Next Article in Journal
Polycystins and Mechanotransduction in Human Disease
Next Article in Special Issue
Targeted Therapy Against the Cell of Origin in Cutaneous Squamous Cell Carcinoma
Previous Article in Journal
Intercellular Communication between Hepatic Cells in Liver Diseases
Previous Article in Special Issue
The Role of the Immune System in Cutaneous Squamous Cell Carcinoma
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

MicroRNA Dysregulation in Cutaneous Squamous Cell Carcinoma

by
Natalia García-Sancha
1,†,
Roberto Corchado-Cobos
1,†,
Jesús Pérez-Losada
1,2 and
Javier Cañueto
1,2,3,*
1
IBMCC-CSIC, Laboratory 7, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
2
Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
3
Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
*
Author to whom correspondence should be addressed.
Both these authors contributed equally to this work as first authors.
Int. J. Mol. Sci. 2019, 20(9), 2181; https://doi.org/10.3390/ijms20092181
Submission received: 24 March 2019 / Revised: 15 April 2019 / Accepted: 29 April 2019 / Published: 2 May 2019
(This article belongs to the Special Issue Molecular Aspects of Cutaneous Squamous Cell Carcinoma)

Abstract

:
Cutaneous squamous cell carcinoma (CSCC) is the second most frequent cancer in humans and it can be locally invasive and metastatic to distant sites. MicroRNAs (miRNAs or miRs) are endogenous, small, non-coding RNAs of 19–25 nucleotides in length, that are involved in regulating gene expression at a post-transcriptional level. MicroRNAs have been implicated in diverse biological functions and diseases. In cancer, miRNAs can proceed either as oncogenic miRNAs (onco-miRs) or as tumor suppressor miRNAs (oncosuppressor-miRs), depending on the pathway in which they are involved. Dysregulation of miRNA expression has been shown in most of the tumors evaluated. MiRNA dysregulation is known to be involved in the development of cutaneous squamous cell carcinoma (CSCC). In this review, we focus on the recent evidence about the role of miRNAs in the development of CSCC and in the prognosis of this form of skin cancer.

Graphical Abstract

1. Introduction

Cutaneous squamous cell carcinoma (CSCC) is the second most frequent cancer in humans, and its incidence is increasing and underestimated [1,2]. While it usually displays a benign clinical behavior, CSCC may be locally invasive and metastatic. It has demonstrated an epidemiological rise over the past three decades [3], and its incidence is set to double by 2030 in European countries [4]. Its high frequency means that CSCC is responsible for many deaths—a similar number in some areas of the US to those resulting from melanoma and oropharyngeal carcinoma [5]. CSCC is an epidermal keratinocyte-derived, non-melanoma skin cancer that may be influenced by several factors, of which chronic sun exposure is the most important and well known, while older age, fair skin, immunosuppression and previous actinic keratosis are also significant [1].
Many pathways are known to be involved in CSCC development. P53 mutations, induced by ultraviolet radiation [6], are early events in CSCC development and are responsible for severe genomic instability [7]. Indeed, CSCC is the human cancer with the greatest mutational burden [8]. Other suppressor genes, such as P16 [9], and oncogenes, such as RAS [10], are also frequently involved. The accumulation of genetic changes ultimately affects important signaling pathways [11], involving EGFR overexpression, NF-kB activation and NOTCH inactivation [7,12,13,14]. In addition to genetic changes, some critical epigenetic modifications contribute to the process of CSCC carcinogenesis. Although our knowledge of the molecular features of CSCC has grown in recent years, there is still much to be learned.
MicroRNAs (miRNAs or miRs) are endogenous, small, non-coding RNAs of 19–25 nucleotides in length, that are involved in regulating gene expression at a post-transcriptional level [15,16,17]. The long-established central dogma of molecular biology explains the progression from DNA to proteins in cells. Within this conception, miRNAs represented a milestone, since these small molecules of RNA do not translate into proteins and instead exercise their functions in a different manner. MiRNAs regulate the expression of many genes by hybridizing to the 3′-untranslated region (3′-UTR) of target messenger RNAs (mRNAs). Thus, miRNAs block translation or cause mRNA degradation. Target recognition occurs via a 6–8 nt site that matches the miR seed region. Each miR can repress hundreds of genes, each of which can be targeted by multiple miRs, making it a robust system for fine-tuning gene expression [18,19].
Most genes that encode miRNAs localize in intronic, intergenic or antisense regions in the sequences of some genes, and some are located near other miRNAs, supporting the hypothesis that miRNAs can also be transcribed in clusters [19,20]. The biogenesis of miRNAs involves several steps: (i) miRNAs are initially transcribed as long precursor transcripts known as primary miRNAs (pri-miRNAs) by RNA polymerase II (pol II); (ii) pri-miRNAs are processed by the DROSHA/DGCR8 complex to precursor miRNAs (pre-miRNAs); (iii) pre-miRNAs are exported to the cytoplasm, where the RNAsa-III DICER enzyme processes the pre-miRNA to generate a double-stranded RNA molecule; (iv) the duplex unwinds; and (v) the mature miR strand is incorporated into the RNA-induced silencing complex (RISC), which guides target mRNA silencing (Figure 1). The degree of complementarity between the sequences determines whether the target mRNA is degraded or protein translation is repressed [19]. Recent studies have shown that, in contrast to the standard binding of miRNAs to the 3’-UTR region of mRNA, some miRNAs can also bind the 5′-untranslated region (5′-UTR) and open reading frames (ORFs), and determine translational activation and not repression. This occurs under growth-arrest conditions [21]. Mature miRNAs are usually located in the cytoplasm, but are sometimes situated in the nucleus, in the mitochondria, or in small vesicles, performing the important non-canonical roles of miRNAs [21]. In addition, miRNAs are regulated at various levels, including miRNA transcription, RISC blinding, methylation and miRNA decay [22].
MicroRNAs have been implicated in a wide variety of biological processes, including differentiation, proliferation, survival, and apoptosis, as well as immune modulation, inflammation, metabolic control and development [23]. In cancer, miRNAs can proceed as oncogenic miRNAs, promoting carcinogenesis, (oncomiRs) [24] or tumor suppressor miRNAs, preventing cancer development, (oncosuppressor-miRs) depending on the pathway in which they are involved [24,25]. Dysregulation of miRNA expression has been noted in most of the tumors evaluated, such as those of breast, colorectal, ovarian and lung cancers, melanoma, head and neck squamous cell carcinoma and many types of leukemia [26,27,28]. MiRNA dysregulation is known to be involved in the development of cutaneous squamous cell carcinoma (CSCC). This review focuses on the recent findings about the role of miRNAs in the development of CSCC and in the prognosis of this form of skin cancer. First, we consider the miRNAs that exert oncogenic functions in CSCC and later we consider those that act as suppressors. We discuss the prognosis of CSCC depending on miRNAs, and finally, draw attention to possible new research options in the field. Table 1 and Figure 2 show a summary of the miRNAs that are dysregulated in CSCC.

2. Onco-miRNAs Involved in Cutaneous Squamous Cell Carcinoma

2.1. MicroRNA-21

MiRNA-21 is a well-established oncogenic miRNA that is overexpressed in several human cancers [28,52,53,54,55]. It is the most commonly upregulated miRNA in solid and hematological malignancies [56]. Functional studies in cancer cell lines indicate that miR-21 plays an essential role in oncogenesis, as indicated by its association with high proliferation, low apoptosis, high invasion, and metastatic potential [56,57,58,59,60,61,62]. Essentially, miR-21 functions as an anti-apoptotic and pro-survival factor [63]. The induction of miR-21 is also associated with cellular de-differentiation.
MiR-21 operates by targeting several genes [64], such as TPM1, TIMP3, SPRY1/2, BCL2, BTG2, CDC25A, PTEN, PDCD4 [60,65,66,67,68,69,70,71], FBXO11 [72], and IGFBP3 [63].
MiR-21 downregulates the expression of two tumor suppressors, PDCD4 and PTEN, in the CSCC cell line, A-431. The inhibition of miR-21 suppresses tumor growth and invasion, and such inhibition exerts proapoptotic functions in CSCC cells [29]. In another study, mice that lacked the Grhl3 gene in keratinocytes, a potent suppressor of CSCC, displayed susceptibility to chemically induced and spontaneously developed CSCC [30]. GRHL3 is known to activate PTEN transcription by binding to a conserved site in the PTEN promoter. PTEN functions by negatively regulating signaling in the phosphatidylinositol-3-kinase pathway, specifically by dephosphorylating PIP3 to prevent activation of AKT and mammalian target of rapamycin (mTOR), thus inhibiting cell survival and proliferation [73]. MiR-21 induces the loss of PTEN and GHRL3, resulting in the activation of the PI3K/AKT/mTOR and repression of the RAS/MAPK/ERK signaling pathways, and finally, the induction of aggressive CSCC [30]. The inhibition of miR-21 by an antagomir could provide a novel treatment option for CSCC, and levels of miR-21 may have diagnostic and prognostic value [74].

2.2. MicroRNA-205

MiRNA-205 has a dual function in cancer, depending on the cell type and tissue context [75], whereby it may function as an oncogene or a suppressor gene. It has been implicated in several forms of cancer, operating through different mechanisms. On the one hand, it helps in the inhibition of the epithelial-to-mesenchymal transition, acting as a suppressor in this context [31,76], while it may also promote invasion, acting as an oncogene [77,78,79].
MiR-205 targets several genes, including PTEN [75] and SHIP2 [80], as tumor suppressors; HER3 [81], E2F1, E2F5 and PKCε [82] as oncogenes; ZEB1 and ZEB2 [31] as pro-metastatic genes; and VEGF-A [83] as an angiogenic factor.
MiRNA-205 is upregulated in CSCC relative to normal skin [32], in which its expression is restricted to the basal cell layer of progenitor cells, and absent from suprabasal layers. MiR-205 maintains epithelial proliferation during skin development, helping to maintain skin stemness, and the lack of expression of this miRNA inhibits the proliferation of cells in the basal layer [84]. While miR-205 represses the epithelial-to-mesenchymal transition through the inhibition of ZEB factors [31], it is prominent along the front of invasion [85]. MiR-205 promotes keratinocyte migration by targeting SHIP2. SHIP2 is a ubiquitous lipid phosphatase that dephosphorylates PIP3 to modulate AKT signaling in keratinocytes. MiR-205 enhances AKT-signaling pathways via SHIP2 suppression, leading to improved cell survival [33]. MiR-205 is significantly upregulated in invasive cells, compared with in situ CSCCs [86], and is more frequently expressed in CSCCs with high-risk histopathological features [85], all of which suggest an oncogenic role for miR-205 in CSCCs. Its expression enables prognostic CSCC subgroups to be identified [85].

2.3. MicroRNA-365

MiR-365 plays crucial roles in tumor progression in several types of human cancer [87,88,89], but acts as a tumor suppressor in other cancers [90,91,92,93]. Its effect depends on the cellular microenvironment and the specific tumor type; it alters proliferation, apoptosis, migration, and invasion in vitro and in vivo [94,95,96].
This miRNA is known to affect various targeted genes, such as NF-I/B [97], BAX [98], Cyclin D1 and BCL-2 [90], FOS, EZH2 and MCL-1 [93], and PIK3R3 [99,100].
In a study of the miRNA expression profile in the NIH 3T3 cell line, after irradiation with UVB, miR-365 was found to be an miRNA with extremely high sensitivity to ultraviolet irradiation, which is the most important cause of skin cancer [101]. The overexpression of pre-miR-365-2 in the normal skin cell line HaCaT results in increased proliferation, migration, and invasion in vitro, and cancer cell formation and induction of subcutaneous tumors in BALB/c-nude mice. Moreover, after transfection of anti-miR-365 oligonucleotides in A-431 cells, there is a G1 phase arrest and an increase in apoptosis [34]. MiR-365 downregulates HOXA9, which plays an anti-carcinogenic role, inhibiting cell proliferation and promoting cell apoptosis in CSCC. Loss of HOXA9 upregulates HIF-1α, which helps regulate hypoxia response, glucose metabolism and tumor progression [35].

2.4. MicroRNA-31

MiR-31 plays a critical regulatory role in embryonic implantation, vascular development, bone and muscle homeostasis, and autoimmunity [102]. MiR-31 expression is reduced in some cancers, such as triple-negative breast, gastric, prostate and bladder cancers [103,104,105,106], but increased in many others, such as colorectal, lung, basal-like breast cancers and head and neck squamous cell carcinoma [107,108,109,110]. The functional role of this miRNA is exceptionally complex because it can act as an oncogenic or a tumor suppressor miR.
Functional studies have demonstrated that miR-31 has multiple target genes that are involved in the cell cycle, DNA repair, metabolism, apoptosis, the chemokine signaling pathway and chemical resistance [111,112].
Recent studies using miRNA arrays have shown that microRNA-31 is overexpressed in CSCC. MiR-31 is overexpressed later, during tumorigenesis, when the lesions are invasive. Experiments with the CSCC cell line UT-SCC-7 showed that inhibition of endogenous miR-31 suppresses cell motility and colony-forming ability [36]. Lin et al. identified RhoBTB1, a member of the Rho family of small GTPases, which acts as a tumor suppressor, and whose transcripts are a direct target of miR-31 in CSCC. Experiments involving silencing by siRNA or knockdown in the A-431 cell line indicated that the suppression of RhoBTB1 by miR-31 induces cell proliferation and invasion [37].

2.5. MicroRNA-186

Recent studies suggest that miR-186 is associated with various diseases, such as solid tumors, hematopoietic malignancies, bone disorders and vascular disease [113,114,115,116,117,118,119]. In lung adenocarcinoma, miR-186 downregulation is linked to poor survival [113], and its overexpression suppresses cell proliferation and metastasis [120]. In cancers of the bladder [115] and prostate [121], miR-186 also acts as a tumor suppressor. However, miR-186 promotes pancreatic [122] and endometrial [123] carcinogenesis, by playing an oncogenic role. It has also been implicated in drug sensitivity [124,125].
Downstream target genes of miR-186 such as HIF1α [114], MAP3K2 [120], Cyclin D1, CDK2 and CDK6 [113], Twist1 [125], FOXO1 [123], and ROCK1 [126], have been tentatively proposed as being involved in a range of cell processes such as cell cycle, EMT and migration.
Apoptosis protease activating factor-1 (APAF1) acts as a target gene of miR-186 in A-431 CSCC cells [38]. APAF1 is a key molecule in the intrinsic pathway of apoptosis, which oligomerizes in response to cytochrome c release and forms the apoptosome [127]. Its downregulation as a consequence of miR-186 upregulation promotes cell proliferation, invasion and migration, and inhibits cell apoptosis [38].

2.6. MicroRNA-142

The biological role of miR-142 is poorly understood, but this miRNA is known to be preferentially expressed in cells of hematopoietic origin, and miR-142 null mice present abnormal lymphopoiesis and immunodeficiency [128,129]. In cancer, miR-142 can act as a suppressor, inhibiting cell proliferation [130,131,132,133], or as an oncogenic miRNA, promoting cellular proliferation and migration [134,135], depending on the type of tumor and the mature sequence generated from the 5′ or 3′ arm of miR-142.
Numerous target genes of microRNA-142 have been described, such as PD-L1 [133], BTG3 [136], CDK4 [137], RAC1 [138], MLL1 [132], and PTEN [39].
In CSCC, microRNA-142-5p acts as an oncogene. It is more strongly expressed in CSCC cell lines such as A-431, SCC13, HSC-5, and HS-1 than in the normal skin cell line, HaCaT. Its downregulation inhibits CSCC progression, and its upregulation promotes the opposite effect, inducing CSC-like phenotypes through the WNT signaling pathway [39]. WNT/β-catenin-dependent and -independent pathways are frequently hyperactivated in CSCC and promote cell proliferation and invasion [139].

2.7. MicroRNA-135b

The miRNA-135b function has been described as being oncogenic [140,141,142] or tumor suppressive [143] in malignant tumors originating from different tissues. It has been implicated in survival, motility, invasiveness, apoptosis, and sensitivity to chemotherapy [144,145].
APC [142], HIF1α [146], LZTS1 [141], LATS2 [140], FOXO1 [147], ERα, AR and HIF1AN [148] have been reported to be direct targets of miR-135b.
In head and neck SCC and CSCC, miR-135b is a tumor promoter that stimulates cancer cell proliferation, colony formation, angiogenesis [146], migration and invasion [40]. MiR-135b is upregulated in CSCC in immunocompromised patients and organ transplant recipients by modulating LZTS1, a tumor-suppressor gene [40]. LZTS1 protein expression is critical for normal mitosis progression, guaranteeing an adequate Cdk1 activity during M phase. Its downregulation shortens the mitotic division time causing improper chromosome segregation [149].
Other miRNAs that are overexpressed explicitly in CSCC include miR-346, miR-17-92, and miR-497. These are involved in angiogenesis, colony formation, migration, invasion, and indicate malignant progression [150,151,152].

3. Tumor Suppressor MiRNAs Involved in CSCC

3.1. MicroRNA-34a

The miR-34 family consists of three members, miR-34a, miR-34b, and miR-34c, which have suppressive roles in various types of human cancer, including melanoma, prostate, pancreatic, colorectal, ovarian and neuroblastoma [153]. They suppress tumor growth and metastasis by inhibiting the processes that promote cancer development, including cell cycle, EMT and stemness, and by promoting processes that inhibit carcinogenesis, such as apoptosis and senescence [154].
By 2014, 77 miR-34 targets had been validated [154]. MiR-34a regulates multiple targets involved in tumorigenesis and cancer progression, such as MYC, MET, CDK4/6, NOTCH1, and BCL2, among others; and its expression is controlled by p53 [155].
In the case of CSCC, miR-34a was significantly downregulated in CSCC tissues relative to the adjacent non-tumor tissue. The same pattern of expression was observed in CSCC lines such as A431 and SCL-1 compared with that in HaCaT cells of normal skin. Furthermore, a low level of expression of miR-34a was associated with the aggressive progression of CSCC, whereas the restoration of miR-34a levels in the SCL-1 cell line suppresses proliferation, migration, and invasion [41]. Lefort et al. also described a significant downmodulation of miR-34a in the keratinocyte-derived SCC cell line and tumors [42]. It predicts that a High-mobility group box 1 (HMGB1) [41] and Sirtuin 6 (SIRT6) [42] are target genes of miR-34a in CSCC. HMGB1 is a non-histone, nuclear-binding protein that participates in the regulation of DNA organization and gene transcription [41]; and SIRT6 is a highly specific NAD+-dependent histone deacetylase and ADP ribosyl transferase that has been implicated in DNA repair, genomic stability and telomere structure [156]. Moreover, miR-34a is induced with differentiation and keratinocyte differentiation, putting the brakes on tumor development [42]. These studies suggest that miR-34a is a tumor suppressor in CSCC, and techniques to overexpress or replace it could provide a basis for valuable therapeutic tools. Indeed, MRX34, which restores the suppressor function of endogenous miR-34, was the first microRNA mimic to be used in a clinical setting [157,158].

3.2. MicroRNA-125b

The miR-125 family is involved in a variety of solid carcinomas, hematological malignancies and other diseases, as a repressor or a promoter [159]. For example, microRNA-125a inhibits proliferation and invasion, and facilitates lung cancer cell apoptosis [160]. MicroRNA-125b is overexpressed in colorectal tumors [161], but in contrast, is downregulated in ovarian cancer and head and neck squamous cell carcinoma [28,162].
MicroRNA-125b is one of the most misregulated microRNAs in cancer. Many of its targets have been implicated in a range cellular processes, the most important being BCL2, MMP13, IGFR1, STAT3, CDK6, ERBB2/3, and c-JUN [163].
In CSCC, microRNA-125b is downregulated relative to healthy skin. The overexpression of miR-125b in two human CSCC lines (UT-SCC-7 and A-431) suppresses cell proliferation, migration, and invasion and increases the percentage of cells arrested in G1 phase [43]. Matrix metallopeptidases MMP13 and MMP7 and mitogen-activated protein kinase 7 (MAP2K7) have been identified as targets of miR-125b using bioinformatic analyses. These genes play essential roles in EMT, cancer cell migration, cell growth, inflammation and angiogenesis [43]. These findings support the tumor-suppressive role of miR-125b in CSCC.

3.3. MicroRNA-181a

The MiR-181 family is highly conserved, and its members are involved in the development, function, and pathogenesis of immune cells [164]. MiR-181a is involved in diverse cellular functions such as growth, proliferation, death, tumor suppression, carcinogenesis, and drug resistance [165,166,167].
Many target genes of microRNA-181a have been identified, for example, EGR1 [168], SMAD7, BMPR2, and TGFBR1 [169,170], which are involved in the TGF-β pathway.
MiR-181a is downregulated in CSCC compared with in healthy skin [44]. Moreover, HaCaT miR-181a knockdown cells exhibit an increase in viability and form cysts when they are injected subcutaneously into nude mice. Conversely, SCC13 cells with high levels of tetracycline-induced miR-181 attenuate cancer development in vivo and in vitro. They also reveal that miR-181a mediates its tumor-suppressive role through KRAS signaling via the MAPK pathway. Finally, they noted an increase in miR-181a levels during keratinocyte differentiation, suggesting that miR-181 is essential for the transition of keratinocytes into CSCC [44].

3.4. MicroRNA-148a

Aberrant expression of the miR148 family has been observed in tumor and non-tumor diseases [171,172]. MiR-148a is underexpressed in many types of cancer [173,174,175], including CSCC [45]. The miR-148a gene activates DNA hypermethylation mechanisms that silence a large number of CpG islands in the promoter and many tumor mechanisms [176,177,178].
The target genes of miR-184a identified in cancer are USP4 [179], ROCK1 [180], ERBB3 [181], BCL-2 [182], WNT10B [183], and CDC25B [184].
MAP3K4 and MAP3K9, upstream activators of the JNK and ERK pathways, are target genes of miR-148a in CSCC [45]. Furthermore, the overexpression of miR-148a significantly inhibits metastasis and the inhibition of MAP3K4 or MAP3K significantly decreases cell proliferation [45]. Together, these findings suggest that low levels of miR-148a or high levels of its target genes may be potential predictors of CSCC, making this a putative target for the treatment.

3.5. MicroRNA-20a

MicroRNA-20a belongs to the miR-17-92 cluster, which includes six microRNAs: miR-17, miR-18a, miR-19a, miR-19b-1, miR-20a, and miR-92a-1 [185]. Like other miRNAs, miR-20a can function as a tumor suppressor [186,187] or as an oncogene [188,189,190], depending on the type of tumor and context in question.
Some of the target genes of microRNA-20a described are THBS2 [190], RUNX3 [191], CELF2 [189], PDCD6 [192], ATG7 [193], TIMP2 [194], and LIMK1 [46].
MiR-20a plays a role as a tumor suppressor in CSCC. The level of MiR-20a is significantly lower in CSCC, and the expression of LIMK1, a target gene of miR-20a and a known tumor metastasis promoter, is higher in CSCC than in normal skin. The overexpression of miR-20a through plasmids in A-431 and SCL-1 lines inhibits cell proliferation, colony formation, cell migration, and invasion, and raises levels of LIMK1 [46]. LIMK1 is activated via phosphorylation downstream of Rho/Rac/Cdc42 signaling. The substrates of LIMK1 are members of the acting depolymerizing factor (ADF) and cofilin family. The phosphorylation of LIMK1 results in the inactivation of cofilin and the subsequent stabilization of actin filaments, formation of stress fibers and cell invasion [195]. Thus, lower levels of expression of miR-20a could predict poor prognosis of cutaneous squamous cell carcinoma [196], and the upregulated expression of miR-20a could be of therapeutic value.

3.6. MicroRNA-203

MiRNA-203 usually acts as a tumor suppressor [197,198,199,200,201,202,203,204,205,206,207], although it has been suggested that it may exhibit oncogenic behavior in some tumors [208,209]. MiRNA-203 is restricted to epithelial tissues and expressed at a higher level in skin than in any other organ [210]. Several independent studies have shown that miR-203 is involved in skin morphogenesis and promotes epidermal differentiation by repressing stemness of keratinocytes [206,211].
MiRNA-203 acts through interaction with several genes, of which the most relevant is c-MYC [47]. It also targets P63, LASP1, RAN and RAPH1 [210], BMI1 [212], and versican [213].
MiR-203 is downregulated in poorly differentiated CSCCs, and its overexpression suppresses migration, angiogenesis, and invasion in UT-SCC-7 and A-431 cell lines and immune-deficient NOD/SCID gamma mice [47]. MiRNA-203 was shown to exert this function by targeting the proto-oncogene c-MYC and thus, the authors proposed that the miR-203/c-MYC axis presents a potential candidate target for CSCC treatment [47]. MiR-203 downregulates p63 and thus controls the p63-dependent proliferative potential of epithelial precursor cells during keratinocyte differentiation and epithelial development. MiR-203 may repress suprabasal p63 and restrict cell proliferation in differentiating keratinocytes, acting as a tumor suppressor [214]. Our group described that miR-203 was more frequently expressed in squamous non-malignant cell lines than in malignant groups. Moreover, they showed that miR-203 was more frequently expressed in differentiated rather than in undifferentiated areas in CSCC. They identified miR-203 expression as a feature of CSCC with a better prognosis [85], and it exhibits an opposite pattern of expression in CSCC with miRNA-205 [85].

3.7. MicroRNA-204

MicroRNA-204 is an intronic miRNA located at the TRPM3 gene. Therefore, its expression is under the control of the TRPM3 promoter, which is frequently methylated in cancer [215]. This location is a cancer-associated genomic region where loss of heterozygosity is very frequent [48]. Studies have demonstrated that miR-204 functions principally as a tumor suppressor gene [215,216,217,218], but with dual activity: in prostate cancer as a tumor suppressor in adenocarcinoma cells and as an oncomiR in neuroendocrine-like cancer [219]
Some target genes of miR-204 have been validated in cancer cells, such as BCL2 in cholangiocarcinoma, colon cancer and neuroblastoma, BNDF and JAK 2 in breast cancer, Cyclin D2 in retinoblastoma, EPHB2 in glioma, IGFPB5 in papillary thyroid carcinoma [220], and SHP2 in cutaneous squamous cell carcinoma [48].
MicroRNA-204 is downregulated in CSCC relative to actinic keratosis. DNA methylation of the TRPM3 promoter region upstream of miR-204 is identified as one of the repressive mechanisms of miR-204 silencing in CSCC. Downregulation of miR-204 results in STAT3 activation and negative MAPK pathway regulation. Nuclear STAT3 signal is observed in CSCC and adjacent actinic keratosis, although in non-peritumoral actinic keratosis, STAT3 activation occurs in the plasma membrane and cytoplasm [48]. STAT3 acts as a transcription factor in nuclei and promotes malignant progression [221]. MiR-204 overexpression could inhibit STAT3 activation and its translocation to the nuclei, with consequent inhibition of carcinoma progression [48].

3.8. MicroRNA-199a

MicroRNA-199a is expressed in a broad array of tissues, including the brain, liver, vascular and visceral smooth muscle, ovarian and testicular tissue, cardiomyocytes and endothelial cells [222]. In cancer, it can inhibit tumorigenesis [223,224] or promote tumor growth [225]. Additionally, it has been implicated in drug sensitivity [226,227].
Numerous target genes of microRNA-199a have been described, including CD44 [49,228], ROCK1 [229], HIF1α [224], and BCAM, FZD6 and DDR1 in CSCC [50].
Recent data have revealed that miR-199a is downregulated in human CSCC cancer tissue relative to normal tissues. MiR-199a targeted CD44 to repress the proliferation, migration, and invasion of CSCC cell lines [49]. Moreover, miR-199a regulates the interaction between CD44 and Ezrin, a complex implicated in metastasis [230]. CD44 is a non-kinase transmembrane proteoglycan that mediates its effects on cancer cells by activating signaling pathways including protein kinases, by activating transcription factors and by modulating the cytoskeletal architecture [231]. The downregulation of miR-199a is also associated with the increased activity of MMP2 and MMP9, which are important in EMT [49]. Therefore, miR-199a and its targets might provide the basis for a therapeutic strategy in CSCC.

3.9. MicroRNA-124

MicroRNA-124 is the most abundant miRNA in the brain, and it has a central role in nervous system disorders [232]. However, it is also involved in cancer, in which it plays a putative role as a tumor suppressor [233,234,235,236,237].
Some target genes of miR-124 have been described, such as ROCK1 [238], SNAIL2 [233], CDK4 [239], CAV1 [240], and ERK2 [51], whose action can suppress cancer growth and metastasis.
In CSCC, miR-124 is downregulated in CSCC compared with seborrheic keratosis tissue and the human CSCC cell line. The downregulation of microRNA-124 mediates abnormal cell proliferation via the induction of ERK2 [51]. ERK2, with ERK1, are key protein kinases that contribute to the Ras-Raf-MEK-ERK MAP kinase-signaling module [241]. Additionally, serum concentration of miR-124 is correlated with miR-124 expression levels in the tumor tissues and inversely correlated with tumor progression [51], suggesting that microRNA-124 could be a biomarker for early detection of cutaneous squamous cell carcinoma.

3.10. MicroRNA-214

MicroRNA-214 is an important microRNA in neurogenesis [242], but also acts in tumors as a tumor suppressor [243,244,245] or oncogene [246,247]. The functions of miR-214 depend on the targets and signaling.
MiR-214 targets validated in cancer include TFAP2 and ITGA3 in melanoma, ING4 in pancreatic cancer, PTEN in stomach cancer, LZTS1 in osteosarcoma, PTEN and P53 in ovarian cancer, and ERK1/2 in cutaneous squamous cell carcinoma [51,248].
In CSCC, microRNA-214 acts as a tumor suppressor miRNA, and it is downregulated in vivo and in vitro. The downregulation of microRNA-214 induces ERK1 and ERK2 [241], which are essential for cellular proliferation, differentiation, and survival; and transfection of the miR-214 mimic reduced the expression of both [51]. Taken together, levels of miR-124/214 and its targets ERK1 and ERK2 could be a tool for early diagnosis and treatment.

4. MicroRNAs and Cancer Therapy

The functionality of miRNAs in controlling gene expression in cancer makes miRNAs ideal candidates for targeted therapies. Sandwich RNAi inhibition strategy, which consists of a combination of miRNA guided to an oncogene and siRNA guided to a microRNA, and multiplex RNAi inhibition strategy, in which multiple molecular defects accumulated in a multistep pathway of a specific cancer can be targeted with siRNA, are two approaches described for the treatment of cancer using RNAi. Current strategies for miRNA-inhibition are based on antisense oligonucleotides targeting miRNAs (AMOs), on locked nucleic acid (LNA) antimiRs, on antagomirs, on miRNAs sponges that contain multiple tandem binding sites to a miRNA and on small molecule compounds (SMIRs). To restore miRNAs levels, small molecules have been developed that induce miRNA expression, both miRNA mimics and miRNA expression vectors [249]. To date, most of these therapies have been validated in vitro but more studies are necessary to be able to use them on human patients.

5. Conclusions and Future Perspectives

Cutaneous squamous cell carcinoma is the second most frequent cancer in humans. While it usually exhibits a benign clinical behavior, it can be both locally invasive and metastatic to distant sites. In recent years, research efforts have been directed towards deciphering the pathogenic basis of this tumor, but there is much still to be discovered. MicroRNAs are small molecules of non-coding RNA associated with the development of cancers, including CSCC. Several miRNAs are dysregulated in CSCC, exhibiting oncogenic functions (such as mir-21, mir-205, mir-365, mir-31, mir-135b, mir-142, and mir-186) or suppressor functions (such as mir-20a, mir-203, mir-181a, mir-125b, mir-34a, mir-148a, mir-214, mir-124, mir-204, and mir-199a). A better knowledge of miRNAs might shed light on the biology of CSCC and suggest novel molecular targets for the treatment of this disease.
MicroRNA profiling has been useful in identifying predictive miRNA signatures associated with tumor growth, progression and prognosis. Changes of specific miRNAs can be detected using different traditional techniques, such as Northern Blot, reverse transcription qPCR, microarray approaches, next-generation sequencing and in situ hybridization [250]. In recent years, newly incorporated methods, based on nanotechnology and enzymatic amplification, have improved the sensitivity and specificity of miRNA detection [250,251]. In the future, novel technologies will enable us to improve our definition of miRNA biomarkers and to better identify subgroups for prognosis in CSCC.

Funding

Javier Cañueto is partially supported by the grants PI18/000587 (Instituto de Salud Carlos III cofinanciado con fondos FEDER) and GRS 1835/A/18 (Gerencia Regional de Salud de Castilla y León), and by the Programa de Intensificación de la Actividad Investigadora de la Gerencia Regional de Salud de Castilla y León (INT/M/10/19), Spain.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Que, S.K.T.; Zwald, F.O.; Schmults, C.D. Cutaneous squamous cell carcinoma: Incidence, risk factors, diagnosis, and staging. J. Am. Acad. Dermatol. 2018, 78, 237–247. [Google Scholar] [CrossRef]
  2. Lomas, A.; Leonardi-Bee, J.; Bath-Hextall, F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br. J. Dermatol. 2012, 166, 1069–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Brougham, N.D.; Dennett, E.R.; Cameron, R.; Tan, S.T. The incidence of metastasis from cutaneous squamous cell carcinoma and the impact of its risk factors. J. Surg. Oncol. 2012, 106, 811–815. [Google Scholar] [CrossRef]
  4. Leiter, U.; Keim, U.; Eigentler, T.; Katalinic, A.; Holleczek, B.; Martus, P.; Garbe, C. Incidence, Mortality, and Trends of Nonmelanoma Skin Cancer in Germany. J. Investig. Dermatol. 2017, 137, 1860–1867. [Google Scholar] [CrossRef] [PubMed]
  5. Karia, P.S.; Han, J.; Schmults, C.D. Cutaneous squamous cell carcinoma: Estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012. J. Am. Acad. Dermatol. 2013, 68, 957–966. [Google Scholar] [CrossRef]
  6. Brash, D.E.; Rudolph, J.A.; Simon, J.A.; Lin, A.; McKenna, G.J.; Baden, H.P.; Halperin, A.J.; Ponten, J. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 1991, 88, 10124–10128. [Google Scholar] [CrossRef]
  7. Ziegler, A.; Jonason, A.S.; Leffell, D.J.; Simon, J.A.; Sharma, H.W.; Kimmelman, J.; Remington, L.; Jacks, T.; Brash, D.E. Sunburn and p53 in the onset of skin cancer. Nature 1994, 372, 773–776. [Google Scholar] [CrossRef]
  8. Pickering, C.R.; Zhou, J.H.; Lee, J.J.; Drummond, J.A.; Peng, S.A.; Saade, R.E.; Tsai, K.Y.; Curry, J.L.; Tetzlaff, M.T.; Lai, S.Y.; et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin. Cancer Res. 2014, 20, 6582–6592. [Google Scholar] [CrossRef] [Green Version]
  9. Soufir, N.; Moles, J.P.; Vilmer, C.; Moch, C.; Verola, O.; Rivet, J.; Tesniere, A.; Dubertret, L.; Basset-Seguin, N. P16 UV mutations in human skin epithelial tumors. Oncogene 1999, 18, 5477–5481. [Google Scholar] [CrossRef] [Green Version]
  10. Pierceall, W.E.; Goldberg, L.H.; Tainsky, M.A.; Mukhopadhyay, T.; Ananthaswamy, H.N. Ras gene mutation and amplification in human nonmelanoma skin cancers. Mol. Carcinog. 1991, 4, 196–202. [Google Scholar] [CrossRef] [PubMed]
  11. Ratushny, V.; Gober, M.D.; Hick, R.; Ridky, T.W.; Seykora, J.T. From keratinocyte to cancer: The pathogenesis and modeling of cutaneous squamous cell carcinoma. J. Clin. Investig. 2012, 122, 464–472. [Google Scholar] [CrossRef]
  12. Kim, C.; Pasparakis, M. Epidermal p65/NK-kappaB signalling is essential for skin carcinogenesis. EMBO Mol. Med. 2014, 6, 970–983. [Google Scholar] [CrossRef]
  13. Wang, N.J.; Sanborn, Z.; Arnett, K.L.; Bayston, L.J.; Liao, W.; Proby, C.M.; Leigh, I.M.; Collisson, E.A.; Gordon, P.B.; Jakkula, L.; et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 2011, 108, 17761–17766. [Google Scholar] [CrossRef]
  14. Ridd, K.; Bastian, B.C. Somatic mutation of epidermal growth factor receptor in a small subset of cutaneous squamous cell carcinoma. J. Investig. Dermatol. 2010, 130, 901–903. [Google Scholar] [CrossRef]
  15. Croce, C.M.; Calin, G.A. miRNAs, cancer, and stem cell division. Cell 2005, 122, 6–7. [Google Scholar] [CrossRef] [PubMed]
  16. Gregory, R.I.; Shiekhattar, R. MicroRNA biogenesis and cancer. Cancer Res. 2005, 65, 3509–3512. [Google Scholar] [CrossRef] [PubMed]
  17. Yang, M.; Li, Y.; Padgett, R.W. MicroRNAs: Small regulators with a big impact. Cytokine Growth Factor Rev. 2005, 16, 387–393. [Google Scholar] [CrossRef] [PubMed]
  18. Horsburgh, S.; Fullard, N.; Roger, M.; Degnan, A.; Todryk, S.; Przyborski, S.; O’Reilly, S. MicroRNAs in the skin: Role in development, homoeostasis and regeneration. Clin. Sci. 2017, 131, 1923–1940. [Google Scholar] [CrossRef] [PubMed]
  19. Macfarlane, L.A.; Murphy, P.R. MicroRNA: Biogenesis, Function and Role in Cancer. Curr. Genom. 2010, 11, 537–561. [Google Scholar] [CrossRef] [PubMed]
  20. Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 2001, 294, 853–858. [Google Scholar] [CrossRef] [PubMed]
  21. Oliveto, S.; Mancino, M.; Manfrini, N.; Biffo, S. Role of microRNAs in translation regulation and cancer. World J. Biol. Chem. 2017, 8, 45–56. [Google Scholar] [CrossRef] [PubMed]
  22. Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef] [Green Version]
  23. Huang, Y.; Shen, X.J.; Zou, Q.; Wang, S.P.; Tang, S.M.; Zhang, G.Z. Biological functions of microRNAs: A review. J. Physiol. Biochem. 2011, 67, 129–139. [Google Scholar] [CrossRef] [PubMed]
  24. Esquela-Kerscher, A.; Slack, F.J. Oncomirs-microRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef] [PubMed]
  25. Svoronos, A.A.; Engelman, D.M.; Slack, F.J. OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Res. 2016, 76, 3666–3670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  26. Zhang, L.; Huang, J.; Yang, N.; Greshock, J.; Megraw, M.S.; Giannakakis, A.; Liang, S.; Naylor, T.L.; Barchetti, A.; Ward, M.R.; et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl. Acad. Sci. USA 2006, 103, 9136–9141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  27. Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef] [PubMed]
  28. Hui, A.B.; Lenarduzzi, M.; Krushel, T.; Waldron, L.; Pintilie, M.; Shi, W.; Perez-Ordonez, B.; Jurisica, I.; O’Sullivan, B.; Waldron, J.; et al. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2010, 16, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
  29. Li, X.; Huang, K.; Yu, J. Inhibition of microRNA-21 upregulates the expression of programmed cell death 4 and phosphatase tensin homologue in the A431 squamous cell carcinoma cell line. Oncol. Lett. 2014, 8, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  30. Darido, C.; Georgy, S.R.; Wilanowski, T.; Dworkin, S.; Auden, A.; Zhao, Q.; Rank, G.; Srivastava, S.; Finlay, M.J.; Papenfuss, A.T.; et al. Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell 2011, 20, 635–648. [Google Scholar] [CrossRef] [PubMed]
  31. Gregory, P.A.; Bracken, C.P.; Bert, A.G.; Goodall, G.J. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 2008, 7, 3112–3118. [Google Scholar] [CrossRef] [PubMed]
  32. Bruegger, C.; Kempf, W.; Spoerri, I.; Arnold, A.W.; Itin, P.H.; Burger, B. MicroRNA expression differs in cutaneous squamous cell carcinomas and healthy skin of immunocompetent individuals. Exp. Dermatol. 2013, 22, 426–428. [Google Scholar] [CrossRef]
  33. Yu, J.; Peng, H.; Ruan, Q.; Fatima, A.; Getsios, S.; Lavker, R.M. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J. 2010, 24, 3950–3959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Zhou, M.; Liu, W.; Ma, S.; Cao, H.; Peng, X.; Guo, L.; Zhou, X.; Zheng, L.; Guo, L.; Wan, M.; et al. A novel onco-miR-365 induces cutaneous squamous cell carcinoma. Carcinogenesis 2013, 34, 1653–1659. [Google Scholar] [CrossRef] [Green Version]
  35. Zhou, L. HOXA9 inhibits HIF-1α-mediated glycolysis through interacting with CRIP2 to repress cutaneous squamous cell carcinoma development. Nat. Commun. 2018, 9, 1480. [Google Scholar] [CrossRef] [PubMed]
  36. Wang, A.; Landen, N.X.; Meisgen, F.; Lohcharoenkal, W.; Stahle, M.; Sonkoly, E.; Pivarcsi, A. MicroRNA-31 is overexpressed in cutaneous squamous cell carcinoma and regulates cell motility and colony formation ability of tumor cells. PLoS ONE 2014, 9, e103206. [Google Scholar] [CrossRef]
  37. Lin, N.; Zhou, Y.; Lian, X.; Tu, Y. MicroRNA-31 functions as an oncogenic microRNA in cutaneous squamous cell carcinoma cells by targeting RhoTBT1. Oncol. Lett. 2017, 13, 1078–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  38. Tian, J.; Shen, R.; Yan, Y.; Deng, L. miR-186 promotes tumor growth in cutaneous squamous cell carcinoma by inhibiting apoptotic protease activating factor-1. Exp. Ther. Med. 2018, 16, 4010–4018. [Google Scholar] [CrossRef] [PubMed]
  39. Bai, X.; Zhou, Y.; Chen, P.; Yang, M.; Xu, J. MicroRNA-142-5p induces cancer stem cell-like properties of cutaneous squamous cell carcinoma via inhibiting PTEN. J. Cell. Biochem. 2018, 119, 2179–2188. [Google Scholar] [CrossRef]
  40. Olasz, E.B.; Seline, L.N.; Schock, A.M.; Duncan, N.E.; Lopez, A.; Lazar, J.; Flister, M.J.; Lu, Y.; Liu, P.; Sokumbi, O.; et al. MicroRNA-135b Regulates Leucine Zipper Tumor Suppressor 1 in Cutaneous Squamous Cell Carcinoma. PLoS ONE 2015, 10, e0125412. [Google Scholar] [CrossRef]
  41. Li, S.; Luo, C.; Zhou, J.; Zhang, Y. MicroRNA-34a directly targets high-mobility group box 1 and inhibits the cancer cell proliferation, migration and invasion in cutaneous squamous cell carcinoma. Exp. Ther. Med. 2017, 14, 5611–5618. [Google Scholar] [CrossRef] [Green Version]
  42. Lefort, K.; Brooks, Y.; Ostano, P.; Cario-Andre, M.; Calpini, V.; Guinea-Viniegra, J.; Albinger-Hegyi, A.; Hoetzenecker, W.; Kolfschoten, I.; Wagner, E.F.; et al. A miR-34a-SIRT6 axis in the squamous cell differentiation network. EMBO J. 2013, 32, 2248–2263. [Google Scholar] [CrossRef] [Green Version]
  43. Xu, N.; Zhang, L.; Meisgen, F.; Harada, M.; Heilborn, J.; Homey, B.; Grander, D.; Stahle, M.; Sonkoly, E.; Pivarcsi, A. MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. J. Biol. Chem. 2012, 287, 29899–29908. [Google Scholar] [CrossRef]
  44. Neu, J.; Dziunycz, P.J.; Dzung, A.; Lefort, K.; Falke, M.; Denzler, R.; Freiberger, S.N.; Iotzova-Weiss, G.; Kuzmanov, A.; Levesque, M.P.; et al. miR-181a decelerates proliferation in cutaneous squamous cell carcinoma by targeting the proto-oncogene KRAS. PLoS ONE 2017, 12, e0185028. [Google Scholar] [CrossRef] [PubMed]
  45. Luo, Q.; Li, W.; Zhao, T.; Tian, X.; Liu, Y.; Zhang, X. Role of miR-148a in cutaneous squamous cell carcinoma by repression of MAPK pathway. Arch. Biochem. Biophys. 2015, 583, 47–54. [Google Scholar] [CrossRef] [PubMed]
  46. Zhou, J.; Liu, R.; Luo, C.; Zhou, X.; Xia, K.; Chen, X.; Zhou, M.; Zou, Q.; Cao, P.; Cao, K. MiR-20a inhibits cutaneous squamous cell carcinoma metastasis and proliferation by directly targeting LIMK1. Cancer Biol. Ther. 2014, 15, 1340–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  47. Lohcharoenkal, W.; Harada, M.; Loven, J.; Meisgen, F.; Landen, N.X.; Zhang, L.; Lapins, J.; Mahapatra, K.D.; Shi, H.; Nissinen, L.; et al. MicroRNA-203 Inversely Correlates with Differentiation Grade, Targets c-MYC, and Functions as a Tumor Suppressor in cSCC. J. Investig. Dermatol. 2016, 136, 2485–2494. [Google Scholar] [CrossRef] [PubMed]
  48. Toll, A.; Salgado, R.; Espinet, B.; Diaz-Lagares, A.; Hernandez-Ruiz, E.; Andrades, E.; Sandoval, J.; Esteller, M.; Pujol, R.M.; Hernandez-Munoz, I. MiR-204 silencing in intraepithelial to invasive cutaneous squamous cell carcinoma progression. Mol. Cancer 2016, 15, 53. [Google Scholar] [CrossRef] [PubMed]
  49. Wang, S.H.; Zhou, J.D.; He, Q.Y.; Yin, Z.Q.; Cao, K.; Luo, C.Q. MiR-199a inhibits the ability of proliferation and migration by regulating CD44-Ezrin signaling in cutaneous squamous cell carcinoma cells. Int. J. Clin. Exp. Pathol. 2014, 7, 7131–7141. [Google Scholar] [PubMed]
  50. Kim, B.K.; Kim, I.; Yoon, S.K. Identification of miR-199a-5p target genes in the skin keratinocyte and their expression in cutaneous squamous cell carcinoma. J. Dermatol. Sci. 2015, 79, 137–147. [Google Scholar] [CrossRef]
  51. Yamane, K.; Jinnin, M.; Etoh, T.; Kobayashi, Y.; Shimozono, N.; Fukushima, S.; Masuguchi, S.; Maruo, K.; Inoue, Y.; Ishihara, T.; et al. Down-regulation of miR-124/-214 in cutaneous squamous cell carcinoma mediates abnormal cell proliferation via the induction of ERK. J. Mol. Med. 2013, 91, 69–81. [Google Scholar] [CrossRef] [PubMed]
  52. Gao, W.; Shen, H.; Liu, L.; Xu, J.; Xu, J.; Shu, Y. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J. Cancer Res. Clin. Oncol. 2011, 137, 557–566. [Google Scholar] [CrossRef] [PubMed]
  53. Yan, L.X.; Huang, X.F.; Shao, Q.; Huang, M.Y.; Deng, L.; Wu, Q.L.; Zeng, Y.X.; Shao, J.Y. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008, 14, 2348–2360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Yu, Y.; Nangia-Makker, P.; Farhana, L.; Rajendra, S.G.; Levi, E.; Majumdar, A.P. miR-21 and miR-145 cooperation in regulation of colon cancer stem cells. Mol. Cancer 2015, 14, 98. [Google Scholar] [CrossRef]
  55. Giovannetti, E.; Funel, N.; Peters, G.J.; Del Chiaro, M.; Erozenci, L.A.; Vasile, E.; Leon, L.G.; Pollina, L.E.; Groen, A.; Falcone, A.; et al. MicroRNA-21 in pancreatic cancer: Correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 2010, 70, 4528–4538. [Google Scholar] [CrossRef] [PubMed]
  56. Volinia, S.; Calin, G.A.; Liu, C.G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 2006, 103, 2257–2261. [Google Scholar] [CrossRef] [Green Version]
  57. Chan, J.A.; Krichevsky, A.M.; Kosik, K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65, 6029–6033. [Google Scholar] [CrossRef] [PubMed]
  58. Loffler, D.; Brocke-Heidrich, K.; Pfeifer, G.; Stocsits, C.; Hackermuller, J.; Kretzschmar, A.K.; Burger, R.; Gramatzki, M.; Blumert, C.; Bauer, K.; et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 2007, 110, 1330–1333. [Google Scholar] [CrossRef] [Green Version]
  59. Si, M.L.; Zhu, S.; Wu, H.; Lu, Z.; Wu, F.; Mo, Y.Y. miR-21-mediated tumor growth. Oncogene 2007, 26, 2799–2803. [Google Scholar] [CrossRef]
  60. Zhu, S.; Si, M.L.; Wu, H.; Mo, Y.Y. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem. 2007, 282, 14328–14336. [Google Scholar] [CrossRef]
  61. Zhu, S.; Wu, H.; Wu, F.; Nie, D.; Sheng, S.; Mo, Y.Y. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008, 18, 350–359. [Google Scholar] [CrossRef] [Green Version]
  62. Folini, M.; Gandellini, P.; Longoni, N.; Profumo, V.; Callari, M.; Pennati, M.; Colecchia, M.; Supino, R.; Veneroni, S.; Salvioni, R.; et al. miR-21: An oncomir on strike in prostate cancer. Mol. Cancer 2010, 9, 12. [Google Scholar] [CrossRef]
  63. Pfeffer, S.R.; Yang, C.H.; Pfeffer, L.M. The Role of miR-21 in Cancer. Drug Dev. Res. 2015, 76, 270–277. [Google Scholar] [CrossRef]
  64. Feng, Y.H.; Tsao, C.J. Emerging role of microRNA-21 in cancer. Biomed. Rep. 2016, 5, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  65. Gao, W.; Xu, J.; Liu, L.; Shen, H.; Zeng, H.; Shu, Y. A systematic-analysis of predicted miR-21 targets identifies a signature for lung cancer. Biomed. Pharm. 2012, 66, 21–28. [Google Scholar] [CrossRef] [PubMed]
  66. Wang, P.; Zou, F.; Zhang, X.; Li, H.; Dulak, A.; Tomko, R.J., Jr.; Lazo, J.S.; Wang, Z.; Zhang, L.; Yu, J. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 2009, 69, 8157–8165. [Google Scholar] [CrossRef]
  67. Asangani, I.A.; Rasheed, S.A.; Nikolova, D.A.; Leupold, J.H.; Colburn, N.H.; Post, S.; Allgayer, H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008, 27, 2128–2136. [Google Scholar] [CrossRef]
  68. Meng, F.; Henson, R.; Wehbe-Janek, H.; Ghoshal, K.; Jacob, S.T.; Patel, T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007, 133, 647–658. [Google Scholar] [CrossRef]
  69. Frankel, L.B.; Christoffersen, N.R.; Jacobsen, A.; Lindow, M.; Krogh, A.; Lund, A.H. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 2008, 283, 1026–1033. [Google Scholar] [CrossRef]
  70. Sheedy, F.J.; Palsson-McDermott, E.; Hennessy, E.J.; Martin, C.; O’Leary, J.J.; Ruan, Q.; Johnson, D.S.; Chen, Y.; O’Neill, L.A. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol. 2010, 11, 141–147. [Google Scholar] [CrossRef]
  71. Buscaglia, L.E.; Li, Y. Apoptosis and the target genes of microRNA-21. Chin. J. Cancer 2011, 30, 371–380. [Google Scholar] [CrossRef] [Green Version]
  72. Yang, C.H.; Yue, J.; Pfeffer, S.R.; Handorf, C.R.; Pfeffer, L.M. MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. J. Biol. Chem. 2011, 286, 39172–39178. [Google Scholar] [CrossRef]
  73. Li, X.; Kleeman, S.; Coburn, S.B.; Fumagalli, C.; Perner, J.; Jammula, S.; Pfeiffer, R.M.; Orzolek, L.; Hao, H.; Taylor, P.R.; et al. Selection and Application of Tissue microRNAs for Nonendoscopic Diagnosis of Barrett’s Esophagus. Gastroenterology 2018, 155, 771–783 e773. [Google Scholar] [CrossRef]
  74. Zhou, X.; Wang, X.; Huang, Z.; Wang, J.; Zhu, W.; Shu, Y.; Liu, P. Prognostic value of miR-21 in various cancers: An updating meta-analysis. PLoS ONE 2014, 9, e102413. [Google Scholar] [CrossRef] [PubMed]
  75. Greene, S.B.; Herschkowitz, J.I.; Rosen, J.M. The ups and downs of miR-205: Identifying the roles of miR-205 in mammary gland development and breast cancer. RNA Biol. 2010, 7, 300–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  76. Diaz-Lopez, A.; Moreno-Bueno, G.; Cano, A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag. Res. 2014, 6, 205–216. [Google Scholar] [Green Version]
  77. Cai, J.; Fang, L.; Huang, Y.; Li, R.; Yuan, J.; Yang, Y.; Zhu, X.; Chen, B.; Wu, J.; Li, M. miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer. Cancer Res. 2013, 73, 5402–5415. [Google Scholar] [CrossRef]
  78. Lei, L.; Huang, Y.; Gong, W. miR-205 promotes the growth, metastasis and chemoresistance of NSCLC cells by targeting PTEN. Oncol. Rep. 2013, 30, 2897–2902. [Google Scholar] [CrossRef]
  79. Qu, C.; Liang, Z.; Huang, J.; Zhao, R.; Su, C.; Wang, S.; Wang, X.; Zhang, R.; Lee, M.H.; Yang, H. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle 2012, 11, 785–796. [Google Scholar] [CrossRef] [Green Version]
  80. Yu, J.; Ryan, D.G.; Getsios, S.; Oliveira-Fernandes, M.; Fatima, A.; Lavker, R.M. MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc. Natl. Acad. Sci. USA 2008, 105, 19300–19305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  81. Iorio, M.V.; Casalini, P.; Piovan, C.; Di Leva, G.; Merlo, A.; Triulzi, T.; Menard, S.; Croce, C.M.; Tagliabue, E. microRNA-205 regulates HER3 in human breast cancer. Cancer Res. 2009, 69, 2195–2200. [Google Scholar] [CrossRef]
  82. Gandellini, P.; Folini, M.; Longoni, N.; Pennati, M.; Binda, M.; Colecchia, M.; Salvioni, R.; Supino, R.; Moretti, R.; Limonta, P.; et al. miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res. 2009, 69, 2287–2295. [Google Scholar] [CrossRef] [PubMed]
  83. Wu, H.; Zhu, S.; Mo, Y.Y. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res. 2009, 19, 439–448. [Google Scholar] [CrossRef] [Green Version]
  84. Wang, D.; Zhang, Z.; O’Loughlin, E.; Wang, L.; Fan, X.; Lai, E.C.; Yi, R. MicroRNA-205 controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway. Nat. Cell Biol. 2013, 15, 1153–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  85. Canueto, J.; Cardenoso-Alvarez, E.; Garcia-Hernandez, J.L.; Galindo-Villardon, P.; Vicente-Galindo, P.; Vicente-Villardon, J.L.; Alonso-Lopez, D.; De Las Rivas, J.; Valero, J.; Moyano-Sanz, E.; et al. MicroRNA (miR)-203 and miR-205 expression patterns identify subgroups of prognosis in cutaneous squamous cell carcinoma. Br. J. Dermatol. 2017, 177, 168–178. [Google Scholar] [CrossRef] [PubMed]
  86. Stojadinovic, O.; Ramirez, H.; Pastar, I.; Gordon, K.A.; Stone, R.; Choudhary, S.; Badiavas, E.; Nouri, K.; Tomic-Canic, M. MiR-21 and miR-205 are induced in invasive cutaneous squamous cell carcinomas. Arch. Dermatol. Res. 2017, 309, 133–139. [Google Scholar] [CrossRef] [PubMed]
  87. Li, M. miR-365 overexpression promotes cell proliferation and invasion by targeting ADAMTS-1 in breast cancer. Int. J. Oncol. 2015, 47, 262–302. [Google Scholar] [CrossRef]
  88. Wang, Y.; Zhang, S.; Bao, H.; Mu, S.; Zhang, B.; Ma, H.; Ma, S. MicroRNA-365 promotes lung carcinogenesis by downregulating the USP33/SLIT2/ROBO1 signalling pathway. Cancer Cell Int. 2018, 18, 64. [Google Scholar] [CrossRef] [Green Version]
  89. Guo, S.L.; Ye, H.; Teng, Y.; Wang, Y.L.; Yang, G.; Li, X.B.; Zhang, C.; Yang, X.; Yang, Z.Z.; Yang, X. Akt-p53-miR-365-cyclin D1/cdc25A axis contributes to gastric tumorigenesis induced by PTEN deficiency. Nat. Commun. 2013, 4, 2544. [Google Scholar] [CrossRef] [Green Version]
  90. Nie, J.; Liu, L.; Zheng, W.; Chen, L.; Wu, X.; Xu, Y.; Du, X.; Han, W. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis 2012, 33, 220–225. [Google Scholar] [CrossRef]
  91. Bai, J.; Zhang, Z.; Li, X.; Liu, H. MicroRNA-365 inhibits growth, invasion and metastasis of malignant melanoma by targeting NRP1 expression. Int. J. Clin. Exp. Pathol. 2015, 8, 4913–4922. [Google Scholar] [CrossRef] [PubMed]
  92. Gao, J.; Zhao, P.; Chen, X.; Wang, W.; Li, Y.; Xi, W.; Zhang, W.; Hu, P.; Wang, T.; Shan, L. [miR-365 inhibits proliferation and promotes apoptosis of SOSP9607 osteosarcoma cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi = Chin. J. Cell. Mol. Immunol. 2016, 32, 44–48. [Google Scholar]
  93. Wang, C.; Su, K.; Zhang, Y.; Zhang, W.; Chu, D.; Zhao, Q.; Guo, R. MicroRNA-365 targets multiple oncogenes to inhibit proliferation, invasion, and self-renewal of aggressive endometrial cancer cells. Cancer Manag. Res. 2018, 10, 5171–5185. [Google Scholar] [CrossRef]
  94. Li, M.; Yang, Y.; Kuang, Y.; Gan, X.; Zeng, W.; Liu, Y.; Guan, H. miR-365 induces hepatocellular carcinoma cell apoptosis through targeting Bcl-2. Exp. Ther. Med. 2017, 13, 2279–2285. [Google Scholar] [CrossRef] [Green Version]
  95. Chen, Z.; Huang, Z.; Ye, Q.; Ming, Y.; Zhang, S.; Zhao, Y.; Liu, L.; Wang, Q.; Cheng, K. Prognostic significance and anti-proliferation effect of microRNA-365 in hepatocellular carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 1705–1711. [Google Scholar] [PubMed]
  96. Sun, C.; Zhang, X.; Chen, Y.; Jia, Q.; Yang, J.; Shu, Y. MicroRNA-365 suppresses cell growth and invasion in esophageal squamous cell carcinoma by modulating phosphoserine aminotransferase 1. Cancer Manag. Res. 2018, 10, 4581–4590. [Google Scholar] [CrossRef]
  97. Zhou, M.; Zhou, L.; Zheng, L.; Guo, L.; Wang, Y.; Liu, H.; Ou, C.; Ding, Z. miR-365 promotes cutaneous squamous cell carcinoma (CSCC) through targeting nuclear factor I/B (NFIB). PLoS ONE 2014, 9, e100620. [Google Scholar] [CrossRef]
  98. Zhou, L.; Gao, R.; Wang, Y.; Zhou, M.; Ding, Z. Loss of BAX by miR-365 Promotes Cutaneous Squamous Cell Carcinoma Progression by Suppressing Apoptosis. Int. J. Mol. Sci. 2017, 18, 1157. [Google Scholar] [CrossRef]
  99. Zhu, Y.; Zhao, H.; Rao, M.; Xu, S. MicroRNA-365 inhibits proliferation, migration and invasion of glioma by targeting PIK3R3. Oncol. Rep. 2017, 37, 2185–2192. [Google Scholar] [CrossRef]
  100. Xu, Z.; Xiao, S.B.; Xu, P.; Xie, Q.; Cao, L.; Wang, D.; Luo, R.; Zhong, Y.; Chen, H.C.; Fang, L.R. miR-365, a novel negative regulator of interleukin-6 gene expression, is cooperatively regulated by Sp1 and NF-kappaB. J. Biol. Chem. 2011, 286, 21401–21412. [Google Scholar] [CrossRef] [PubMed]
  101. Guo, L.; Huang, Z.X.; Chen, X.W.; Deng, Q.K.; Yan, W.; Zhou, M.J.; Ou, C.S.; Ding, Z.H. Differential expression profiles of microRNAs in NIH3T3 cells in response to UVB irradiation. Photochem. Photobiol. 2009, 85, 765–773. [Google Scholar] [CrossRef] [PubMed]
  102. Stepicheva, N.A.; Song, J.L. Function and regulation of microRNA-31 in development and disease. Mol. Reprod. Dev. 2016, 83, 654–674. [Google Scholar] [CrossRef]
  103. Ge, F.; Wang, C.; Wang, W.; Liu, W.; Wu, B. MicroRNA-31 inhibits tumor invasion and metastasis by targeting RhoA in human gastric cancer. Oncol. Rep. 2017, 38, 1133–1139. [Google Scholar] [CrossRef]
  104. Luo, L.J.; Yang, F.; Ding, J.J.; Yan, D.L.; Wang, D.D.; Yang, S.J.; Ding, L.; Li, J.; Chen, D.; Ma, R.; et al. MiR-31 inhibits migration and invasion by targeting SATB2 in triple negative breast cancer. Gene 2016, 594, 47–58. [Google Scholar] [CrossRef] [PubMed]
  105. Lekchnov, E.A.; Amelina, E.V.; Bryzgunova, O.E.; Zaporozhchenko, I.A.; Konoshenko, M.Y.; Yarmoschuk, S.V.; Murashov, I.S.; Pashkovskaya, O.A.; Gorizkii, A.M.; Zheravin, A.A.; et al. Searching for the Novel Specific Predictors of Prostate Cancer in Urine: The Analysis of 84 miRNA Expression. Int. J. Mol. Sci. 2018, 19, 4088. [Google Scholar] [CrossRef] [PubMed]
  106. Xu, T.; Qin, L.; Zhu, Z.; Wang, X.; Liu, Y.; Fan, Y.; Zhong, S.; Wang, X.; Zhang, X.; Xia, L.; et al. MicroRNA-31 functions as a tumor suppressor and increases sensitivity to mitomycin-C in urothelial bladder cancer by targeting integrin alpha5. Oncotarget 2016, 7, 27445–27457. [Google Scholar] [CrossRef] [PubMed]
  107. Yang, M.H.; Yu, J.; Chen, N.; Wang, X.Y.; Liu, X.Y.; Wang, S.; Ding, Y.Q. Elevated microRNA-31 expression regulates colorectal cancer progression by repressing its target gene SATB2. PLoS ONE 2013, 8, e85353. [Google Scholar] [CrossRef]
  108. Liu, X.; Sempere, L.F.; Ouyang, H.; Memoli, V.A.; Andrew, A.S.; Luo, Y.; Demidenko, E.; Korc, M.; Shi, W.; Preis, M.; et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J. Clin. Investig. 2010, 120, 1298–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  109. Lv, C.; Li, F.; Li, X.; Tian, Y.; Zhang, Y.; Sheng, X.; Song, Y.; Meng, Q.; Yuan, S.; Luan, L.; et al. MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists. Nat. Commun. 2017, 8, 1036. [Google Scholar] [CrossRef] [Green Version]
  110. Liu, C.J.; Tsai, M.M.; Hung, P.S.; Kao, S.Y.; Liu, T.Y.; Wu, K.J.; Chiou, S.H.; Lin, S.C.; Chang, K.W. miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res. 2010, 70, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
  111. Gao, W.; Liu, L.; Xu, J.; Shao, Q.; Liu, Y.; Zeng, H.; Shu, Y. A systematic analysis of predicted MiR-31-targets identifies a diagnostic and prognostic signature for lung cancer. Biomed. Pharmacother. 2014, 68, 419–427. [Google Scholar] [CrossRef]
  112. Yu, T.; Ma, P.; Wu, D.; Shu, Y.; Gao, W. Functions and mechanisms of microRNA-31 in human cancers. Biomed. Pharmacother. 2018, 108, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
  113. Cai, J.; Wu, J.; Zhang, H.; Fang, L.; Huang, Y.; Yang, Y.; Zhu, X.; Li, R.; Li, M. miR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation. Cancer Res. 2013, 73, 756–766. [Google Scholar] [CrossRef] [PubMed]
  114. Liu, L.; Wang, Y.; Bai, R.; Yang, K.; Tian, Z. MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1alpha regulation. Oncogenesis 2017, 6, e318. [Google Scholar] [CrossRef] [PubMed]
  115. Yao, K.; He, L.; Gan, Y.; Zeng, Q.; Dai, Y.; Tan, J. MiR-186 suppresses the growth and metastasis of bladder cancer by targeting NSBP1. Diagn. Pathol. 2015, 10, 146. [Google Scholar] [CrossRef]
  116. Zhang, T.J.; Wang, Y.X.; Yang, D.Q.; Yao, D.M.; Yang, L.; Zhou, J.D.; Deng, Z.Q.; Wen, X.M.; Guo, H.; Ma, J.C.; et al. Down-Regulation of miR-186 Correlates with Poor Survival in de novo Acute Myeloid Leukemia. Clin. Lab. 2016, 62, 113–120. [Google Scholar] [CrossRef] [PubMed]
  117. Nugent, M. MicroRNAs: Exploring new horizons in osteoarthritis. Osteoarthr. Cartil. 2016, 24, 573–580. [Google Scholar] [CrossRef]
  118. Li, Y.H.; Tavallaee, G.; Tokar, T.; Nakamura, A.; Sundararajan, K.; Weston, A.; Sharma, A.; Mahomed, N.N.; Gandhi, R.; Jurisica, I.; et al. Identification of synovial fluid microRNA signature in knee osteoarthritis: Differentiating early- and late-stage knee osteoarthritis. Osteoarthr. Cartil. 2016, 24, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
  119. Wu, R.; Shen, D.; Sohun, H.; Ge, D.; Chen, X.; Wang, X.; Chen, R.; Wu, Y.; Zeng, J.; Rong, X.; et al. miR186, a serum microRNA, induces endothelial cell apoptosis by targeting SMAD6 in Kawasaki disease. Int. J. Mol. Med. 2018, 41, 1899–1908. [Google Scholar]
  120. Huang, T.; She, K.; Peng, G.; Wang, W.; Huang, J.; Li, J.; Wang, Z.; He, J. MicroRNA-186 suppresses cell proliferation and metastasis through targeting MAP3K2 in non-small cell lung cancer. Int. J. Oncol. 2016, 49, 1437–1444. [Google Scholar] [CrossRef]
  121. Hua, X.; Xiao, Y.; Pan, W.; Li, M.; Huang, X.; Liao, Z.; Xian, Q.; Yu, L. miR-186 inhibits cell proliferation of prostate cancer by targeting GOLPH3. Am. J. Cancer Res. 2016, 6, 1650–1660. [Google Scholar] [PubMed]
  122. Zhang, Z.L.; Bai, Z.H.; Wang, X.B.; Bai, L.; Miao, F.; Pei, H.H. miR-186 and 326 predict the prognosis of pancreatic ductal adenocarcinoma and affect the proliferation and migration of cancer cells. PLoS ONE 2015, 10, e0118814. [Google Scholar] [CrossRef]
  123. Myatt, S.S.; Wang, J.; Monteiro, L.J.; Christian, M.; Ho, K.K.; Fusi, L.; Dina, R.E.; Brosens, J.J.; Ghaem-Maghami, S.; Lam, E.W. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res. 2010, 70, 367–377. [Google Scholar] [CrossRef] [PubMed]
  124. Li, J.; Song, J.; Guo, F. miR-186 reverses cisplatin resistance and inhibits the formation of the glioblastoma-initiating cell phenotype by degrading Yin Yang 1 in glioblastoma. Int. J. Mol. Med. 2019, 43, 517–524. [Google Scholar] [CrossRef]
  125. Zhu, X.; Shen, H.; Yin, X.; Long, L.; Xie, C.; Liu, Y.; Hui, L.; Lin, X.; Fang, Y.; Cao, Y.; et al. miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin. Oncogene 2016, 35, 323–332. [Google Scholar] [CrossRef]
  126. Cui, G.; Cui, M.; Li, Y.; Liang, Y.; Li, W.; Guo, H.; Zhao, S. MiR-186 targets ROCK1 to suppress the growth and metastasis of NSCLC cells. Tumor Biol. 2014, 35, 8933–8937. [Google Scholar] [CrossRef]
  127. Shakeri, R.; Kheirollahi, A.; Davoodi, J. Apaf-1: Regulation and function in cell death. Biochimie 2017, 135, 111–125. [Google Scholar] [CrossRef] [PubMed]
  128. Kramer, N.J.; Wang, W.L.; Reyes, E.Y.; Kumar, B.; Chen, C.C.; Ramakrishna, C.; Cantin, E.M.; Vonderfecht, S.L.; Taganov, K.D.; Chau, N.; et al. Altered lymphopoiesis and immunodeficiency in miR-142 null mice. Blood 2015, 125, 3720–3730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  129. Chen, C.Z.; Li, L.; Lodish, H.F.; Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004, 303, 83–86. [Google Scholar] [CrossRef]
  130. Gao, J.; Wu, N.; Liu, X.; Xia, Y.; Chen, Y.; Li, S.; Deng, Z. MicroRNA-142-3p inhibits cell proliferation and chemoresistance in ovarian cancer via targeting sirtuin 1. Exp. Ther. Med. 2018, 15, 5205–5214. [Google Scholar] [CrossRef] [Green Version]
  131. Lou, K.; Chen, N.; Li, Z.; Zhang, B.; Wang, X.; Chen, Y.; Xu, H.; Wang, D.; Wang, H. MicroRNA-142-5p Overexpression Inhibits Cell Growth and Induces Apoptosis by Regulating FOXO in Hepatocellular Carcinoma Cells. Oncol. Res. 2017, 25, 65–73. [Google Scholar] [CrossRef] [PubMed]
  132. Colamaio, M.; Puca, F.; Ragozzino, E.; Gemei, M.; Decaussin-Petrucci, M.; Aiello, C.; Bastos, A.U.; Federico, A.; Chiappetta, G.; Del Vecchio, L.; et al. miR-142-3p down-regulation contributes to thyroid follicular tumorigenesis by targeting ASH1L and MLL1. J. Clin. Endocrinol. Metab. 2015, 100, E59–E69. [Google Scholar] [CrossRef] [PubMed]
  133. Jia, L.; Xi, Q.; Wang, H.; Zhang, Z.; Liu, H.; Cheng, Y.; Guo, X.; Zhang, J.; Zhang, Q.; Zhang, L.; et al. miR-142-5p regulates tumor cell PD-L1 expression and enhances anti-tumor immunity. Biochem. Biophys. Res. Commun. 2017, 488, 425–431. [Google Scholar] [CrossRef]
  134. Lv, M.; Zhang, X.; Jia, H.; Li, D.; Zhang, B.; Zhang, H.; Hong, M.; Jiang, T.; Jiang, Q.; Lu, J.; et al. An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-alpha and cAMP/PKA pathways. Leukemia 2012, 26, 769–777. [Google Scholar] [CrossRef]
  135. Liu, S.; Xiao, Z.; Ai, F.; Liu, F.; Chen, X.; Cao, K.; Ren, W.; Zhang, X.; Shu, P.; Zhang, D. miR-142-5p promotes development of colorectal cancer through targeting SDHB and facilitating generation of aerobic glycolysis. Biomed. Pharmacother. 2017, 92, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
  136. Liu, L.; Liu, S.; Duan, Q.; Chen, L.; Wu, T.; Qian, H.; Yang, S.; Xin, D.; He, Z.; Guo, Y. MicroRNA-142-5p promotes cell growth and migration in renal cell carcinoma by targeting BTG3. Am. J. Transl. Res. 2017, 9, 2394–2402. [Google Scholar]
  137. Zhu, X.; Ma, S.P.; Yang, D.; Liu, Y.; Wang, Y.P.; Lin, T.; Li, Y.X.; Yang, S.H.; Zhang, W.C.; Wang, X.L. miR-142-3p Suppresses Cell Growth by Targeting CDK4 in Colorectal Cancer. Cell. Physiol. Biochem. 2018, 51, 1969–1981. [Google Scholar] [CrossRef] [PubMed]
  138. Gao, X.; Xu, W.; Lu, T.; Zhou, J.; Ge, X.; Hua, D. MicroRNA-142-3p Promotes Cellular Invasion of Colorectal Cancer Cells by Activation of RAC1. Technol. Cancer Res. Treat. 2018, 17, 1533033818790508. [Google Scholar] [CrossRef] [PubMed]
  139. Sherwood, V.; Leigh, I.M. WNT Signaling in Cutaneous Squamous Cell Carcinoma. A Future Treatment Strategy? J. Investig. Dermatol. 2016, 136, 1760–1767. [Google Scholar] [CrossRef] [PubMed]
  140. Hua, K.; Jin, J.; Zhao, J.; Song, J.; Song, H.; Li, D.; Maskey, N.; Zhao, B.; Wu, C.; Xu, H.; et al. miR-135b, upregulated in breast cancer, promotes cell growth and disrupts the cell cycle by regulating LATS2. Int. J. Oncol. 2016, 48, 1997–2006. [Google Scholar] [CrossRef]
  141. Lin, C.W.; Chang, Y.L.; Chang, Y.C.; Lin, J.C.; Chen, C.C.; Pan, S.H.; Wu, C.T.; Chen, H.Y.; Yang, S.C.; Hong, T.M.; et al. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat. Commun. 2013, 4, 1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  142. Nagel, R.; le Sage, C.; Diosdado, B.; van der Waal, M.; Oude Vrielink, J.A.; Bolijn, A.; Meijer, G.A.; Agami, R. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res. 2008, 68, 5795–5802. [Google Scholar] [CrossRef]
  143. Liu, Z.; Zhang, G.; Li, J.; Liu, J.; Lv, P. The tumor-suppressive microRNA-135b targets c-myc in osteoscarcoma. PLoS ONE 2014, 9, e102621. [Google Scholar] [CrossRef] [PubMed]
  144. Wang, N.; Zhang, T. Downregulation of MicroRNA-135 Promotes Sensitivity of Non-Small Cell Lung Cancer to Gefitinib by Targeting TRIM16. Oncol. Res. 2018, 26, 1005–1014. [Google Scholar] [CrossRef]
  145. Zhou, J.; Chen, Q. Poor expression of microRNA-135b results in the inhibition of cisplatin resistance and proliferation and induces the apoptosis of gastric cancer cells through MST1-mediated MAPK signaling pathway. FASEB J. 2018, 33, 3420–3436. [Google Scholar] [CrossRef]
  146. Zhang, L.; Sun, Z.J.; Bian, Y.; Kulkarni, A.B. MicroRNA-135b acts as a tumor promoter by targeting the hypoxia-inducible factor pathway in genetically defined mouse model of head and neck squamous cell carcinoma. Cancer Lett. 2013, 331, 230–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  147. Xu, Y.; Zhao, S.; Cui, M.; Wang, Q. Down-regulation of microRNA-135b inhibited growth of cervical cancer cells by targeting FOXO1. Int. J. Clin. Exp. Pathol. 2015, 8, 10294–10304. [Google Scholar] [PubMed]
  148. Aakula, A.; Leivonen, S.K.; Hintsanen, P.; Aittokallio, T.; Ceder, Y.; Borresen-Dale, A.L.; Perala, M.; Ostling, P.; Kallioniemi, O. MicroRNA-135b regulates ERalpha, AR and HIF1AN and affects breast and prostate cancer cell growth. Mol. Oncol. 2015, 9, 1287–1300. [Google Scholar] [CrossRef]
  149. Vecchione, A.; Baldassarre, G.; Ishii, H.; Nicoloso, M.S.; Belletti, B.; Petrocca, F.; Zanesi, N.; Fong, L.Y.; Battista, S.; Guarnieri, D.; et al. Fez1/Lzts1 absence impairs Cdk1/Cdc25C interaction during mitosis and predisposes mice to cancer development. Cancer Cell 2007, 11, 275–289. [Google Scholar] [CrossRef]
  150. Chen, B.; Pan, W.; Lin, X.; Hu, Z.; Jin, Y.; Chen, H.; Ma, G.; Qiu, Y.; Chang, L.; Hua, C.; et al. MicroRNA-346 functions as an oncogene in cutaneous squamous cell carcinoma. Tumor Biol. 2016, 37, 2765–2771. [Google Scholar] [CrossRef]
  151. Sand, M.; Hessam, S.; Amur, S.; Skrygan, M.; Bromba, M.; Stockfleth, E.; Gambichler, T.; Bechara, F.G. Expression of oncogenic miR-17-92 and tumor suppressive miR-143-145 clusters in basal cell carcinoma and cutaneous squamous cell carcinoma. J. Dermatol. Sci. 2017, 86, 142–148. [Google Scholar] [CrossRef]
  152. Mizrahi, A.; Barzilai, A.; Gur-Wahnon, D.; Ben-Dov, I.Z.; Glassberg, S.; Meningher, T.; Elharar, E.; Masalha, M.; Jacob-Hirsch, J.; Tabibian-Keissar, H.; et al. Alterations of microRNAs throughout the malignant evolution of cutaneous squamous cell carcinoma: The role of miR-497 in epithelial to mesenchymal transition of keratinocytes. Oncogene 2018, 37, 218–230. [Google Scholar] [CrossRef]
  153. Agostini, M.; Knight, R.A. miR-34: From bench to bedside. Oncotarget 2014, 5, 872–881. [Google Scholar] [CrossRef] [PubMed]
  154. Rokavec, M.; Li, H.; Jiang, L.; Hermeking, H. The p53/miR-34 axis in development and disease. J. Mol. Cell Biol. 2014, 6, 214–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  155. Slabakova, E.; Culig, Z.; Remsik, J.; Soucek, K. Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis. 2017, 8, e3100. [Google Scholar] [CrossRef] [Green Version]
  156. Jia, G.; Su, L.; Singhal, S.; Liu, X. Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging. Mol. Cell. Biochem. 2012, 364, 345–350. [Google Scholar] [CrossRef] [PubMed]
  157. Bouchie A: First microRNA mimic enters clinic. Nat. Biotechnol. 2013, 31, 577. [CrossRef] [PubMed]
  158. Beg, M.S.; Brenner, A.J.; Sachdev, J.; Borad, M.; Kang, Y.K.; Stoudemire, J.; Smith, S.; Bader, A.G.; Kim, S.; Hong, D.S. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig. New Drugs 2017, 35, 180–188. [Google Scholar] [CrossRef] [PubMed]
  159. Sun, Y.M.; Lin, K.Y.; Chen, Y.Q. Diverse functions of miR-125 family in different cell contexts. J. Hematol. Oncol. 2013, 6, 6. [Google Scholar] [CrossRef]
  160. Zhong, L.; Sun, S.; Shi, J.; Cao, F.; Han, X.; Chen, Z. MicroRNA-125a-5p plays a role as a tumor suppressor in lung carcinoma cells by directly targeting STAT3. Tumor Biol. 2017, 39, 1010428317697579. [Google Scholar] [CrossRef]
  161. Zhang, X.; Ma, X.; An, H.; Xu, C.; Cao, W.; Yuan, W.; Ma, J. Upregulation of microRNA-125b by G-CSF promotes metastasis in colorectal cancer. Oncotarget 2017, 8, 50642–50654. [Google Scholar] [CrossRef] [Green Version]
  162. Ying, X.; Wei, K.; Lin, Z.; Cui, Y.; Ding, J.; Chen, Y.; Xu, B. MicroRNA-125b Suppresses Ovarian Cancer Progression via Suppression of the Epithelial-Mesenchymal Transition Pathway by Targeting the SET Protein. Cell. Physiol. Biochem. 2016, 39, 501–510. [Google Scholar] [CrossRef]
  163. Banzhaf-Strathmann, J.; Edbauer, D. Good guy or bad guy: The opposing roles of microRNA 125b in cancer. Cell Commun. Signal. 2014, 12, 30. [Google Scholar] [CrossRef] [PubMed]
  164. Ghorbani, S.; Talebi, F.; Chan, W.F.; Masoumi, F.; Vojgani, M.; Power, C.; Noorbakhsh, F. MicroRNA-181 Variants Regulate T Cell Phenotype in the Context of Autoimmune Neuroinflammation. Front. Immunol. 2017, 8, 758. [Google Scholar] [CrossRef]
  165. Shin, K.H.; Bae, S.D.; Hong, H.S.; Kim, R.H.; Kang, M.K.; Park, N.H. miR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras. Biochem. Biophys. Res. Commun. 2011, 404, 896–902. [Google Scholar] [CrossRef]
  166. Zhu, Y.; Wu, J.; Li, S.; Ma, R.; Cao, H.; Ji, M.; Jing, C.; Tang, J. The function role of miR-181a in chemosensitivity to adriamycin by targeting Bcl-2 in low-invasive breast cancer cells. Cell. Physiol. Biochem. 2013, 32, 1225–1237. [Google Scholar] [CrossRef] [PubMed]
  167. Mi, Y.; Zhang, D.; Jiang, W.; Weng, J.; Zhou, C.; Huang, K.; Tang, H.; Yu, Y.; Liu, X.; Cui, W.; et al. miR-181a-5p promotes the progression of gastric cancer via RASSF6-mediated MAPK signalling activation. Cancer Lett. 2017, 389, 11–22. [Google Scholar] [CrossRef]
  168. Verduci, L.; Azzalin, G.; Gioiosa, S.; Carissimi, C.; Laudadio, I.; Fulci, V.; Macino, G. microRNA-181a enhances cell proliferation in acute lymphoblastic leukemia by targeting EGR1. Leuk. Res. 2015, 39, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  169. Nabhan, M.; Louka, M.L.; Khairy, E.; Tash, F.; Ali-Labib, R.; El-Habashy, S. MicroRNA-181a and its target Smad 7 as potential biomarkers for tracking child acute lymphoblastic leukemia. Gene 2017, 628, 253–258. [Google Scholar] [CrossRef] [PubMed]
  170. Parikh, A.; Lee, C.; Joseph, P.; Marchini, S.; Baccarini, A.; Kolev, V.; Romualdi, C.; Fruscio, R.; Shah, H.; Wang, F.; et al. microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial-mesenchymal transition. Nat. Commun. 2014, 5, 2977. [Google Scholar] [CrossRef] [PubMed]
  171. Ji, D.; Qiao, M.; Yao, Y.; Li, M.; Chen, H.; Dong, Q.; Jia, J.; Cui, X.; Li, Z.; Xia, J.; et al. Serum-based microRNA signature predicts relapse and therapeutic outcome of adjuvant chemotherapy in colorectal cancer patients. EBioMedicine 2018, 35, 189–197. [Google Scholar] [CrossRef]
  172. Bao, J.L.; Lin, L. MiR-155 and miR-148a reduce cardiac injury by inhibiting NF-kappaB pathway during acute viral myocarditis. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2349–2356. [Google Scholar] [PubMed]
  173. Chen, Y.; Song, Y.X.; Wang, Z.N. The microRNA-148/152 family: Multi-faceted players. Mol. Cancer 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
  174. Cheng, L.; Zhu, Y.; Han, H.; Zhang, Q.; Cui, K.; Shen, H.; Zhang, J.; Yan, J.; Prochownik, E.; Li, Y. MicroRNA-148a deficiency promotes hepatic lipid metabolism and hepatocarcinogenesis in mice. Cell Death Dis. 2017, 8, e2916. [Google Scholar] [CrossRef] [PubMed]
  175. Liu, J.; Si, L.; Tian, H. MicroRNA-148a inhibits cell proliferation and cell cycle progression in lung adenocarcinoma via directly targeting transcription factor E2F3. Exp. Ther. Med. 2018, 16, 5400–5409. [Google Scholar] [CrossRef]
  176. Zhu, A.; Xia, J.; Zuo, J.; Jin, S.; Zhou, H.; Yao, L.; Huang, H.; Han, Z. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med. Oncol. 2012, 29, 2701–2709. [Google Scholar] [CrossRef]
  177. Lombard, A.P.; Mooso, B.A.; Libertini, S.J.; Lim, R.M.; Nakagawa, R.M.; Vidallo, K.D.; Costanzo, N.C.; Ghosh, P.M.; Mudryj, M. miR-148a dependent apoptosis of bladder cancer cells is mediated in part by the epigenetic modifier DNMT1. Mol. Carcinog. 2016, 55, 757–767. [Google Scholar] [CrossRef]
  178. Long, X.R.; He, Y.; Huang, C.; Li, J. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in hepatocellular carcinogenesis. Int. J. Oncol. 2014, 44, 1915–1922. [Google Scholar] [CrossRef]
  179. Heo, M.J.; Kim, Y.M.; Koo, J.H.; Yang, Y.M.; An, J.; Lee, S.K.; Lee, S.J.; Kim, K.M.; Park, J.W.; Kim, S.G. microRNA-148a dysregulation discriminates poor prognosis of hepatocellular carcinoma in association with USP4 overexpression. Oncotarget 2014, 5, 2792–2806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  180. Li, J.; Song, Y.; Wang, Y.; Luo, J.; Yu, W. MicroRNA-148a suppresses epithelial-to-mesenchymal transition by targeting ROCK1 in non-small cell lung cancer cells. Mol. Cell. Biochem. 2013, 380, 277–282. [Google Scholar] [CrossRef] [PubMed]
  181. Feng, H.; Wang, Y.; Su, J.; Liang, H.; Zhang, C.Y.; Chen, X.; Yao, W. MicroRNA-148a Suppresses the Proliferation and Migration of Pancreatic Cancer Cells by Down-regulating ErbB3. Pancreas 2016, 45, 1263–1271. [Google Scholar] [CrossRef]
  182. Zhang, H.; Li, Y.; Huang, Q.; Ren, X.; Hu, H.; Sheng, H.; Lai, M. MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Differ. 2011, 18, 1702–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  183. Min, A.; Zhu, C.; Peng, S.; Shuai, C.; Sun, L.; Han, Y.; Qian, Y.; Gao, S.; Su, T. Downregulation of Microrna-148a in Cancer-Associated Fibroblasts from Oral Cancer Promotes Cancer Cell Migration and Invasion by Targeting Wnt10b. J. Biochem. Mol. Toxicol. 2016, 30, 186–191. [Google Scholar] [CrossRef]
  184. Liffers, S.T.; Munding, J.B.; Vogt, M.; Kuhlmann, J.D.; Verdoodt, B.; Nambiar, S.; Maghnouj, A.; Mirmohammadsadegh, A.; Hahn, S.A.; Tannapfel, A. MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B. Lab. Investig. 2011, 91, 1472–1479. [Google Scholar] [CrossRef] [Green Version]
  185. Mogilyansky, E.; Rigoutsos, I. The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013, 20, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
  186. Yan, H.; Wu, J.; Liu, W.; Zuo, Y.; Chen, S.; Zhang, S.; Zeng, M.; Huang, W. MicroRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells. Hum. Gene Ther. 2010, 21, 1723–1734. [Google Scholar] [CrossRef]
  187. Chang, C.C.; Yang, Y.J.; Li, Y.J.; Chen, S.T.; Lin, B.R.; Wu, T.S.; Lin, S.K.; Kuo, M.Y.; Tan, C.T. MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma. Oral Oncol. 2013, 49, 923–931. [Google Scholar] [CrossRef] [PubMed]
  188. Liu, L.; He, J.; Wei, X.; Wan, G.; Lao, Y.; Xu, W.; Li, Z.; Hu, H.; Hu, Z.; Luo, X.; et al. MicroRNA-20a-mediated loss of autophagy contributes to breast tumorigenesis by promoting genomic damage and instability. Oncogene 2017, 36, 5874–5884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  189. Liao, C.; Chen, W.; Wang, J. MicroRNA-20a Regulates Glioma Cell Proliferation, Invasion, and Apoptosis by Targeting CUGBP Elav-Like Family Member 2. World Neurosurg. 2019, 121, e519–e527. [Google Scholar] [CrossRef]
  190. Zhou, Q.; Dong, J.; Luo, R.; Zhou, X.; Wang, J.; Chen, F. MicroRNA-20a regulates cell proliferation, apoptosis and autophagy by targeting thrombospondin 2 in cervical cancer. Eur. J. Pharmacol. 2019, 844, 102–109. [Google Scholar] [CrossRef]
  191. Bai, X.; Han, G.; Liu, Y.; Jiang, H.; He, Q. MiRNA-20a-5p promotes the growth of triple-negative breast cancer cells through targeting RUNX3. Biomed. Pharmacother. 2018, 103, 1482–1489. [Google Scholar] [CrossRef]
  192. Liu, X. Up-regulation of miR-20a by HPV16 E6 exerts growth-promoting effects by targeting PDCD6 in cervical carcinoma cells. Biomed. Pharmacother. 2018, 102, 996–1002. [Google Scholar] [CrossRef]
  193. Yu, Y.; Zhang, J.; Jin, Y.; Yang, Y.; Shi, J.; Chen, F.; Han, S.; Chu, P.; Lu, J.; Wang, H.; et al. MiR-20a-5p suppresses tumor proliferation by targeting autophagy-related gene 7 in neuroblastoma. Cancer Cell Int. 2018, 18, 5. [Google Scholar] [CrossRef] [Green Version]
  194. Zhao, S.; Yao, D.; Chen, J.; Ding, N.; Ren, F. MiR-20a promotes cervical cancer proliferation and metastasis in vitro and in vivo. PLoS ONE 2015, 10, e0120905. [Google Scholar] [CrossRef]
  195. McConnell, B.V.; Koto, K.; Gutierrez-Hartmann, A. Nuclear and cytoplasmic LIMK1 enhances human breast cancer progression. Mol. Cancer 2011, 10, 75. [Google Scholar] [CrossRef]
  196. Zhang, L.; Xiang, P.; Han, X.; Wu, L.; Li, X.; Xiong, Z. Decreased expression of microRNA-20a promotes tumor progression and predicts poor prognosis of cutaneous squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 11446–11451. [Google Scholar] [PubMed]
  197. Bo, J.; Yang, G.; Huo, K.; Jiang, H.; Zhang, L.; Liu, D.; Huang, Y. microRNA-203 suppresses bladder cancer development by repressing bcl-w expression. FEBS J. 2011, 278, 786–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  198. Chiang, Y.; Song, Y.; Wang, Z.; Chen, Y.; Yue, Z.; Xu, H.; Xing, C.; Liu, Z. Aberrant expression of miR-203 and its clinical significance in gastric and colorectal cancers. J. Gastrointest Surg. 2010, 15, 63–70. [Google Scholar] [CrossRef] [PubMed]
  199. Bian, K.; Fan, J.; Zhang, X.; Yang, X.W.; Zhu, H.Y.; Wang, L.; Sun, J.Y.; Meng, Y.L.; Cui, P.C.; Cheng, S.Y.; et al. MicroRNA-203 leads to G1 phase cell cycle arrest in laryngeal carcinoma cells by directly targeting survivin. FEBS Lett. 2012, 586, 804–809. [Google Scholar] [CrossRef] [Green Version]
  200. He, J.; Deng, Y.; Yang, G.; Xie, W. MicroRNA-203 down-regulation is associated with unfavorable prognosis in human glioma. J. Surg. Oncol. 2013, 108, 121–125. [Google Scholar] [CrossRef]
  201. Yu, X.; Jiang, X.; Li, H.; Guo, L.; Jiang, W.; Lu, S.H. miR-203 Inhibits the Proliferation and Self-Renewal of Esophageal Cancer Stem-Like Cells by Suppressing Stem Renewal Factor Bmi-1. Stem Cells Dev. 2013, 23, 576–585. [Google Scholar] [CrossRef]
  202. Yuan, Y.; Zeng, Z.Y.; Liu, X.H.; Gong, D.J.; Tao, J.; Cheng, H.Z.; Huang, S.D. MicroRNA-203 inhibits cell proliferation by repressing DeltaNp63 expression in human esophageal squamous cell carcinoma. BMC Cancer 2011, 11, 57. [Google Scholar] [CrossRef]
  203. Zhang, F.; Yang, Z.; Cao, M.; Xu, Y.; Li, J.; Chen, X.; Gao, Z.; Xin, J.; Zhou, S.; Zhou, Z.; et al. MiR-203 suppresses tumor growth and invasion and down-regulates MiR-21 expression through repressing Ran in esophageal cancer. Cancer Lett. 2013, 342, 121–129. [Google Scholar] [CrossRef] [PubMed]
  204. Zhu, X.; Er, K.; Mao, C.; Yan, Q.; Xu, H.; Zhang, Y.; Zhu, J.; Cui, F.; Zhao, W.; Shi, H. miR-203 suppresses tumor growth and angiogenesis by targeting VEGFA in cervical cancer. Cell. Physiol. Biochem. 2013, 32, 64–73. [Google Scholar] [CrossRef]
  205. Van Kempen, L.C.; van den Hurk, K.; Lazar, V.; Michiels, S.; Winnepenninckx, V.; Stas, M.; Spatz, A.; van den Oord, J.J. Loss of microRNA-200a and c, and microRNA-203 expression at the invasive front of primary cutaneous melanoma is associated with increased thickness and disease progression. Virchows Arch. 2012, 461, 441–448. [Google Scholar] [CrossRef]
  206. Sonkoly, E.; Wei, T.; Pavez Lorie, E.; Suzuki, H.; Kato, M.; Torma, H.; Stahle, M.; Pivarcsi, A. Protein kinase C-dependent upregulation of miR-203 induces the differentiation of human keratinocytes. J. Investig. Dermatol. 2010, 130, 124–134. [Google Scholar] [CrossRef] [PubMed]
  207. Melar-New, M.; Laimins, L.A. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J. Virol. 2010, 84, 5212–5221. [Google Scholar] [CrossRef] [PubMed]
  208. Ikenaga, N.; Ohuchida, K.; Mizumoto, K.; Yu, J.; Kayashima, T.; Sakai, H.; Fujita, H.; Nakata, K.; Tanaka, M. MicroRNA-203 expression as a new prognostic marker of pancreatic adenocarcinoma. Ann. Surg. Oncol. 2010, 17, 3120–3128. [Google Scholar] [CrossRef] [PubMed]
  209. Greither, T.; Grochola, L.F.; Udelnow, A.; Lautenschlager, C.; Wurl, P.; Taubert, H. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int. J. Cancer 2009, 126, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  210. Viticchie, G.; Lena, A.M.; Cianfarani, F.; Odorisio, T.; Annicchiarico-Petruzzelli, M.; Melino, G.; Candi, E. MicroRNA-203 contributes to skin re-epithelialization. Cell Death Dis. 2012, 3, e435. [Google Scholar] [CrossRef] [PubMed]
  211. Yi, R.; Poy, M.N.; Stoffel, M.; Fuchs, E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 2008, 452, 225–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  212. Chen, T.; Xu, C.; Chen, J.; Ding, C.; Xu, Z.; Li, C.; Zhao, J. MicroRNA-203 inhibits cellular proliferation and invasion by targeting Bmi1 in non-small cell lung cancer. Oncol. Lett. 2015, 9, 2639–2646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  213. Bu, P.; Yang, P. MicroRNA-203 inhibits malignant melanoma cell migration by targeting versican. Exp. Ther. Med. 2014, 8, 309–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  214. Lena, A.M.; Shalom-Feuerstein, R.; Rivetti di Val Cervo, P.; Aberdam, D.; Knight, R.A.; Melino, G.; Candi, E. miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ. 2008, 15, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
  215. Ying, Z.; Li, Y.; Wu, J.; Zhu, X.; Yang, Y.; Tian, H.; Li, W.; Hu, B.; Cheng, S.Y.; Li, M. Loss of miR-204 expression enhances glioma migration and stem cell-like phenotype. Cancer Res. 2013, 73, 990–999. [Google Scholar] [CrossRef] [PubMed]
  216. Li, P.; Wang, Q.; Wang, H. MicroRNA-204 inhibits the proliferation, migration and invasion of human lung cancer cells by targeting PCNA-1 and inhibits tumor growth in vivo. Int. J. Mol. Med. 2019, 43, 1149–1156. [Google Scholar] [CrossRef]
  217. Hong, B.S.; Ryu, H.S.; Kim, N.; Kim, J.; Lee, E.; Moon, H.; Kim, K.H.; Jin, M.S.; Kwon, N.H.; Kim, S.; et al. Tumor suppressor microRNA-204-5p regulates growth, metastasis, and immune microenvironment remodeling in breast cancer. Cancer Res. 2019. [Google Scholar] [CrossRef] [PubMed]
  218. Imam, J.S.; Plyler, J.R.; Bansal, H.; Prajapati, S.; Bansal, S.; Rebeles, J.; Chen, H.I.; Chang, Y.F.; Panneerdoss, S.; Zoghi, B.; et al. Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization. PLoS ONE 2012, 7, e52397. [Google Scholar] [CrossRef] [PubMed]
  219. Ding, M.; Lin, B.; Li, T.; Liu, Y.; Li, Y.; Zhou, X.; Miao, M.; Gu, J.; Pan, H.; Yang, F.; et al. A dual yet opposite growth-regulating function of miR-204 and its target XRN1 in prostate adenocarcinoma cells and neuroendocrine-like prostate cancer cells. Oncotarget 2015, 6, 7686–7700. [Google Scholar] [CrossRef] [Green Version]
  220. Li, T.; Pan, H.; Li, R. The dual regulatory role of miR-204 in cancer. Tumor Biol. 2016, 37, 11667–11677. [Google Scholar] [CrossRef] [Green Version]
  221. Suiqing, C.; Min, Z.; Lirong, C. Overexpression of phosphorylated-STAT3 correlated with the invasion and metastasis of cutaneous squamous cell carcinoma. J. Dermatol. 2005, 32, 354–360. [Google Scholar] [CrossRef] [PubMed]
  222. Hashemi Gheinani, A.; Burkhard, F.C.; Rehrauer, H.; Aquino Fournier, C.; Monastyrskaya, K. MicroRNA MiR-199a-5p regulates smooth muscle cell proliferation and morphology by targeting WNT2 signaling pathway. J. Biol. Chem. 2015, 290, 7067–7086. [Google Scholar] [CrossRef] [PubMed]
  223. Liu, X.; Duan, H.; Zhou, S.; Liu, Z.; Wu, D.; Zhao, T.; Xu, S.; Yang, L.; Li, D. microRNA-199a-3p functions as tumor suppressor by regulating glucose metabolism in testicular germ cell tumors. Mol. Med. Rep. 2016, 14, 2311–2320. [Google Scholar] [CrossRef]
  224. Yang, X.; Lei, S.; Long, J.; Liu, X.; Wu, Q. MicroRNA-199a-5p inhibits tumor proliferation in melanoma by mediating HIF-1alpha. Mol. Med. Rep. 2016, 13, 5241–5247. [Google Scholar] [CrossRef] [PubMed]
  225. Wang, C.; Ba, X.; Guo, Y.; Sun, D.; Jiang, H.; Li, W.; Huang, Z.; Zhou, G.; Wu, S.; Zhang, J.; et al. MicroRNA-199a-5p promotes tumour growth by dual-targeting PIAS3 and p27 in human osteosarcoma. Sci. Rep. 2017, 7, 41456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  226. Cui, Y.; Wu, F.; Tian, D.; Wang, T.; Lu, T.; Huang, X.; Zhang, P.; Qin, L. miR-199a-3p enhances cisplatin sensitivity of ovarian cancer cells by targeting ITGB8. Oncol. Rep. 2018, 39, 1649–1657. [Google Scholar] [CrossRef] [Green Version]
  227. Li, Q.; Xia, X.; Ji, J.; Ma, J.; Tao, L.; Mo, L.; Chen, W. MiR-199a-3p enhances cisplatin sensitivity of cholangiocarcinoma cells by inhibiting mTOR signaling pathway and expression of MDR1. Oncotarget 2017, 8, 33621–33630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  228. Gao, Y.; Feng, Y.; Shen, J.K.; Lin, M.; Choy, E.; Cote, G.M.; Harmon, D.C.; Mankin, H.J.; Hornicek, F.J.; Duan, Z. CD44 is a direct target of miR-199a-3p and contributes to aggressive progression in osteosarcoma. Sci. Rep. 2015, 5, 11365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  229. Zhu, Q.D.; Zhou, Q.Q.; Dong, L.; Huang, Z.; Wu, F.; Deng, X. MiR-199a-5p Inhibits the Growth and Metastasis of Colorectal Cancer Cells by Targeting ROCK1. Technol. Cancer Res. Treat. 2018, 17, 1533034618775509. [Google Scholar] [CrossRef] [PubMed]
  230. Martin, T.A.; Harrison, G.; Mansel, R.E.; Jiang, W.G. The role of the CD44/ezrin complex in cancer metastasis. Crit. Rev. Oncol. Hematol. 2003, 46, 165–186. [Google Scholar] [CrossRef]
  231. Chen, C.; Zhao, S.; Karnad, A.; Freeman, J.W. The biology and role of CD44 in cancer progression: Therapeutic implications. J. Hematol. Oncol. 2018, 11, 64. [Google Scholar] [CrossRef]
  232. Sun, Y.; Luo, Z.M.; Guo, X.M.; Su, D.F.; Liu, X. An updated role of microRNA-124 in central nervous system disorders: A review. Front. Cell. Neurosci. 2015, 9, 193. [Google Scholar] [CrossRef] [PubMed]
  233. Huang, J.; Liang, Y.; Xu, M.; Xiong, J.; Wang, D.; Ding, Q. MicroRNA-124 acts as a tumor-suppressive miRNA by inhibiting the expression of Snail2 in osteosarcoma. Oncol. Lett. 2018, 15, 4979–4987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  234. Li, S.L.; Gao, H.L.; Lv, X.K.; Hei, Y.R.; Li, P.Z.; Zhang, J.X.; Lu, N. MicroRNA-124 inhibits cell invasion and epithelial-mesenchymal transition by directly repressing Snail2 in gastric cancer. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 3389–3396. [Google Scholar] [PubMed]
  235. Lu, M.L.; Zhang, Y.; Li, J.; Fu, Y.; Li, W.H.; Zhao, G.F.; Li, X.H.; Wei, L.; Liu, G.B.; Huang, H. MicroRNA-124 inhibits colorectal cancer cell proliferation and suppresses tumor growth by interacting with PLCB1 and regulating Wnt/beta-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 121–136. [Google Scholar] [PubMed]
  236. Wang, J.R.; Liu, B.; Zhou, L.; Huang, Y.X. MicroRNA-124-3p suppresses cell migration and invasion by targeting ITGA3 signaling in bladder cancer. Cancer Biomark. 2018, 1–13. [Google Scholar] [CrossRef] [PubMed]
  237. Zhao, X.; Lu, C.; Chu, W.; Zhang, B.; Zhen, Q.; Wang, R.; Zhang, Y.; Li, Z.; Lv, B.; Li, H.; et al. MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT-GLUT1/HKII. Tumor Biol. 2017, 39, 1010428317706215. [Google Scholar] [CrossRef] [PubMed]
  238. Xu, X.; Li, S.; Lin, Y.; Chen, H.; Hu, Z.; Mao, Y.; Xu, X.; Wu, J.; Zhu, Y.; Zheng, X.; et al. MicroRNA-124-3p inhibits cell migration and invasion in bladder cancer cells by targeting ROCK1. J. Transl. Med. 2013, 11, 276. [Google Scholar] [CrossRef]
  239. Zhang, T.; Wang, J.; Zhai, X.; Li, H.; Li, C.; Chang, J. MiR-124 retards bladder cancer growth by directly targeting CDK4. Acta Biochim. Biophys. Sin. 2014, 46, 1072–1079. [Google Scholar] [CrossRef] [Green Version]
  240. Zhou, W.; He, L.; Dai, Y.; Zhang, Y.; Wang, J.; Liu, B. MicroRNA-124 inhibits cell proliferation, invasion and migration by targeting CAV1 in bladder cancer. Exp. Ther. Med. 2018, 16, 2811–2820. [Google Scholar] [CrossRef]
  241. Roskoski, R., Jr. Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacol. Res. 2019, 142, 151–168. [Google Scholar] [CrossRef]
  242. Shu, P.; Fu, H.; Zhao, X.; Wu, C.; Ruan, X.; Zeng, Y.; Liu, W.; Wang, M.; Hou, L.; Chen, P.; et al. MicroRNA-214 modulates neural progenitor cell differentiation by targeting Quaking during cerebral cortex development. Sci. Rep. 2017, 7, 8014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  243. Chandrasekaran, K.S.; Sathyanarayanan, A.; Karunagaran, D. MicroRNA-214 suppresses growth, migration and invasion through a novel target, high mobility group AT-hook 1, in human cervical and colorectal cancer cells. Br. J. Cancer 2016, 115, 741–751. [Google Scholar] [CrossRef] [Green Version]
  244. Chen, X.; Du, J.; Jiang, R.; Li, L. MicroRNA-214 inhibits the proliferation and invasion of lung carcinoma cells by targeting JAK1. Am. J. Transl. Res. 2018, 10, 1164–1171. [Google Scholar]
  245. Yang, Y.; Liu, Y.; Li, G.; Li, L.; Geng, P.; Song, H. microRNA-214 suppresses the growth of cervical cancer cells by targeting EZH2. Oncol. Lett. 2018, 16, 5679–5686. [Google Scholar] [CrossRef] [PubMed]
  246. Rehei, A.L.; Zhang, L.; Fu, Y.X.; Mu, W.B.; Yang, D.S.; Liu, Y.; Zhou, S.J.; Younusi, A. MicroRNA-214 functions as an oncogene in human osteosarcoma by targeting TRAF3. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5156–5164. [Google Scholar] [PubMed]
  247. Zhao, L.; Fan, W.; Fan, Y.; Gao, S. MicroRNA-214 promotes the proliferation, migration and invasion of gastric cancer MKN28 cells by suppressing the expression of Dact2. Exp. Ther. Med. 2018, 16, 4909–4917. [Google Scholar] [CrossRef]
  248. Penna, E.; Orso, F.; Taverna, D. miR-214 as a key hub that controls cancer networks: Small player, multiple functions. J. Investig Dermatol. 2015, 135, 960–969. [Google Scholar] [CrossRef]
  249. Shah, M.Y.; Ferrajoli, A.; Sood, A.K.; Lopez-Berestein, G.; Calin, G.A. microRNA Therapeutics in Cancer-An Emerging Concept. EBioMedicine 2016, 12, 34–42. [Google Scholar] [CrossRef] [PubMed]
  250. Dave, V.P.; Ngo, T.A.; Pernestig, A.K.; Tilevik, D.; Kant, K.; Nguyen, T.; Wolff, A.; Bang, D.D. MicroRNA amplification and detection technologies: Opportunities and challenges for point of care diagnostics. Lab. Investig. J. Tech. Methods Pathol. 2019, 99, 452–469. [Google Scholar] [CrossRef]
  251. Tian, T.; Wang, J.; Zhou, X. A review: microRNA detection methods. Org. Biomol. Chem. 2015, 13, 2226–2238. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Biogenesis of miRNAs.
Figure 1. Biogenesis of miRNAs.
Ijms 20 02181 g001
Figure 2. MiRNA dysregulation in cutaneous squamous cell carcinoma compared to normal skin.
Figure 2. MiRNA dysregulation in cutaneous squamous cell carcinoma compared to normal skin.
Ijms 20 02181 g002
Table 1. MicroRNAs (MiRNAs) implicated in cutaneous squamous cell carcinoma and their functions. Panel A (onco-miRNAs) and Panel B (tumor suppressor miRNAs).
Table 1. MicroRNAs (MiRNAs) implicated in cutaneous squamous cell carcinoma and their functions. Panel A (onco-miRNAs) and Panel B (tumor suppressor miRNAs).
Onco-miRNAs in CSCC
MiRNATarget GenesFunctionRef.
MicroRNA-21PTEN, PDCD4, GRHL3tumor growth, invasion, antiapoptotic[29,30]
MicroRNA-205ZEB, SHIP2cell proliferation, keratinocyte migration[31,32,33]
MicroRNA-365HOXA9cell proliferation, migration, invasion[34,35]
MicroRNA-31RhoBTB1migration, invasion[36,37]
MicroRNA-186APAF1cell proliferation, migration, invasion, antiapoptotic[38]
MicroRNA-142PTENCSCC progression, maintenance stem cell properties[39]
MicroRNA-135bLZTS1cell proliferation, migration, invasion[40]
Tumor suppressor miRNAs in CSCC
MiRNATarget genesFunctionRef
MicroRNA-34aHMGB1, SIRT6cell proliferation, migration, invasion[41,42]
MicroRNA-125bMMP13, MMP7, MAP2K7cell proliferation, migration, invasion, inflammation, angiogenesis[43]
MicroRNA-181aKRASsurvival[44]
MicroRNA-148aMAP3K4, MAP3K9metastasis[45]
MicroRNA-20aLIMK1cell proliferation, colony formation, migration, invasion, metastasis[46]
MicroRNA-203c-MYCmigration, angiogenesis, invasion[47]
MicroRNA-204SHP2CSCC progression[48]
MicroRNA-199aCD44, BCAM, FZD6, DDR1cell proliferation, migration, invasion, metastasis[49,50]
MicroRNA-124ERK2tumor progression[51]
MicroRNA-214ERK1, ERK2cell proliferation, differentiation, survival[51]

Share and Cite

MDPI and ACS Style

García-Sancha, N.; Corchado-Cobos, R.; Pérez-Losada, J.; Cañueto, J. MicroRNA Dysregulation in Cutaneous Squamous Cell Carcinoma. Int. J. Mol. Sci. 2019, 20, 2181. https://doi.org/10.3390/ijms20092181

AMA Style

García-Sancha N, Corchado-Cobos R, Pérez-Losada J, Cañueto J. MicroRNA Dysregulation in Cutaneous Squamous Cell Carcinoma. International Journal of Molecular Sciences. 2019; 20(9):2181. https://doi.org/10.3390/ijms20092181

Chicago/Turabian Style

García-Sancha, Natalia, Roberto Corchado-Cobos, Jesús Pérez-Losada, and Javier Cañueto. 2019. "MicroRNA Dysregulation in Cutaneous Squamous Cell Carcinoma" International Journal of Molecular Sciences 20, no. 9: 2181. https://doi.org/10.3390/ijms20092181

APA Style

García-Sancha, N., Corchado-Cobos, R., Pérez-Losada, J., & Cañueto, J. (2019). MicroRNA Dysregulation in Cutaneous Squamous Cell Carcinoma. International Journal of Molecular Sciences, 20(9), 2181. https://doi.org/10.3390/ijms20092181

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop