Magnetodielectric Response of Soft Magnetoactive Elastomers: Effects of Filler Concentration and Measurement Frequency
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
5. Conclusions
- Both the dielectric loss tangent and the permittivity grow with the applied magnetic field. The maximum observed magnetodielectric effect reaches 179% for the sample containing 75 mass% of carbonyl iron in magnetic field of 0.74 T, while the largest absolute increase of tanδ is realized for the MAE70 sample;
- The permittivity grows and the dielectric loss decreases with increasing magnetic filler concentration in any magnetic field;
- In a fixed magnetic field, both the dielectric loss tangent and the dielectric permittivity decrease with increasing current frequency between electrodes; the stronger the magnetic field, the larger the frequency variation;
- There is almost no dependence of ε′ and tanδ on the current frequency in the absence of the magnetic field; however, considerable frequency dependence is induced by an applied magnetic field. The MDE and the growth of tanδ with the magnetic field are enhanced with decreasing current frequency.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MAE | Magnetoactive elastomer |
MDE | Magnetodielectric effect |
References
- Bica, I.; Liu, Y.; Choi, H. Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer. Colloid Polym. Sci. 2012, 290, 1115–1122. [Google Scholar]
- Bica, I. Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles. Mater. Lett. 2009, 63, 2230–2232. [Google Scholar]
- Kchit, N.; Lancon, P.; Bossis, G. Thermoresistance and giant magnetoresistance of magnetorheological elastomers. J. Phys. D Appl. Phys. 2009, 42, 105506. [Google Scholar] [CrossRef]
- Stepanov, G.; Semerenko, D.; Bakhtiiarov, A.; Storozhenko, P. Magnetoresistive Effect in Magnetoactive Elastomers. J. Supercond. Nov. Magn. 2013, 26, 1055–1059. [Google Scholar] [CrossRef]
- Yu, M.; Ju, B.; Fu, J.; Liu, S.; Choi, S.B. Magnetoresistance Characteristics of Magnetorheological Gel under a Magnetic Field. Ind. Eng. Chem. Res. 2014, 53, 4704–4710. [Google Scholar] [CrossRef]
- Ausanio, G.; Iannotti, V.; Ricciardi, E.; Lanotte, L.; Lanotte, L. Magneto-piezoresistance in magnetorheological elastomers for magnetic induction gradient or position sensors. Sens. Actuat. A Phys. 2014, 205, 235–239. [Google Scholar] [CrossRef]
- Wang, Y.; Xuan, S.; Ge, L.; Wen, Q.; Gong, X. Conductive magnetorheological elastomer: Fatigue dependent impedance-mechanic coupling properties. Smart Mater. Struct. 2017, 26, 015004. [Google Scholar] [CrossRef]
- Schümann, M.; Morich, J.; Kaufhold, T.; Böhm, V.; Zimmermann, K.; Odenbach, S. A mechanical characterisation on multiple timescales of electroconductive magnetorheological elastomers. J. Magn. Magn. Mater. 2018, 453, 198–205. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighton, R.B.; Sands, M. Dielectrics. In The Feynman Lectures on Physics, 2nd ed.; New Millennium: Pasadena, CA, USA, 1965. [Google Scholar]
- Catalan, G. Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 2006, 88, 102902. [Google Scholar] [CrossRef] [Green Version]
- Moucka, R.; Sedlacik, M.; Cvek, M. Dielectric properties of magnetorheological elastomers with different microstructure. Appl. Phys. Lett. 2018, 112, 122901. [Google Scholar] [CrossRef]
- Semisalova, A.S.; Perov, N.S.; Stepanov, G.V.; Kramarenko, E.Y.; Khokhlov, A.R. Strong magnetodielectric effects in magnetorheological elastomers. Soft Matter. 2013, 9, 11318–11324. [Google Scholar] [CrossRef]
- Belyaeva, I.A.; Kramarenko, E.Y.; Shamonin, M. Magnetodielectric effect in magnetoactive elastomers: Transient response and hysteresis. Polymer 2017, 127, 119–128. [Google Scholar] [CrossRef]
- Lunkenheimer, P.; Krohns, S.; Riegg, S.; Ebbinghaus, S.G.; Reller, A.; Loidl, A. Colossal dielectric constants in transition-metal oxides. Eur. Phys. J. Spec. Top. 2009, 180, 61–89. [Google Scholar] [CrossRef] [Green Version]
- Psarras, G.C.; Manolakaki, E.; Tsangaris, G.M. Dielectric dispersion and ac conductivity in—Iron particles loaded—polymer composites. Composites Part A Appl. Sci. Manufact. 2003, 34, 1187–1198. [Google Scholar] [CrossRef]
- Tsai, P.S.; Nayak, S.; Ghosh, S.; Puri, I.K. Influence of particle arrangement on the permittivity of an elastomeric composite. AIP Adv. 2017, 7, 015003. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Steinmann, P. Modelling electro-active polymers with a dispersion-type anisotropy. Smart Mater. Struct. 2018, 27, 025010. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M. Modelling the curing process in particle-filled electro-active polymers with a dispersion anisotropy. Cont. Mech. Thermodyn. 2019, 1–17. [Google Scholar] [CrossRef]
- Cvek, M.; Moucka, R.; Sedlacik, M.; Babayan, V.; Pavlínek, V. Enhancement of radio-absorbing properties and thermal conductivity of polysiloxane-based magnetorheological elastomers by the alignment of filler particles. Smart Mater. Struct. 2017, 26, 095005. [Google Scholar] [CrossRef]
- Romeis, D.; Toshchevikov, V.; Saphiannikova, M. Elongated micro-structures in magneto-sensitive elastomers: A dipolar mean field model. Soft Matter 2016, 12, 9364–9376. [Google Scholar] [CrossRef]
- Isaev, D.; Semisalova, A.; Alekhina, Y.; Makarova, L.; Perov, N. Simulation of magnetodielectric effect in magnetorheological elastomers. Int. J. Mol. Sci. 2019, 20, 1457. [Google Scholar] [CrossRef]
- Schubert, D.W. Novel Theoretical Self-Consistent Mean-Field Approach to Describe the Conductivity of Carbon Fiber Filled Thermoplastics—PART I—Theory. Macromol. Theory Simul. 2018, 27, 1700104. [Google Scholar] [CrossRef]
- Shamonin, M.; Kramarenko, E.Y. Highly Responsive Magnetoactive Elastomers. In Novel Magnetic Nanostructures. Unique Properties and Applications, 1st ed.; Domracheva, N., Caporali, M., Rentschler, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 221–245. [Google Scholar]
- Stepanov, G.V.; Abramchuk, S.S.; Grishin, D.A.; Nikitin, L.V.; Kramarenko, E.Y.; Khokhlov, A.R. Effect of a Homogeneous Magnetic Field on the Viscoelastic Behavior of Magnetic Elastomers. Polymer 2007, 48, 488–495. [Google Scholar] [CrossRef]
- Mamunya, Y.; Muzychenko, V.V.; Pissis, P.; Lebedev, E.V.; Shut, M.I. Percolation phenomena in polymers containing dispersed iron. Polym. Eng. Sci. 2002, 42, 90–100. [Google Scholar] [CrossRef]
- Zois, H.; Apekis, L.; Mamunya, Y.P. Dielectric properties and morphology of polymer composites filled with dispersed iron. J. Appl. Polym. Sci. 2003, 88, 3013–3020. [Google Scholar] [CrossRef]
- Snarskii, A.; Bezsudnov, I.V.; Sevryukov, V.A.; Morozovskiy, A.; Malinsky, J. Transport Processes in Macroscopically Disordered Media. From Mean Field Theory to Percolation; Springer Verlag: New York, NY, USA, 2016. [Google Scholar]
- Sorokin, V.V.; Stepanov, G.V.; Shamonin, M.; Monkman, G.J.; Khokhlov, A.R.; Kramarenko, E.Y. Hysteresis of the viscoelastic properties and the normal force in magnetically and mechanically soft magnetoactive elastomers: Effects of filler composition, strain amplitude and magnetic field. Polymer 2015, 76, 191–202. [Google Scholar] [CrossRef]
- Bodnaruk, A.V.; Brunhuber, A.; Kalita, V.M.; Kulyk, M.M.; Kurzweil, P.; Snarskii, A.A.; Lozenko, A.F.; Ryabchenko, S.M.; Shamonin, M. Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity. Polymer 2019, 162, 63–72. [Google Scholar] [CrossRef]
- Molberg, M.; Leterrier, Y.; Plummer, C.J.; Walder, C.; Löwe, C.; Opris, D.M.; Nüesch, F.; Bauer, S.; Månson, J.A.E. Frequency dependent dielectric and mechanical behavior of elastomers for actuator applications. J. Appl. Phys. 2009, 106, 054112. [Google Scholar] [CrossRef] [Green Version]
- Choy, T.C. Effective Medium Theory: Principles and Application; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Stepanov, G.; Borin, D.Y.; Kramarenko, E.; Bogdanov, V.; Semerenko, D.; Storozhenko, P. Magnetoactive elastomer based on magnetically hard filler: Synthesis and study of viscoelastic and damping properties. Polym. Sci. Ser. A 2014, 56, 603. [Google Scholar] [CrossRef]
- Abramchuk, S.; Kramarenko, E.; Stepanov, G.; Nikitin, L.V.; Filipcsei, G.; Khokhlov, A.R.; Zrinyi, M. Novel highly elastic magnetic materials for dampers and seals: I. Preparation and characterization of the elastic materials. Polym. Adv. Technol. 2007, 18, 883–890. [Google Scholar] [CrossRef]
- Alekseeva, E.I.; Nanush’yan, S.R.; Ruskol, I.Y.; Sokolyuk, E.V. Silicone compounds and sealants and their application in various branches of industry. Polym. Sci. Ser. D 2010, 3, 244–248. [Google Scholar] [CrossRef]
- Chertovich, A.V.; Stepanov, G.V.; Kramarenko, E.Y.; Khokhlov, A.R. New composite elastomers with giant magnetic response. Macromol. Mater. Eng. 2010, 295, 336–341. [Google Scholar] [CrossRef]
- Snarskii, A.; Zorinets, D.; Shamonin, M.; Kalita, V. Theoretical method for calculation of effective properties of composite materials with reconfigurable microstructure: Electric and magnetic phenomena. arXiv 2019, arXiv:1903.11031. [Google Scholar]
Sample | MAE70 | MAE75 | MAE80 |
---|---|---|---|
Filler concentration c, mass% | 70 | 75 | 80 |
Shear modulus without magnetic field G′0, kPa | 28.0 | 29.6 | 33.8 |
Magnetorheological effect, (G′(B = 0.56T) − G′0)/G′0 | 33.1 | 31.9 | 17.2 |
Capacitance at f = 1 kHz, C0, pF | 26.7 | 28.3 | 34.4 |
Magnetodielectric effect (C(B = 0.56T) − C0)/C0 | 1.27 | 1.28 | 1.05 |
Test Frequency, f, kHz | Matrix | Filler | ||
---|---|---|---|---|
, Ωm | , Ωm | |||
1 | 2.4 | 2 × 108 | 69.825 | 6.27 × 105 |
10 | 2.4 | 2 × 107 | 39.27 | 3.14 × 105 |
200 | 2.4 | 1 × 106 | 22.085 | 6.27 × 104 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostrov, S.A.; Shamonin, M.; Stepanov, G.V.; Kramarenko, E.Y. Magnetodielectric Response of Soft Magnetoactive Elastomers: Effects of Filler Concentration and Measurement Frequency. Int. J. Mol. Sci. 2019, 20, 2230. https://doi.org/10.3390/ijms20092230
Kostrov SA, Shamonin M, Stepanov GV, Kramarenko EY. Magnetodielectric Response of Soft Magnetoactive Elastomers: Effects of Filler Concentration and Measurement Frequency. International Journal of Molecular Sciences. 2019; 20(9):2230. https://doi.org/10.3390/ijms20092230
Chicago/Turabian StyleKostrov, Sergei A., Mikhail Shamonin, Gennady V. Stepanov, and Elena Yu. Kramarenko. 2019. "Magnetodielectric Response of Soft Magnetoactive Elastomers: Effects of Filler Concentration and Measurement Frequency" International Journal of Molecular Sciences 20, no. 9: 2230. https://doi.org/10.3390/ijms20092230
APA StyleKostrov, S. A., Shamonin, M., Stepanov, G. V., & Kramarenko, E. Y. (2019). Magnetodielectric Response of Soft Magnetoactive Elastomers: Effects of Filler Concentration and Measurement Frequency. International Journal of Molecular Sciences, 20(9), 2230. https://doi.org/10.3390/ijms20092230