testing in the evaluation of interventional efficacy: An official ERS statement. Eur. Respir. J. 2016, 47, 429–460. [Google Scholar] [CrossRef]
- Polkey, M.I.; Spruit, M.A.; Edwards, L.D.; Watkins, M.L.; Pinto-Plata, V.; Vestbo, J.; Calverley, P.M.; Tal-Singer, R.; Agustí, A.; Bakke, P.S.; et al. Six-minute-walk test in chronic obstructive pulmonary disease: Minimal clinically important difference for death or hospitalization. Am. J. Respir. Crit. Care Med. 2013, 187, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Pepin, V.; Saey, D.; Whittom, F.; LeBlanc, P.; Maltais, F. Walking versus cycling: Sensitivity to bronchodilation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2005, 172, 1517–1522. [Google Scholar] [CrossRef]
- Celli, B.; Tetzlaff, K.; Criner, G.; Polkey, M.I.; Sciurba, F.; Casaburi, R.; Tal-Singer, R.; Kawata, A.; Merrill, D.; Rennard, S. The 6-Minute-Walk Distance Test as a Chronic Obstructive Pulmonary Disease Stratification Tool. Insights from the COPD Biomarker Qualification Consortium. Am. J. Respir. Crit. Care Med. 2016, 194, 1483–1493. [Google Scholar] [CrossRef] [Green Version]
- Sharafkhaneh, A.; Southard, J.G.; Goldman, M.; Uryniak, T.; Martin, U.J. Effect of budesonide/formoterol pMDI on COPD exacerbations: A double-blind, randomized study. Respir. Med. 2012, 106, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Viechtbauer, W.; Smits, L.; Kotz, D.; Budé, L.; Spigt, M.; Serroyen, J.; Crutzen, R. A simple formula for the calculation of sample size in pilot studies. J. Clin. Epidemiol. 2015, 68, 1375–1379. [Google Scholar] [CrossRef]
- Italian Minister of Health DM 18/10/2012. Remunerazione Prestazioni di Assistenza Ospedaliera per Acuti, Assistenza Ospedaliera di Riabilitazione e di Lungodegenza post Acuzie e di Assistenza Specialistica Ambulatoriale. (13A00528). Available online: http://www.gazzettaufficiale.it/eli/id/2013/01/28/13A00528/sg (accessed on 3 January 2018).
- Lazio Region. DCA Lazio 316/2012. Piano Indirizzo Sulla Riabilitazione. Available online: http://www.regione.lazio.it/binary/rl_sanita/tbl_normativa/SAN_DCA_U00159_13_05_2016.pdf (accessed on 2 January 2018).
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.; et al. An official American Thoracic Society/European Respiratory Society statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef] [PubMed]
- Cesario, A.; Auffray, C.; Agusti, A.; Apolone, G.; Balling, R.; Barbanti, P.; Bellia, A.; Boccia, S.; Bousquet, J.; Cardaci, V.; et al. A systems medicine clinical platform for understanding and managing non- communicable diseases. Curr. Pharm. Des. 2014, 20, 5945–5956. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.W.; Quirk, F.H.; Baveystock, C.M.; Littlejohns, P. A self complete measure of health status for chronic airflow limitation. The St. George’s Respiratory Questionnaire. Am. Rev. Respir. Dis. 1992, 145, 1321e7. [Google Scholar] [CrossRef]
- Available online: https://www.thoracic.org/members/assemblies/assemblies/srn/questionaires/sgrq.php (accessed on 29 March 2017).
- Available online: http://pulmonaryrehab.com.au/patient-assessment/assessing-quality-of-life/ (accessed on 29 March 2017).
- Holland, A.E.; Spruit, M.A.; Troosters, T.; Puhan, M.A.; Pepin, V.; Saey, D.; McCormack, MC.; Carlin, B.W.; Sciurba, F.C.; Pitta, F.; et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in chronic respiratory disease. Eur. Respir. J. 2014, 44, 1428–1446. [Google Scholar] [CrossRef] [PubMed]
- Spruit, M.A. Pulmonary rehabilitation. Eur. Respir. Rev. 2014, 23, 55–63. [Google Scholar] [CrossRef] [PubMed]
Variables | Patients n = 71 |
---|---|
Males | 30 (42.2%) |
Females | 41 (57.8%) |
Years of Education | 8.9 ± 4.08 |
Marital Status | |
Single | 3 (4.2%) |
Married | 36 (50.7%) |
Divorced/widow | 32 (45.1%) |
No smokers | 6 (8.5%) |
Current smokers | 11 (15.5%) |
Ex-smokers | 46 (64.7%) |
Not Responders | 8 (11.3%) |
Occupational Status | |
Retired | 63 (88.7%) |
Housewife | 8 (11.3%) |
BMI | 27.57 ± 4.9 |
Therapy With O2 | 23 (32.4%) |
Corticosteroids therapy | 71 (100%) |
MRC dyspnea grade | 4.0 ± 0 |
Borg grade | 7.87 ± 0.92 |
SGRQ-Total points | 49.33± 16.02 |
6MWD (meters) | 96.76 ± 85.25 |
MRF26 | 72.14 ± 15.65 |
Barthel | 68.32 ± 24.37 |
FEV1 | 48.40 ± 24.2 |
MMSE | 26.78 ± 2.83 |
MoCa | 25.57 ± 3.73 |
SF-36 General Health | 73.40 ± 11.54 |
SF-36 Mental Health | 62.56 ± 8.54 |
CIRS-severity | 1.58 ± 0.23 |
CIRS-comorbidity | 2.44 ± 1.36 |
Before PR (x ± SD) | After PR (x ± SD) | Δ | p Value * | |
---|---|---|---|---|
6MWD (meters) | 96.76 ± 85.25 | 191.1 ± 132.7 | 94.37 ± 79.97 | <0.0001 |
FEV1 (%) | 48.11 ± 23.35 | 62.46 ± 11.74 | 11.32 ± 8.42 | 0.0073 |
MRC | 4.0 ± 0.0 | 3.34 ± 0.61 | −0.66 ±0.61 | <0.0001 |
Borg | 7.87 ± 0.92 | 5.20 ± 2.47 | 2.676 ± 1.911 | <0.0001 |
SGRQ | 49.33 ± 16.02 | 44.29 ± 16.08 | −2.59 ± 16.69 | NS |
Barthel | 68.32 ± 24.37 | 86.1 ± 16.72 | 17.77 ± 15.01 | <0.0001 |
MRF26 | 72.14 ± 15.65 | 48.69 ± 19.07 | −23.3 ± 14.17 | <0.0001 |
GLCCI1 rs37972 | NR3C1 rs6189 | NR3C1 rs6190 | NR3C1 Bcl2 rs41423247 | MDR-1 rs2032582 | FKBP5 rs4713916 |
---|---|---|---|---|---|
CC 31 (43.7%) | GG 66 (93%) | GG 66 (93%) | GG 35 (49.3%) | GG 25 (35.2%) | GG 57 (80.3%) |
CT 34 (47.9%) | GA 3 (4.2%) | GA 3 (4.2%) | GC 28 (39.4%) | GA 3 (4.2%) | GA 13 (18.3%) |
TT 5 (7%) | - | - | CC 7 (9.9%) | GT 22 (31%) | - |
- | - | - | - | TT 20 (28.2%) | - |
NA 1 (1.4%) | NA 2 (2.8%) | NA 2 (2.8%) | NA 1 (1.4%) | NA 1 (1.4%) | NA 1 (1.4%) |
SNP | Responders Patients Number (% Over Total) | Non-Responders Patients Number (% Over Total) | % Responders Genotype | p * |
---|---|---|---|---|
rs37972 | ||||
CC | 22 (32.35%) | 8 (11.77%) | 73.3% | 0.08 |
CT | 21(30.88%) | 12 (17.65%) | 62.6% | |
TT | 5 (7.35%) | 0 | 100% | |
rs4713916 | ||||
GG | 37 (55.22%) | 19 (28.36%) | 60% | 0.039 |
GA | 10 (14.92%) | 1 (1.5%) | 90.91% | |
rs6189 | ||||
GG | 45 (67.16%) | 19 (28.35%) | 70.31% | NS |
GA | 3 (4.48%) | 0 | 100% | |
rs6190 | ||||
GG | 44 (65.67%) | 20 (29.85%) | 68.75% | NS |
GA | 3 (4.48%) | 0 | 100% | |
rs41423247 | ||||
CC | 4 (5.88%) | 3 (4.41%) | 57.14% | NS |
GC | 19 (27.94%) | 7 (10.29%) | 73.07% | |
GG | 25 (36.76%) | 10 (14.71%) | 71.42% | |
rs2032582 | ||||
GG | 14 (20.59%) | 10 (14.71%) | 58.33% | NS |
GA | 3 (4.41%) | 0 | 100% | |
GT | 15 (22.06%) | 6 (8.82%) | 71.43% | |
TT | 16 (23.53%) | 4 (5.88%) | 80% |
Characteristics | All GA | All GG | p Value |
---|---|---|---|
Δ Borg | −3.50 ± 1.35 | −2.35 ± 1.99 | 0.0862 |
Δ SGRQ-Total points | 14.0 ± 24.17 | −4.14 ± 10.68 | 0.037 |
Δ Basophiles * | 0.15 ± 0.28 | −0.11 ± 0.26 | 0.085 |
Bilirubin ** | 0.94 ± 0.55 | 0.58 ± 0.29 | 0.0453 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, P.; Tomino, C.; Santoro, A.; Prinzi, G.; Proietti, S.; Kisialiou, A.; Cardaci, V.; Fini, M.; Magnani, M.; Collacchi, F.; et al. FKBP5 rs4713916: A Potential Genetic Predictor of Interindividual Different Response to Inhaled Corticosteroids in Patients with Chronic Obstructive Pulmonary Disease in a Real-Life Setting. Int. J. Mol. Sci. 2019, 20, 2024. https://doi.org/10.3390/ijms20082024
Russo P, Tomino C, Santoro A, Prinzi G, Proietti S, Kisialiou A, Cardaci V, Fini M, Magnani M, Collacchi F, et al. FKBP5 rs4713916: A Potential Genetic Predictor of Interindividual Different Response to Inhaled Corticosteroids in Patients with Chronic Obstructive Pulmonary Disease in a Real-Life Setting. International Journal of Molecular Sciences. 2019; 20(8):2024. https://doi.org/10.3390/ijms20082024
Chicago/Turabian StyleRusso, Patrizia, Carlo Tomino, Alessia Santoro, Giulia Prinzi, Stefania Proietti, Aliaksei Kisialiou, Vittorio Cardaci, Massimo Fini, Mauro Magnani, Francesco Collacchi, and et al. 2019. "FKBP5 rs4713916: A Potential Genetic Predictor of Interindividual Different Response to Inhaled Corticosteroids in Patients with Chronic Obstructive Pulmonary Disease in a Real-Life Setting" International Journal of Molecular Sciences 20, no. 8: 2024. https://doi.org/10.3390/ijms20082024
APA StyleRusso, P., Tomino, C., Santoro, A., Prinzi, G., Proietti, S., Kisialiou, A., Cardaci, V., Fini, M., Magnani, M., Collacchi, F., Provinciali, M., Giacconi, R., Bonassi, S., & Malavolta, M. (2019). FKBP5 rs4713916: A Potential Genetic Predictor of Interindividual Different Response to Inhaled Corticosteroids in Patients with Chronic Obstructive Pulmonary Disease in a Real-Life Setting. International Journal of Molecular Sciences, 20(8), 2024. https://doi.org/10.3390/ijms20082024