Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration
Abstract
:1. Introduction
2. LPS-Induced Inflammation in Models of Alzheimer’s Disease
2.1. Contribution of Central LPS Injection Models to Our Understanding AD Pathology
2.2. Systemic LPS Challenge Models Utilized to Understand AD Pathology
3. LPS-Induced Models of Parkinson’s Disease
3.1. Contribution of Central LPS Injection Models to the Elucidation of PD Pathology
3.2. Contribution of Systemic LPS Challenge Models to the Elucidation of PD Pathology
4. LPS Models to Understanding Inflammatory and Neuroinflammatory Aspects in Amyotrophic Lateral Sclerosis and Huntington’s Disease
4.1. Amyotrophic Lateral Sclerosis
4.2. Huntington’s Disease
5. LPS in Cell Culture Models
6. Final Considerations and Conclusions
Funding
Conflicts of Interest
References
- Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science 2016, 353, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Boonen, B.; Alpizar, Y.A.; Sanchez, A.; Lopez-Requena, A.; Voets, T.; Talavera, K. Differential effects of lipopolysaccharide on mouse sensory TRP channels. Cell Calcium 2018, 73, 72–81. [Google Scholar] [CrossRef]
- Alpizar, Y.A.; Boonen, B.; Sanchez, A.; Jung, C.; Lopez-Requena, A.; Naert, R.; Steelant, B.; Luyts, K.; Plata, C.; De Vooght, V.; et al. TRPV4 activation triggers protective responses to bacterial lipopolysaccharides in airway epithelial cells. Nat. Commun. 2017, 8, 1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meseguer, V.; Alpizar, Y.A.; Luis, E.; Tajada, S.; Denlinger, B.; Fajardo, O.; Manenschijn, J.A.; Fernandez-Pena, C.; Talavera, A.; Kichko, T.; et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun. 2014, 5, 3125. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.A.; McWhirter, S.M.; Faia, K.L.; Rowe, D.C.; Latz, E.; Golenbock, D.T.; Coyle, A.J.; Liao, S.M.; Maniatis, T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 2003, 4, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Ruckdeschel, K.; Pfaffinger, G.; Haase, R.; Sing, A.; Weighardt, H.; Hacker, G.; Holzmann, B.; Heesemann, J. Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J. Immunol. 2004, 173, 3320–3328. [Google Scholar] [PubMed]
- Zughaier, S.M.; Zimmer, S.M.; Datta, A.; Carlson, R.W.; Stephens, D.S. Differential induction of the toll-like receptor 4-MyD88-dependent and -independent signaling pathways by endotoxins. Infect. Immun. 2005, 73, 2940–2950. [Google Scholar] [PubMed]
- Gray, P.; Dagvadorj, J.; Michelsen, K.S.; Brikos, C.; Rentsendorj, A.; Town, T.; Crother, T.R.; Arditi, M. Myeloid differentiation factor-2 interacts with Lyn kinase and is tyrosine phosphorylated following lipopolysaccharide-induced activation of the TLR4 signaling pathway. J. Immunol. 2011, 187, 4331–4337. [Google Scholar] [CrossRef]
- Park, B.S.; Lee, J.O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 2013, 45, e66. [Google Scholar] [CrossRef]
- Acosta, C.; Davies, A. Bacterial lipopolysaccharide regulates nociceptin expression in sensory neurons. J. Neurosci. Res. 2008, 86, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Leow-Dyke, S.; Allen, C.; Denes, A.; Nilsson, O.; Maysami, S.; Bowie, A.G.; Rothwell, N.J.; Pinteaux, E. Neuronal Toll-like receptor 4 signaling induces brain endothelial activation and neutrophil transmigration in vitro. J. Neuroinflamm. 2012, 9, 230. [Google Scholar] [CrossRef] [PubMed]
- Chistyakov, D.V.; Azbukina, N.V.; Lopachev, A.V.; Kulichenkova, K.N.; Astakhova, A.A.; Sergeeva, M.G. Rosiglitazone as a Modulator of TLR4 and TLR3 Signaling Pathways in Rat Primary Neurons and Astrocytes. Int. J. Mol. Sci. 2018, 19, 113. [Google Scholar] [CrossRef] [PubMed]
- Rolls, A.; Shechter, R.; London, A.; Ziv, Y.; Ronen, A.; Levy, R.; Schwartz, M. Toll-like receptors modulate adult hippocampal neurogenesis. Nat. Cell Biol. 2007, 9, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Jahn, H. Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci. 2013, 15, 445–454. [Google Scholar] [PubMed]
- Nelson, P.T.; Alafuzoff, I.; Bigio, E.H.; Bouras, C.; Braak, H.; Cairns, N.J.; Castellani, R.J.; Crain, B.J.; Davies, P.; Del Tredici, K.; et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. J. Neuropathol. Exp. Neurol. 2012, 71, 362–381. [Google Scholar] [CrossRef] [PubMed]
- Small, S.A.; Schobel, S.A.; Buxton, R.B.; Witter, M.P.; Barnes, C.A. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat. Rev. Neurosci. 2011, 12, 585–601. [Google Scholar] [CrossRef] [Green Version]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Ittner, L.M.; Gotz, J. Amyloid-beta and tau--a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci. 2011, 12, 65–72. [Google Scholar] [CrossRef]
- Hauss-Wegrzyniak, B.; Dobrzanski, P.; Stoehr, J.D.; Wenk, G.L. Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res. 1998, 780, 294–303. [Google Scholar] [CrossRef]
- Min, S.S.; Quan, H.Y.; Ma, J.; Lee, K.H.; Back, S.K.; Na, H.S.; Han, S.H.; Yee, J.Y.; Kim, C.; Han, J.S.; et al. Impairment of long-term depression induced by chronic brain inflammation in rats. Biochem. Biophys. Res. Commun. 2009, 383, 93–97. [Google Scholar] [CrossRef]
- Wee Yong, V. Inflammation in neurological disorders: A help or a hindrance? Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2010, 16, 408–420. [Google Scholar] [CrossRef]
- Heppner, F.L.; Ransohoff, R.M.; Becher, B. Immune attack: The role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 2015, 16, 358–372. [Google Scholar] [CrossRef]
- Salter, M.W.; Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 2017, 23, 1018–1027. [Google Scholar] [CrossRef]
- Bauer, J.; Strauss, S.; Schreiter-Gasser, U.; Ganter, U.; Schlegel, P.; Witt, I.; Yolk, B.; Berger, M. Interleukin-6 and alpha-2-macroglobulin indicate an acute-phase state in Alzheimer’s disease cortices. FEBS Lett. 1991, 285, 111–114. [Google Scholar] [CrossRef]
- Mrak, R.E.; Sheng, J.G.; Griffin, W.S. Glial cytokines in Alzheimer’s disease: Review and pathogenic implications. Hum. Pathol. 1995, 26, 816–823. [Google Scholar] [CrossRef]
- Wyss-Coray, T.; Rogers, J. Inflammation in Alzheimer disease—A brief review of the basic science and clinical literature. Cold Spring Harb. Perspect. Med. 2012, 2, a006346. [Google Scholar] [CrossRef]
- Miklossy, J. Chronic inflammation and amyloidogenesis in Alzheimer’s disease—Role of Spirochetes. J. Alzheimer’s Dis. JAD 2008, 13, 381–391. [Google Scholar] [CrossRef]
- Sheng, J.G.; Bora, S.H.; Xu, G.; Borchelt, D.R.; Price, D.L.; Koliatsos, V.E. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol. Dis. 2003, 14, 133–145. [Google Scholar] [CrossRef]
- Zhan, X.; Stamova, B.; Jin, L.W.; DeCarli, C.; Phinney, B.; Sharp, F.R. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 2016, 87, 2324–2332. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Cong, L.; Jaber, V.; Lukiw, W.J. Microbiome-Derived Lipopolysaccharide Enriched in the Perinuclear Region of Alzheimer’s Disease Brain. Front. Immunol. 2017, 8, 1064. [Google Scholar] [CrossRef]
- Zhao, Y.; Jaber, V.; Lukiw, W.J. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer’s Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus. Front. Cell. Infect. Microbiol. 2017, 7, 318. [Google Scholar] [CrossRef]
- Zhao, Y.; Lukiw, W.J. Bacteroidetes Neurotoxins and Inflammatory Neurodegeneration. Mol. Neurobiol. 2018, 55, 9100–9107. [Google Scholar] [CrossRef]
- Zhan, X.; Stamova, B.; Sharp, F.R. Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer’s Disease Brain: A Review. Front. Aging Neurosci. 2018, 10, 42. [Google Scholar] [CrossRef]
- Zakaria, R.; Wan Yaacob, W.M.; Othman, Z.; Long, I.; Ahmad, A.H.; Al-Rahbi, B. Lipopolysaccharide-induced memory impairment in rats: A model of Alzheimer’s disease. Physiol. Res. 2017, 66, 553–565. [Google Scholar]
- Quan, N.; Sundar, S.K.; Weiss, J.M. Induction of interleukin-1 in various brain regions after peripheral and central injections of lipopolysaccharide. J. Neuroimmunol. 1994, 49, 125–134. [Google Scholar] [CrossRef]
- Minghetti, L.; Ajmone-Cat, M.A.; De Berardinis, M.A.; De Simone, R. Microglial activation in chronic neurodegenerative diseases: Roles of apoptotic neurons and chronic stimulation. Brain Res. Brain Res. Rev. 2005, 48, 251–256. [Google Scholar] [CrossRef]
- Lucin, K.M.; Wyss-Coray, T. Immune activation in brain aging and neurodegeneration: Too much or too little? Neuron 2009, 64, 110–122. [Google Scholar] [CrossRef]
- Fiebich, B.L.; Batista, C.R.A.; Saliba, S.W.; Yousif, N.M.; de Oliveira, A.C.P. Role of Microglia TLRs in Neurodegeneration. Front. Cell. Neurosci. 2018, 12, 329. [Google Scholar] [CrossRef]
- Ophir, G.; Meilin, S.; Efrati, M.; Chapman, J.; Karussis, D.; Roses, A.; Michaelson, D.M. Human apoE3 but not apoE4 rescues impaired astrocyte activation in apoE null mice. Neurobiol. Dis. 2003, 12, 56–64. [Google Scholar] [CrossRef]
- Herber, D.L.; Maloney, J.L.; Roth, L.M.; Freeman, M.J.; Morgan, D.; Gordon, M.N. Diverse microglial responses after intrahippocampal administration of lipopolysaccharide. Glia 2006, 53, 382–391. [Google Scholar] [CrossRef]
- Deng, X.; Li, M.; Ai, W.; He, L.; Lu, D.; Patrylo, P.R.; Cai, H.; Luo, X.; Li, Z.; Yan, X. Lipolysaccharide-Induced Neuroinflammation Is Associated with Alzheimer-Like Amyloidogenic Axonal Pathology and Dendritic Degeneration in Rats. Adv. Alzheimer’s Dis. 2014, 3, 78–93. [Google Scholar] [CrossRef]
- Philippens, I.H.; Ormel, P.R.; Baarends, G.; Johansson, M.; Remarque, E.J.; Doverskog, M. Acceleration of Amyloidosis by Inflammation in the Amyloid-Beta Marmoset Monkey Model of Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2017, 55, 101–113. [Google Scholar] [CrossRef]
- Mrdjen, D.; Pavlovic, A.; Hartmann, F.J.; Schreiner, B.; Utz, S.G.; Leung, B.P.; Lelios, I.; Heppner, F.L.; Kipnis, J.; Merkler, D.; et al. High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease. Immunity 2018, 48, 380–395.e6. [Google Scholar] [CrossRef]
- Lee, D.C.; Rizer, J.; Selenica, M.L.; Reid, P.; Kraft, C.; Johnson, A.; Blair, L.; Gordon, M.N.; Dickey, C.A.; Morgan, D. LPS-induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. J. Neuroinflamm. 2010, 7, 56. [Google Scholar] [CrossRef]
- Go, M.; Kou, J.; Lim, J.E.; Yang, J.; Fukuchi, K.I. Microglial response to LPS increases in wild-type mice during aging but diminishes in an Alzheimer’s mouse model: Implication of TLR4 signaling in disease progression. Biochem. Biophys. Res. Commun. 2016, 479, 331–337. [Google Scholar] [CrossRef]
- Herber, D.L.; Roth, L.M.; Wilson, D.; Wilson, N.; Mason, J.E.; Morgan, D.; Gordon, M.N. Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp. Neurol. 2004, 190, 245–253. [Google Scholar] [CrossRef]
- Herber, D.L.; Mercer, M.; Roth, L.M.; Symmonds, K.; Maloney, J.; Wilson, N.; Freeman, M.J.; Morgan, D.; Gordon, M.N. Microglial activation is required for Abeta clearance after intracranial injection of lipopolysaccharide in APP transgenic mice. J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol. 2007, 2, 222–231. [Google Scholar] [CrossRef]
- Malm, T.M.; Magga, J.; Kuh, G.F.; Vatanen, T.; Koistinaho, M.; Koistinaho, J. Minocycline reduces engraftment and activation of bone marrow-derived cells but sustains their phagocytic activity in a mouse model of Alzheimer’s disease. Glia 2008, 56, 1767–1779. [Google Scholar] [CrossRef]
- Perry, V.H. The influence of systemic inflammation on inflammation in the brain: Implications for chronic neurodegenerative disease. Brain Behav. Immun. 2004, 18, 407–413. [Google Scholar] [CrossRef]
- Lee, J.; Chan, S.L.; Mattson, M.P. Adverse effect of a presenilin-1 mutation in microglia results in enhanced nitric oxide and inflammatory cytokine responses to immune challenge in the brain. Neuromol. Med. 2002, 2, 29–45. [Google Scholar]
- Brugg, B.; Dubreuil, Y.L.; Huber, G.; Wollman, E.E.; Delhaye-Bouchaud, N.; Mariani, J. Inflammatory processes induce beta-amyloid precursor protein changes in mouse brain. Proc. Natl. Acad. Sci. USA 1995, 92, 3032–3035. [Google Scholar] [CrossRef]
- Sly, L.M.; Krzesicki, R.F.; Brashler, J.R.; Buhl, A.E.; McKinley, D.D.; Carter, D.B.; Chin, J.E. Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res. Bull. 2001, 56, 581–588. [Google Scholar] [CrossRef]
- Wang, L.M.; Wu, Q.; Kirk, R.A.; Horn, K.P.; Ebada Salem, A.H.; Hoffman, J.M.; Yap, J.T.; Sonnen, J.A.; Towner, R.A.; Bozza, F.A.; et al. Lipopolysaccharide endotoxemia induces amyloid-beta and p-tau formation in the rat brain. Am. J. Nucl. Med. Mol. Imaging 2018, 8, 86–99. [Google Scholar] [PubMed]
- Bossu, P.; Cutuli, D.; Palladino, I.; Caporali, P.; Angelucci, F.; Laricchiuta, D.; Gelfo, F.; De Bartolo, P.; Caltagirone, C.; Petrosini, L. A single intraperitoneal injection of endotoxin in rats induces long-lasting modifications in behavior and brain protein levels of TNF-alpha and IL-18. J. Neuroinflamm. 2012, 9, 101. [Google Scholar] [CrossRef]
- Katafuchi, T.; Ifuku, M.; Mawatari, S.; Noda, M.; Miake, K.; Sugiyama, M.; Fujino, T. Effects of plasmalogens on systemic lipopolysaccharide-induced glial activation and beta-amyloid accumulation in adult mice. Ann. N. Y. Acad. Sci. 2012, 1262, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Behairi, N.; Belkhelfa, M.; Rafa, H.; Labsi, M.; Deghbar, N.; Bouzid, N.; Mesbah-Amroun, H.; Touil-Boukoffa, C. All-trans retinoic acid (ATRA) prevents lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment in aged rats. J. Neuroimmunol. 2016, 300, 21–29. [Google Scholar] [CrossRef]
- Marottoli, F.M.; Katsumata, Y.; Koster, K.P.; Thomas, R.; Fardo, D.W.; Tai, L.M. Peripheral Inflammation, Apolipoprotein E4, and Amyloid-beta Interact to Induce Cognitive and Cerebrovascular Dysfunction. ASN Neuro 2017, 9, 1759091417719201. [Google Scholar] [CrossRef]
- McAlpine, F.E.; Lee, J.K.; Harms, A.S.; Ruhn, K.A.; Blurton-Jones, M.; Hong, J.; Das, P.; Golde, T.E.; LaFerla, F.M.; Oddo, S.; et al. Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol. Dis. 2009, 34, 163–177. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, Y.K.; Yuk, D.Y.; Choi, D.Y.; Ban, S.B.; Oh, K.W.; Hong, J.T. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J. Neuroinflamm. 2008, 5, 37. [Google Scholar] [CrossRef]
- Thygesen, C.; Ilkjaer, L.; Kempf, S.J.; Hemdrup, A.L.; von Linstow, C.U.; Babcock, A.A.; Darvesh, S.; Larsen, M.R.; Finsen, B. Diverse Protein Profiles in CNS Myeloid Cells and CNS Tissue From Lipopolysaccharide- and Vehicle-Injected APPSWE/PS1DeltaE9 Transgenic Mice Implicate Cathepsin Z in Alzheimer’s Disease. Front. Cell. Neurosci. 2018, 12, 397. [Google Scholar] [CrossRef]
- Gao, H.M.; Zhang, F.; Zhou, H.; Kam, W.; Wilson, B.; Hong, J.S. Neuroinflammation and alpha-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ. Health Perspect. 2011, 119, 807–814. [Google Scholar] [CrossRef]
- Hsiao, H.Y.; Chen, Y.C.; Chen, H.M.; Tu, P.H.; Chern, Y. A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington’s disease. Hum. Mol. Genet. 2013, 22, 1826–1842. [Google Scholar] [CrossRef]
- Turner, R.C.; Naser, Z.J.; Lucke-Wold, B.P.; Logsdon, A.F.; Vangilder, R.L.; Matsumoto, R.R.; Huber, J.D.; Rosen, C.L. Single low-dose lipopolysaccharide preconditioning: Neuroprotective against axonal injury and modulates glial cells. Neuroimmunol. Neuroinflamm. 2017, 4, 6–15. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Zhao, Y.R.; Zhou, J.L. Low dose of lipopolysaccharide pretreatment can alleviate the inflammatory response in wound infection mouse model. Chin. J. Traumatol. = Zhonghua Chuang Shang Za Zhi 2016, 19, 193–198. [Google Scholar] [CrossRef]
- Lee, S.W.; Park, H.J.; Im, W.; Kim, M.; Hong, S. Repeated immune activation with low-dose lipopolysaccharide attenuates the severity of Huntington’s disease in R6/2 transgenic mice. Anim. Cells Syst. 2018, 22, 219–226. [Google Scholar] [CrossRef]
- Cockerill, I.; Oliver, J.A.; Xu, H.; Fu, B.M.; Zhu, D. Blood-Brain Barrier Integrity and Clearance of Amyloid-beta from the BBB. Adv. Exp. Med. Biol. 2018, 1097, 261–278. [Google Scholar]
- Erickson, M.A.; Hansen, K.; Banks, W.A. Inflammation-induced dysfunction of the low-density lipoprotein receptor-related protein-1 at the blood-brain barrier: Protection by the antioxidant N-acetylcysteine. Brain Behav. Immun. 2012, 26, 1085–1094. [Google Scholar] [CrossRef] [Green Version]
- Kanekiyo, T.; Bu, G. The low-density lipoprotein receptor-related protein 1 and amyloid-beta clearance in Alzheimer’s disease. Front. Aging Neurosci. 2014, 6, 93. [Google Scholar] [CrossRef]
- Jaeger, L.B.; Dohgu, S.; Sultana, R.; Lynch, J.L.; Owen, J.B.; Erickson, M.A.; Shah, G.N.; Price, T.O.; Fleegal-Demotta, M.A.; Butterfield, D.A.; et al. Lipopolysaccharide alters the blood-brain barrier transport of amyloid beta protein: A mechanism for inflammation in the progression of Alzheimer’s disease. Brain Behav. Immun. 2009, 23, 507–517. [Google Scholar] [CrossRef]
- Erickson, M.A.; Hartvigson, P.E.; Morofuji, Y.; Owen, J.B.; Butterfield, D.A.; Banks, W.A. Lipopolysaccharide impairs amyloid beta efflux from brain: Altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood-brain barrier. J. Neuroinflamm. 2012, 9, 150. [Google Scholar] [CrossRef]
- Barton, S.M.; Janve, V.A.; McClure, R.; Anderson, A.; Matsubara, J.A.; Gore, J.C.; Pham, W. Lipopolysaccharide Induced Opening of the Blood Brain Barrier on Aging 5XFAD Mouse Model. J. Alzheimer’s Dis. JAD 2018. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, H.; Liu, N.; Wang, P.Q.; Guo, W.Z.; Fu, Q.; Jiao, L.B.; Ma, Y.Q.; Mi, W.D. TSPO ligand PK11195 alleviates neuroinflammation and beta-amyloid generation induced by systemic LPS administration. Brain Res. Bull. 2016, 121, 192–200. [Google Scholar] [CrossRef]
- Roe, A.D.; Staup, M.A.; Serrats, J.; Sawchenko, P.E.; Rissman, R.A. Lipopolysaccharide-induced tau phosphorylation and kinase activity--modulation, but not mediation, by corticotropin-releasing factor receptors. Eur. J. Neurosci. 2011, 34, 448–456. [Google Scholar] [CrossRef]
- Kitazawa, M.; Oddo, S.; Yamasaki, T.R.; Green, K.N.; LaFerla, F.M. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 8843–8853. [Google Scholar] [CrossRef]
- Maher, A.; El-Sayed, N.S.; Breitinger, H.G.; Gad, M.Z. Overexpression of NMDAR2B in an inflammatory model of Alzheimer’s disease: Modulation by NOS inhibitors. Brain Res. Bull. 2014, 109, 109–116. [Google Scholar] [CrossRef]
- Lykhmus, O.; Voytenko, L.; Koval, L.; Mykhalskiy, S.; Kholin, V.; Peschana, K.; Zouridakis, M.; Tzartos, S.; Komisarenko, S.; Skok, M. alpha7 Nicotinic acetylcholine receptor-specific antibody induces inflammation and amyloid beta42 accumulation in the mouse brain to impair memory. PLoS ONE 2015, 10, e0122706. [Google Scholar] [CrossRef]
- Lykhmus, O.; Mishra, N.; Koval, L.; Kalashnyk, O.; Gergalova, G.; Uspenska, K.; Komisarenko, S.; Soreq, H.; Skok, M. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain. Front. Mol. Neurosci. 2016, 9, 19. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Prim. 2017, 3, 17013. [Google Scholar] [CrossRef] [Green Version]
- Javoy-Agid, F.; Agid, Y. Is the mesocortical dopaminergic system involved in Parkinson disease? Neurology 1980, 30, 1326–1330. [Google Scholar] [CrossRef]
- Bugiani, O.; Perdelli, F.; Salvarani, S.; Leonardi, A.; Mancardi, G.L. Loss of striatal neurons in Parkinson’s disease: A cytometric study. Eur. Neurol. 1980, 19, 339–344. [Google Scholar] [CrossRef]
- Parkinson, J. An essay on the shaking palsy. J. Neuropsychiatry Clin. Neurosci. 2002, 14, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron 2003, 39, 889–909. [Google Scholar] [CrossRef]
- Cookson, M.R. alpha-Synuclein and neuronal cell death. Mol. Neurodegener. 2009, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, T.; Pei, Z.; Miller, D.S.; Wu, X.; Block, M.L.; Wilson, B.; Zhang, W.; Zhou, Y.; Hong, J.S.; et al. Aggregated alpha-synuclein activates microglia: A process leading to disease progression in Parkinson’s disease. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2005, 19, 533–542. [Google Scholar]
- McGeer, P.L.; Itagaki, S.; Boyes, B.E.; McGeer, E.G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988, 38, 1285–1291. [Google Scholar] [CrossRef]
- Yang, W.; Yu, S. Synucleinopathies: Common features and hippocampal manifestations. Cell. Mol. Life Sci. 2017, 74, 1485–1501. [Google Scholar] [CrossRef]
- Castano, A.; Herrera, A.J.; Cano, J.; Machado, A. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J. Neurochem. 1998, 70, 1584–1592. [Google Scholar] [CrossRef]
- Herrera, A.J.; Castano, A.; Venero, J.L.; Cano, J.; Machado, A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol. Dis. 2000, 7, 429–447. [Google Scholar] [CrossRef]
- Kim, W.G.; Mohney, R.P.; Wilson, B.; Jeohn, G.H.; Liu, B.; Hong, J.S. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: Role of microglia. J. Neurosci. Off. J. Soc. Neurosci. 2000, 20, 6309–6316. [Google Scholar] [CrossRef]
- Gao, H.M.; Jiang, J.; Wilson, B.; Zhang, W.; Hong, J.S.; Liu, B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: Relevance to Parkinson’s disease. J. Neurochem. 2002, 81, 1285–1297. [Google Scholar] [CrossRef]
- Iravani, M.M.; Leung, C.C.; Sadeghian, M.; Haddon, C.O.; Rose, S.; Jenner, P. The acute and the long-term effects of nigral lipopolysaccharide administration on dopaminergic dysfunction and glial cell activation. Eur. J. Neurosci. 2005, 22, 317–330. [Google Scholar] [CrossRef]
- Lu, X.; Bing, G.; Hagg, T. Naloxone prevents microglia-induced degeneration of dopaminergic substantia nigra neurons in adult rats. Neuroscience 2000, 97, 285–291. [Google Scholar] [CrossRef]
- Castano, A.; Herrera, A.J.; Cano, J.; Machado, A. The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J. Neurochem. 2002, 81, 150–157. [Google Scholar] [CrossRef]
- Mangano, E.N.; Hayley, S. Inflammatory priming of the substantia nigra influences the impact of later paraquat exposure: Neuroimmune sensitization of neurodegeneration. Neurobiol. Aging 2009, 30, 1361–1378. [Google Scholar] [CrossRef]
- Couch, Y.; Alvarez-Erviti, L.; Sibson, N.R.; Wood, M.J.; Anthony, D.C. The acute inflammatory response to intranigral alpha-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J. Neuroinflamm. 2011, 8, 166. [Google Scholar] [CrossRef]
- Burguillos, M.A.; Hajji, N.; Englund, E.; Persson, A.; Cenci, A.M.; Machado, A.; Cano, J.; Joseph, B.; Venero, J.L. Apoptosis-inducing factor mediates dopaminergic cell death in response to LPS-induced inflammatory stimulus: Evidence in Parkinson’s disease patients. Neurobiol. Dis. 2011, 41, 177–188. [Google Scholar] [CrossRef]
- Bardou, I.; Kaercher, R.M.; Brothers, H.M.; Hopp, S.C.; Royer, S.; Wenk, G.L. Age and duration of inflammatory environment differentially affect the neuroimmune response and catecholaminergic neurons in the midbrain and brainstem. Neurobiol. Aging 2014, 35, 1065–1073. [Google Scholar] [CrossRef]
- Flores-Martinez, Y.M.; Fernandez-Parrilla, M.A.; Ayala-Davila, J.; Reyes-Corona, D.; Blanco-Alvarez, V.M.; Soto-Rojas, L.O.; Luna-Herrera, C.; Gonzalez-Barrios, J.A.; Leon-Chavez, B.A.; Gutierrez-Castillo, M.E.; et al. Acute Neuroinflammatory Response in the Substantia Nigra Pars Compacta of Rats after a Local Injection of Lipopolysaccharide. J. Immunol. Res. 2018, 2018, 1838921. [Google Scholar] [CrossRef]
- Sharma, N.; Kapoor, M.; Nehru, B. Apocyanin, NADPH oxidase inhibitor prevents lipopolysaccharide induced alpha-synuclein aggregation and ameliorates motor function deficits in rats: Possible role of biochemical and inflammatory alterations. Behav. Brain Res. 2016, 296, 177–190. [Google Scholar] [CrossRef]
- Sharma, N.; Nehru, B. Apocyanin, a Microglial NADPH Oxidase Inhibitor Prevents Dopaminergic Neuronal Degeneration in Lipopolysaccharide-Induced Parkinson’s Disease Model. Mol. Neurobiol. 2016, 53, 3326–3337. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, S.; Nehru, B. Curcumin protects dopaminergic neurons against inflammation-mediated damage and improves motor dysfunction induced by single intranigral lipopolysaccharide injection. Inflammopharmacology 2017, 25, 351–368. [Google Scholar] [CrossRef]
- Gu, C.; Hu, Q.; Wu, J.; Mu, C.; Ren, H.; Liu, C.F.; Wang, G. P7C3 Inhibits LPS-Induced Microglial Activation to Protect Dopaminergic Neurons Against Inflammatory Factor-Induced Cell Death in vitro and in vivo. Front. Cell. Neurosci. 2018, 12, 400. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, D.; Liu, Y.; Li, J.; Yang, L.; Shang, X. Glaucocalyxin B Alleviates Lipopolysaccharide-Induced Parkinson’s Disease by Inhibiting TLR/NF-kappaB and Activating Nrf2/HO-1 Pathway. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2017, 44, 2091–2104. [Google Scholar] [CrossRef]
- Moon, H.E.; Paek, S.H. Mitochondrial Dysfunction in Parkinson’s Disease. Exp. Neurobiol. 2015, 24, 103–116. [Google Scholar] [CrossRef]
- Park, J.S.; Davis, R.L.; Sue, C.M. Mitochondrial Dysfunction in Parkinson’s Disease: New Mechanistic Insights and Therapeutic Perspectives. Curr. Neurol. Neurosci. Rep. 2018, 18, 21. [Google Scholar] [CrossRef] [Green Version]
- Hunter, R.; Ojha, U.; Bhurtel, S.; Bing, G.; Choi, D.Y. Lipopolysaccharide-induced functional and structural injury of the mitochondria in the nigrostriatal pathway. Neurosci. Res. 2017, 114, 62–69. [Google Scholar] [CrossRef]
- Hunter, R.L.; Choi, D.Y.; Ross, S.A.; Bing, G. Protective properties afforded by pioglitazone against intrastriatal LPS in Sprague-Dawley rats. Neurosci. Lett. 2008, 432, 198–201. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.Y.; Liu, M.; Hunter, R.L.; Cass, W.A.; Pandya, J.D.; Sullivan, P.G.; Shin, E.J.; Kim, H.C.; Gash, D.M.; Bing, G. Striatal neuroinflammation promotes Parkinsonism in rats. PLoS ONE 2009, 4, e5482. [Google Scholar] [CrossRef]
- Ruano, D.; Revilla, E.; Gavilan, M.P.; Vizuete, M.L.; Pintado, C.; Vitorica, J.; Castano, A. Role of p38 and inducible nitric oxide synthase in the in vivo dopaminergic cells’ degeneration induced by inflammatory processes after lipopolysaccharide injection. Neuroscience 2006, 140, 1157–1168. [Google Scholar] [CrossRef]
- Iravani, M.M.; Kashefi, K.; Mander, P.; Rose, S.; Jenner, P. Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience 2002, 110, 49–58. [Google Scholar] [CrossRef]
- Hunter, R.L.; Cheng, B.; Choi, D.Y.; Liu, M.; Liu, S.; Cass, W.A.; Bing, G. Intrastriatal lipopolysaccharide injection induces parkinsonism in C57/B6 mice. J. Neurosci. Res. 2009, 87, 1913–1921. [Google Scholar] [CrossRef]
- Hunter, R.L.; Dragicevic, N.; Seifert, K.; Choi, D.Y.; Liu, M.; Kim, H.C.; Cass, W.A.; Sullivan, P.G.; Bing, G. Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J. Neurochem. 2007, 100, 1375–1386. [Google Scholar] [CrossRef]
- Zhang, J.; Stanton, D.M.; Nguyen, X.V.; Liu, M.; Zhang, Z.; Gash, D.; Bing, G. Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience 2005, 135, 829–838. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, K.; Du, X.; Li, Y. Neuroprotection of desferrioxamine in lipopolysaccharide-induced nigrostriatal dopamine neuron degeneration. Mol. Med. Rep. 2012, 5, 562–566. [Google Scholar] [CrossRef]
- Kim, C.Y.; Alcalay, R.N. Genetic Forms of Parkinson’s Disease. Semin. Neurol. 2017, 37, 135–146. [Google Scholar] [CrossRef]
- Sai, Y.; Zou, Z.; Peng, K.; Dong, Z. The Parkinson’s disease-related genes act in mitochondrial homeostasis. Neurosci. Biobehav. Rev. 2012, 36, 2034–2043. [Google Scholar] [CrossRef]
- International Parkinson Disease Genomics Consortium; Nalls, M.A.; Plagnol, V.; Hernandez, D.G.; Sharma, M.; Sheerin, U.M.; Saad, M.; Simon-Sanchez, J.; Schulte, C.; Lesage, S.; et al. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet 2011, 377, 641–649. [Google Scholar]
- Mata, I.F.; Checkoway, H.; Hutter, C.M.; Samii, A.; Roberts, J.W.; Kim, H.M.; Agarwal, P.; Alvarez, V.; Ribacoba, R.; Pastor, P.; et al. Common variation in the LRRK2 gene is a risk factor for Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2012, 27, 1822–1825. [Google Scholar] [CrossRef]
- Moehle, M.S.; Webber, P.J.; Tse, T.; Sukar, N.; Standaert, D.G.; DeSilva, T.M.; Cowell, R.M.; West, A.B. LRRK2 inhibition attenuates microglial inflammatory responses. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 1602–1611. [Google Scholar] [CrossRef]
- Daher, J.P.; Volpicelli-Daley, L.A.; Blackburn, J.P.; Moehle, M.S.; West, A.B. Abrogation of alpha-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proc. Natl. Acad. Sci. USA 2014, 111, 9289–9294. [Google Scholar] [CrossRef]
- Ma, B.; Xu, L.; Pan, X.; Sun, L.; Ding, J.; Xie, C.; Koliatsos, V.E.; Cai, H. LRRK2 modulates microglial activity through regulation of chemokine (C-X3-C) receptor 1 -mediated signalling pathways. Hum. Mol. Genet. 2016, 25, 3515–3523. [Google Scholar] [CrossRef]
- Van Duijn, C.M.; Dekker, M.C.; Bonifati, V.; Galjaard, R.J.; Houwing-Duistermaat, J.J.; Snijders, P.J.; Testers, L.; Breedveld, G.J.; Horstink, M.; Sandkuijl, L.A.; et al. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am. J. Hum. Genet. 2001, 69, 629–634. [Google Scholar] [CrossRef]
- Bonifati, V.; Rizzu, P.; van Baren, M.J.; Schaap, O.; Breedveld, G.J.; Krieger, E.; Dekker, M.C.; Squitieri, F.; Ibanez, P.; Joosse, M.; et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003, 299, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.H.; Lee, M.J.; Liou, H.C.; Liou, H.H.; Fu, W.M. Microglia-Derived Cytokines/Chemokines Are Involved in the Enhancement of LPS-Induced Loss of Nigrostriatal Dopaminergic Neurons in DJ-1 Knockout Mice. PLoS ONE 2016, 11, e0151569. [Google Scholar] [CrossRef] [PubMed]
- Skelly, D.T.; Hennessy, E.; Dansereau, M.A.; Cunningham, C. A systematic analysis of the peripheral and CNS effects of systemic LPS, IL-1beta, [corrected] TNF-alpha and IL-6 challenges in C57BL/6 mice. PLoS ONE 2013, 8, e69123. [Google Scholar] [CrossRef]
- Cazareth, J.; Guyon, A.; Heurteaux, C.; Chabry, J.; Petit-Paitel, A. Molecular and cellular neuroinflammatory status of mouse brain after systemic lipopolysaccharide challenge: Importance of CCR2/CCL2 signaling. J. Neuroinflamm. 2014, 11, 132. [Google Scholar] [CrossRef]
- Qin, L.; Wu, X.; Block, M.L.; Liu, Y.; Breese, G.R.; Hong, J.S.; Knapp, D.J.; Crews, F.T. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007, 55, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Beier, E.E.; Neal, M.; Alam, G.; Edler, M.; Wu, L.J.; Richardson, J.R. Alternative microglial activation is associated with cessation of progressive dopamine neuron loss in mice systemically administered lipopolysaccharide. Neurobiol. Dis. 2017, 108, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qin, L.; Wilson, B.; Wu, X.; Qian, L.; Granholm, A.C.; Crews, F.T.; Hong, J.S. Endotoxin induces a delayed loss of TH-IR neurons in substantia nigra and motor behavioral deficits. Neurotoxicology 2008, 29, 864–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jangula, A.; Murphy, E.J. Lipopolysaccharide-induced blood brain barrier permeability is enhanced by alpha-synuclein expression. Neurosci. Lett. 2013, 551, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.F.; Yang, Y.P.; Hu, L.F.; Wang, M.X.; Wang, F.; Cao, L.D.; Li, D.; Mao, C.J.; Xiong, K.P.; Wang, J.D.; et al. Autophagic impairment contributes to systemic inflammation-induced dopaminergic neuron loss in the midbrain. PLoS ONE 2013, 8, e70472. [Google Scholar] [CrossRef] [PubMed]
- Czapski, G.A.; Cakala, M.; Chalimoniuk, M.; Gajkowska, B.; Strosznajder, J.B. Role of nitric oxide in the brain during lipopolysaccharide-evoked systemic inflammation. J. Neurosci. Res. 2007, 85, 1694–1703. [Google Scholar] [CrossRef]
- Qin, L.; Liu, Y.; Hong, J.S.; Crews, F.T. NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 2013, 61, 855–868. [Google Scholar] [CrossRef] [PubMed]
- L’Episcopo, F.; Tirolo, C.; Testa, N.; Caniglia, S.; Morale, M.C.; Impagnatiello, F.; Marchetti, B. Switching the microglial harmful phenotype promotes lifelong restoration of subtantia nigra dopaminergic neurons from inflammatory neurodegeneration in aged mice. Rejuvenation Res. 2011, 14, 411–424. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Qiong, Z.; Zhang, J.F.; Lou, Z.Y.; Zu, H.B.; Wang, Z.G.; Zeng, W.C.; Kai, Y.; Xiao, B.G. The Synergy of Aging and LPS Exposure in a Mouse Model of Parkinson’s Disease. Aging Dis. 2018, 9, 785–797. [Google Scholar] [CrossRef]
- Hudson, A.J. Amyotrophic lateral sclerosis and its association with dementia, parkinsonism and other neurological disorders: A review. Brain J. Neurol. 1981, 104, 217–247. [Google Scholar] [CrossRef]
- Charles, T.; Swash, M. Amyotrophic lateral sclerosis: Current understanding. J. Neurosci. Nurs. J. Am. Assoc. Neurosci. Nurses 2001, 33, 245–253. [Google Scholar] [CrossRef]
- Leigh, P.N.; Whitwell, H.; Garofalo, O.; Buller, J.; Swash, M.; Martin, J.E.; Gallo, J.M.; Weller, R.O.; Anderton, B.H. Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain J. Neurol. 1991, 114 Pt 2, 775–788. [Google Scholar] [CrossRef]
- Alexianu, M.E.; Kozovska, M.; Appel, S.H. Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 2001, 57, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Graves, M.C.; Fiala, M.; Dinglasan, L.A.; Liu, N.Q.; Sayre, J.; Chiappelli, F.; van Kooten, C.; Vinters, H.V. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2004, 5, 213–219. [Google Scholar] [CrossRef]
- Gurney, M.E.; Pu, H.; Chiu, A.Y.; Dal Canto, M.C.; Polchow, C.Y.; Alexander, D.D.; Caliendo, J.; Hentati, A.; Kwon, Y.W.; Deng, H.X.; et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994, 264, 1772–1775. [Google Scholar] [CrossRef] [PubMed]
- Valente, T.; Straccia, M.; Gresa-Arribas, N.; Dentesano, G.; Tusell, J.M.; Serratosa, J.; Mancera, P.; Sola, C.; Saura, J. CCAAT/enhancer binding protein delta regulates glial proinflammatory gene expression. Neurobiol. Aging 2013, 34, 2110–2124. [Google Scholar] [CrossRef] [PubMed]
- Ohgomori, T.; Yamada, J.; Takeuchi, H.; Kadomatsu, K.; Jinno, S. Comparative morphometric analysis of microglia in the spinal cord of SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis. Eur. J. Neurosci. 2016, 43, 1340–1351. [Google Scholar] [CrossRef]
- Byrne, S.; Walsh, C.; Lynch, C.; Bede, P.; Elamin, M.; Kenna, K.; McLaughlin, R.; Hardiman, O. Rate of familial amyotrophic lateral sclerosis: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2011, 82, 623–627. [Google Scholar] [CrossRef]
- Correia, A.S.; Patel, P.; Dutta, K.; Julien, J.P. Inflammation Induces TDP-43 Mislocalization and Aggregation. PLoS ONE 2015, 10, e0140248. [Google Scholar] [CrossRef] [PubMed]
- Lyon, M.S.; Wosiski-Kuhn, M.; Gillespie, R.; Caress, J.; Milligan, C. Inflammation, Immunity, and amyotrophic lateral sclerosis: I. Etiology and pathology. Muscle Nerve 2019, 59, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, F. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms and Therapeutic Implications. Front. Immunol. 2017, 8, 1005. [Google Scholar] [CrossRef]
- Huang, W.J.; Chen, W.W.; Zhang, X. Huntington’s disease: Molecular basis of pathology and status of current therapeutic approaches. Exp. Ther. Med. 2016, 12, 1951–1956. [Google Scholar] [CrossRef]
- Folstein, S.E. The psychopathology of Huntington’s disease. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 1991, 69, 181–191. [Google Scholar] [CrossRef]
- MacDonald, M.E.; Ambrose, C.M.; Duyao, M.P.; Myers, R.H.; Lin, C.; Srinidhi, L.; Barnes, G.; Taylor, S.A.; James, M.; Groot, N.; et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993, 72, 971–983. [Google Scholar] [CrossRef]
- Labbadia, J.; Morimoto, R.I. Huntington’s disease: Underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci. 2013, 38, 378–385. [Google Scholar] [CrossRef]
- Gunawardena, S.; Goldstein, L.S. Polyglutamine diseases and transport problems: Deadly traffic jams on neuronal highways. Arch. Neurol. 2005, 62, 46–51. [Google Scholar] [CrossRef]
- Li, S.H.; Li, X.J. Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet. TIG 2004, 20, 146–154. [Google Scholar] [CrossRef]
- Sugars, K.L.; Rubinsztein, D.C. Transcriptional abnormalities in Huntington disease. Trends Genet. TIG 2003, 19, 233–238. [Google Scholar] [CrossRef]
- Silvestroni, A.; Faull, R.L.; Strand, A.D.; Moller, T. Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. Neuroreport 2009, 20, 1098–1103. [Google Scholar] [CrossRef]
- Bjorkqvist, M.; Wild, E.J.; Thiele, J.; Silvestroni, A.; Andre, R.; Lahiri, N.; Raibon, E.; Lee, R.V.; Benn, C.L.; Soulet, D.; et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J. Exp. Med. 2008, 205, 1869–1877. [Google Scholar] [CrossRef]
- Dalrymple, A.; Wild, E.J.; Joubert, R.; Sathasivam, K.; Bjorkqvist, M.; Petersen, A.; Jackson, G.S.; Isaacs, J.D.; Kristiansen, M.; Bates, G.P.; et al. Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates. J. Proteome Res. 2007, 6, 2833–2840. [Google Scholar] [CrossRef]
- Bouchard, J.; Truong, J.; Bouchard, K.; Dunkelberger, D.; Desrayaud, S.; Moussaoui, S.; Tabrizi, S.J.; Stella, N.; Muchowski, P.J. Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 18259–18268. [Google Scholar] [CrossRef]
- Franciosi, S.; Ryu, J.K.; Shim, Y.; Hill, A.; Connolly, C.; Hayden, M.R.; McLarnon, J.G.; Leavitt, B.R. Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease. Neurobiol. Dis. 2012, 45, 438–449. [Google Scholar] [CrossRef]
- Renoir, T.; Pang, T.Y.; Shikano, Y.; Li, S.; Hannan, A.J. Loss of the Sexually Dimorphic Neuro-Inflammatory Response in a Transgenic Mouse Model of Huntington’s Disease. J. Huntington’s Dis. 2015, 4, 297–303. [Google Scholar] [CrossRef]
- Kempuraj, D.; Thangavel, R.; Natteru, P.A.; Selvakumar, G.P.; Saeed, D.; Zahoor, H.; Zaheer, S.; Iyer, S.S.; Zaheer, A. Neuroinflammation Induces Neurodegeneration. J. Neurol. Neurosurg. Spine 2016, 1, 1003. [Google Scholar]
- Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell 2010, 140, 918–934. [Google Scholar] [CrossRef]
- Liu, M.; Bing, G. Lipopolysaccharide animal models for Parkinson’s disease. Parkinson’s Dis. 2011, 2011, 327089. [Google Scholar] [CrossRef]
- Okun, E.; Griffioen, K.J.; Lathia, J.D.; Tang, S.C.; Mattson, M.P.; Arumugam, T.V. Toll-like receptors in neurodegeneration. Brain Res. Rev. 2009, 59, 278–292. [Google Scholar] [CrossRef]
- Schmalz, G.; Krifka, S.; Schweikl, H. Toll-like receptors, LPS, and dental monomers. Adv. Dent. Res. 2011, 23, 302–306. [Google Scholar] [CrossRef]
- Madera-Salcedo, I.K.; Cruz, S.L.; Gonzalez-Espinosa, C. Morphine prevents lipopolysaccharide-induced TNF secretion in mast cells blocking IkappaB kinase activation and SNAP-23 phosphorylation: Correlation with the formation of a beta-arrestin/TRAF6 complex. J. Immunol. 2013, 191, 3400–3409. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, S. Toll-like receptors and inflammation in the CNS. Curr. Drug Targets Inflamm. Allergy 2002, 1, 181–191. [Google Scholar]
- Tak, P.P.; Firestein, G.S. NF-kappaB: A key role in inflammatory diseases. J. Clin. Investig. 2001, 107, 7–11. [Google Scholar] [CrossRef]
- Bachstetter, A.D.; Xing, B.; de Almeida, L.; Dimayuga, E.R.; Watterson, D.M.; Van Eldik, L.J. Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Abeta). J. Neuroinflamm. 2011, 8, 79. [Google Scholar] [CrossRef]
- Francois, A.; Terro, F.; Janet, T.; Rioux Bilan, A.; Paccalin, M.; Page, G. Involvement of interleukin-1beta in the autophagic process of microglia: Relevance to Alzheimer’s disease. J. Neuroinflamm. 2013, 10, 151. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, X.; Zhao, M.; Zhou, A.L. The role of the TLR4/NF-kappaB signaling pathway in Abeta accumulation in primary hippocampal neurons. Sheng Li Xue Bao Acta Physiol. Sin. 2015, 67, 319–328. [Google Scholar]
- McMillian, M.; Kong, L.Y.; Sawin, S.M.; Wilson, B.; Das, K.; Hudson, P.; Hong, J.S.; Bing, G. Selective killing of cholinergic neurons by microglial activation in basal forebrain mixed neuronal/glial cultures. Biochem. Biophys. Res. Commun. 1995, 215, 572–577. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.D.; Duan, L.; Xiong, H.G.; Jiang, Y.P.; Liang, H.C. Microglia activation mediated by toll-like receptor-4 impairs brain white matter tracts in rats. J. Biomed. Res. 2018, 32, 136–144. [Google Scholar]
- Hoozemans, J.J.; Veerhuis, R.; Janssen, I.; van Elk, E.J.; Rozemuller, A.J.; Eikelenboom, P. The role of cyclo-oxygenase 1 and 2 activity in prostaglandin E(2) secretion by cultured human adult microglia: Implications for Alzheimer’s disease. Brain Res. 2002, 951, 218–226. [Google Scholar] [CrossRef]
- Shi, J.; Johansson, J.; Woodling, N.S.; Wang, Q.; Montine, T.J.; Andreasson, K. The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity. J. Immunol. 2010, 184, 7207–7218. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Zhang, Q.; Zhang, J.N.; Zhang, Y.N.; Gu, L.; Yang, H.M.; Xia, N.; Wang, X.M.; Zhang, H. Triptolide up-regulates metabotropic glutamate receptor 5 to inhibit microglia activation in the lipopolysaccharide-induced model of Parkinson’s disease. Brain Behav. Immun. 2018, 71, 93–107. [Google Scholar] [CrossRef]
- Barger, S.W.; Chavis, J.A.; Drew, P.D. Dehydroepiandrosterone inhibits microglial nitric oxide production in a stimulus-specific manner. J. Neurosci. Res. 2000, 62, 503–509. [Google Scholar] [CrossRef]
- Dewil, M.; dela Cruz, V.F.; Van Den Bosch, L.; Robberecht, W. Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1(G93A)-induced motor neuron death. Neurobiol. Dis. 2007, 26, 332–341. [Google Scholar] [CrossRef]
- Jeohn, G.H.; Cooper, C.L.; Wilson, B.; Chang, R.C.; Jang, K.J.; Kim, H.C.; Liu, B.; Hong, J.S. p38 MAP kinase is involved in lipopolysaccharide-induced dopaminergic neuronal cell death in rat mesencephalic neuron-glia cultures. Ann. N. Y. Acad. Sci. 2002, 962, 332–346. [Google Scholar] [CrossRef]
- Fiebich, B.L.; Butcher, R.D.; Gebicke-Haerter, P.J. Protein kinase C-mediated regulation of inducible nitric oxide synthase expression in cultured microglial cells. J. Neuroimmunol. 1998, 92, 170–178. [Google Scholar] [CrossRef]
- Akundi, R.S.; Candelario-Jalil, E.; Hess, S.; Hull, M.; Lieb, K.; Gebicke-Haerter, P.J.; Fiebich, B.L. Signal transduction pathways regulating cyclooxygenase-2 in lipopolysaccharide-activated primary rat microglia. Glia 2005, 51, 199–208. [Google Scholar] [CrossRef]
- Bauer, M.K.; Lieb, K.; Schulze-Osthoff, K.; Berger, M.; Gebicke-Haerter, P.J.; Bauer, J.; Fiebich, B.L. Expression and regulation of cyclooxygenase-2 in rat microglia. Eur. J. Biochem. 1997, 243, 726–731. [Google Scholar] [CrossRef]
- Yousif, N.M.; de Oliveira, A.C.P.; Brioschi, S.; Huell, M.; Biber, K.; Fiebich, B.L. Activation of EP2 receptor suppresses poly(I: C) and LPS-mediated inflammation in primary microglia and organotypic hippocampal slice cultures: Contributing role for MAPKs. Glia 2018, 66, 708–724. [Google Scholar] [CrossRef]
- Bronstein, D.M.; Perez-Otano, I.; Sun, V.; Mullis Sawin, S.B.; Chan, J.; Wu, G.C.; Hudson, P.M.; Kong, L.Y.; Hong, J.S.; McMillian, M.K. Glia-dependent neurotoxicity and neuroprotection in mesencephalic cultures. Brain Res. 1995, 704, 112–116. [Google Scholar] [CrossRef]
- Gayle, D.A.; Ling, Z.; Tong, C.; Landers, T.; Lipton, J.W.; Carvey, P.M. Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: Roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res. Dev. Brain Res. 2002, 133, 27–35. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; Liu, Z.; Peng, Y.P.; Qiu, Y.H. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures. Int. J. Mol. Sci. 2016, 17, 25. [Google Scholar] [CrossRef]
- Zhang, F.; Qian, L.; Flood, P.M.; Shi, J.S.; Hong, J.S.; Gao, H.M. Inhibition of IkappaB kinase-beta protects dopamine neurons against lipopolysaccharide-induced neurotoxicity. J. Pharmacol. Exp. Ther. 2010, 333, 822–833. [Google Scholar] [CrossRef]
- Bhat, N.R.; Zhang, P.; Lee, J.C.; Hogan, E.L. Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J. Neurosci. Off. J. Soc. Neurosci. 1998, 18, 1633–1641. [Google Scholar] [CrossRef]
- Cuenda, A.; Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta 2007, 1773, 1358–1375. [Google Scholar] [CrossRef]
- Gordon, R.; Singh, N.; Lawana, V.; Ghosh, A.; Harischandra, D.S.; Jin, H.; Hogan, C.; Sarkar, S.; Rokad, D.; Panicker, N.; et al. Protein kinase Cdelta upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson’s disease. Neurobiol. Dis. 2016, 93, 96–114. [Google Scholar] [CrossRef]
- Bhatia, H.S.; Roelofs, N.; Munoz, E.; Fiebich, B.L. Alleviation of Microglial Activation Induced by p38 MAPK/MK2/PGE2 Axis by Capsaicin: Potential Involvement of other than TRPV1 Mechanism/s. Sci. Rep. 2017, 7, 116. [Google Scholar] [CrossRef]
- Fiebich, B.L.; Lieb, K.; Engels, S.; Heinrich, M. Inhibition of LPS-induced p42/44 MAP kinase activation and iNOS/NO synthesis by parthenolide in rat primary microglial cells. J. Neuroimmunol. 2002, 132, 18–24. [Google Scholar] [CrossRef]
- Fiebich, B.L.; Schleicher, S.; Butcher, R.D.; Craig, A.; Lieb, K. The neuropeptide substance P activates p38 mitogen-activated protein kinase resulting in IL-6 expression independently from NF-kappa B. J. Immunol. 2000, 165, 5606–5611. [Google Scholar] [CrossRef]
- Anantharam, V.; Kitazawa, M.; Wagner, J.; Kaul, S.; Kanthasamy, A.G. Caspase-3-dependent proteolytic cleavage of protein kinase Cdelta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl. J. Neurosci. Off. J. Soc. Neurosci. 2002, 22, 1738–1751. [Google Scholar] [CrossRef]
- Kaul, S.; Kanthasamy, A.; Kitazawa, M.; Anantharam, V.; Kanthasamy, A.G. Caspase-3 dependent proteolytic activation of protein kinase C delta mediates and regulates 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death in dopaminergic cells: Relevance to oxidative stress in dopaminergic degeneration. Eur. J. Neurosci. 2003, 18, 1387–1401. [Google Scholar] [CrossRef]
- Zhang, D.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Neuroprotective effect of protein kinase C delta inhibitor rottlerin in cell culture and animal models of Parkinson’s disease. J. Pharmacol. Exp. Ther. 2007, 322, 913–922. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, J.H.; Yan, Z.F.; Huang, X.Y.; Guo, P.; Sun, L.; Liu, Z.; Hu, Y.; Zuo, L.J.; Yu, S.Y.; et al. Minimally Toxic Dose of Lipopolysaccharide and alpha-Synuclein Oligomer Elicit Synergistic Dopaminergic Neurodegeneration: Role and Mechanism of Microglial NOX2 Activation. Mol. Neurobiol. 2018, 55, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Lv, G.; Lee, J.S.; Jung, B.C.; Masuda-Suzukake, M.; Hong, C.S.; Valera, E.; Lee, H.J.; Paik, S.R.; Hasegawa, M.; et al. Exposure to bacterial endotoxin generates a distinct strain of alpha-synuclein fibril. Sci. Rep. 2016, 6, 30891. [Google Scholar] [CrossRef]
- Arai, H.; Furuya, T.; Yasuda, T.; Miura, M.; Mizuno, Y.; Mochizuki, H. Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1beta, and expression of caspase-11 in mice. J. Biol. Chem. 2004, 279, 51647–51653. [Google Scholar] [CrossRef] [PubMed]
LPS | Species Used | Dose and Route of Administration | LPS Injection (Duration) | Evaluated Parameters | References |
---|---|---|---|---|---|
E. coli O127:B8 (Sigma-Aldrich) | Charles River CD-VAF rats | 10 ng/animal (intracerebroventricular) | Acute | IL-1 in brain regions: cerebellum, cortex, brainstem, diencephalon, or hippocampus | [35] |
E. coli O55:B5 (Sigma-Aldrich) | Sprague Dawley | 1.0 μg/mL (4th ventricle) | Chronic (four weeks) | Spatial working memory Activation of astrocytes and microglia | [19] |
E. coli O55:B5 (Sigma-Aldrich) | Fisher-344 rats | 0.25 μL/h (4th ventricle) | Chronic (28 days) | Long-term depression (LTD) Underlying mechanism of LTD impairment by neuroinflammation | [20] |
S. abortus equi (Sigma-Aldrich) | Tg2576 APP mice | 4 μg/μL or 10 μg/μL (intrahippocampal) | Acute | Amyloid-beta (Aβ) load Microglial and astrocytes activation over time | [46] |
S. abortus equi (Sigma-Aldrich) | Nontransgenic mice obtained during breeding of our amyloid precursor protein (APP)1 + presenilin (PS)1 transgenic mouse colony | 1 μL of 4 μg/μL (intrahippocampal; bilateral) | Acute | Time course of microgliosis Time course of astrogliosis Time course of TLR4 levels Quantification of glial markers (GFAP, CD45) TNF-α and IL-1β levels | [40] |
S. abortus equi (Sigma-Aldrich) | Tg2576 APP mice | 10 μg/μL (intrahippocampal; unilateral) | Acute | Brain amyloid burden Markers of microglial activation (CD45, CR3 or CD11b, CD68, Fcg receptor, and scavenger receptor A) | [47] |
S. typhimurium (Sigma-Aldrich) | APP1PS1 transgenic mice were transplanted with eGFP-over-expressing bone marrow | 4 μg of LPS (4 μg/μL in saline); (intrahippocampal; unilateral) | Acute | Proliferation, expression of markers for activated microglia Aβ removal | [48] |
S. abortus equii (Sigma-Aldrich) | rTg4510 mice and non-transgenic mice | 5 μg/μL (frontal cortex and hippocampus) | Acute | Activation of CD45 and arginase 1 Expression of Ser199/202 and phospho-tau Ser396 | [44] |
E. coli O55:B5 (Sigma-Aldrich) | Sprague Dawley rats | 2.5 μg/μL (intrahippocampal; unilateral) | Acute | β-secretase-1 (BACE1) and GFAP levels Amyloidogenic protein expression Golgi preparations of cortical layer III pyramidal neurons | [41] |
S. abortus equi (Sigma-Aldrich) | TgAPP/PS1 and C57BL/6 | 4 μg/μL (2-month-old mice) or 2 μg/μL (12-month-old mice) (intrahippocampal) | Acute | Aβ deposits in the hippocampus and cortex Activation of microglia | [45] |
LPS | Species Used | Dose and Route of Administration | LPS Injection (Duration) | Evaluated Parameters | References |
---|---|---|---|---|---|
E. coli O127:B8 (Sigma-Aldrich) | Charles River CD-VAF rats | 1 mg/kg (intraperitoneal) | Acute | Detection of IL-1 by thymocyte stimulation | [35] |
E. coli O111:B4 (Sigma-Aldrich) | TgN(APP-Sw) 2576 | 0.25 μg/μL (intravenously) | Acute | Aβ levels in cortex and hippocampus IL-1β levels in cortex and hippocampus | [52] |
E. coli O55:B5 (Sigma-Aldrich) | 3xTg-AD or nontransgenic mice | 0.1 mg/mL; 0.5 mg/kg body weight (intraperitoneal) | Chronic (twice a week for six weeks) | Characterization of time course of microglia activation in the brain Microglial activation and tangle pathology | [74] |
E. coli O55:B5 (Sigma-Aldrich) | ICR mice | 250 μg/kg (intraperitoneal) | Acute (daily for three or seven days) | Memory impairment Aβ accumulation in the cortex and hippocampus Expression of amyloidogenic proteins Astrocytes activation | [59] |
E. coli O111:B4 (Sigma-Aldrich) | 3xTgAD mice | 0.25 mg/kg (intraperitoneal) | Chronic (twice weekly for four weeks) | Effect of inhibition of soluble TNF signaling on accumulation of 6E10-immunoreactive protein in hippocampus, cortex, and amygdala and amyloid-associated pathology | [58] |
S. typhimurium (Sigma-Aldrich) | CD-1 mice | 3, 30, 300, or 3000 μg/kg (intraperitoneal) | Acute | Transport of Aβ across the blood–brain barrier | [69] |
E. coli O55:B5 (Sigma-Aldrich) | Wistar | 5 mg/kg (intraperitoneal) | Acute | Cognitive functions (amnesic, discriminative, and attentional functions) Anxiety TNF and IL-18 protein levels in frontal cortex, hippocampus, striatum, cerebellum, and hypothalamus | [54] |
S. typhimurium (Sigma-Aldrich) | CD-1 mice | 3 mg/kg (intraperitoneal) | Acute | Aβ transporter across the blood-brain barrier Oxidative stress markers in brain and serum Brain influx of I-albumin IL-1α, IL-1β, IL-6, IL-12, IL-13, MIP-1α, MIP-1β, G-CSF, KC, MCP-1, RANTES, and TNF-α levels in cortex and hippocampus | [67] |
S. typhimurium (Sigma-Aldrich) | CD-1 mice | 3 mg/kg (intraperitoneal) | Acute | Quantification of LRP-1 LRP-1-dependent partitioning between the brain vasculature and parenchyma and peripheral clearance | [70] |
E. coli O55:B5 (Sigma-Aldrich) | Wistar rats | 500 µg/kg/day (intraperitoneal) | For seven consecutive days. | Nitric oxide (NO) production NO synthase (NOS2) Aβ 1-42 cerebral expression Memory | [56] |
E. coli O8:K27 (Innaxon) | EFAD mice (express human APOE3 or APOE4 and overproduce human Aβ | 0.5 mg/kg/week (intraperitoneal) | Chronic (from 4 to 6 months of age) | Cognitive dysfunction Cerebrovascular leakiness Aβ42 levels Cerebral amyloid angiopathy-like deposition IL-10, G-CSF, RANTES, IL-12, IL-17, KC levels | [57] |
E. coli O111:B4 (Sigma-Aldrich) | APPSWE/PS11∆E9 Tg and wild-type | 0.5 mg/kg (intraperitoneal) | Chronic (Once a week for 13 weeks) | TNF and IL-1β mRNA levels Amyloid pathology in the neocortex CD11b+ cells clustering around Aβ plaques APP, APOE, Clu, and Hexb protein expression in neocortex | [60] |
E. coli O111:B4 (Sigma-Aldrich) | 5XFAD and C57BL/6 mice | 0.01 mg/kg, 0.1 mg/kg, 1 mg/kg, 3 mg/kg (intravenously) | Acute | Disruption of blood–brain barrier Delivery of large molecules through the blood–brain barrier Weight loss | [71] |
LPS | Species Used | Dose and Route of Administration | LPS Injection (Duration) | Evaluated Parameters | References |
---|---|---|---|---|---|
E. coli O26:B6 (Sigma-Aldrich) | Wistar | 1 mg/mL (2 µL intranigral) | Acute | Dopamine (DA) and DA metabolites Loss of tyrosine hydroxylase (TH)-positive cells TH activity Microglial activation NOS inhibition | [87,88] |
E. coli O111:B4 (Life Technologies) | Fischer 344 | 5 or 10 µg in 2 µL (intrastriatal, intrahippocampal or intracortical) | Acute | Loss of TH-positive cells MAP-2-positive cell loss Microglial activation | [89] |
E. coli O111:B4 (Sigma-Aldrich) | Sprague–Dawley rats | 5 µg in 2 µL (intranigral) | Acute | Loss of TH-positive cells Microglial activation Naloxone effects on LPS consequences | [92] |
E. coli O26:B6 (Sigma-Aldrich) | Wistar | 5 µg (intranigral) | Acute | Dopamine and DA metabolites Serotonin and DA metabolites TH activity Loss of TH-positive cells Glial reaction Effects of dexamethasone on LPS consequences | [93] |
E. coli O111:B4 (Sigma-Aldrich) | Fischer 344 | 5 ng/h (intranigral) | Chronic (2 weeks) | Loss of TH-positive cells Loss of NeuN-positive cells Microglial activation | [90] |
E. coli O26:B6 (Sigma-Aldrich) | Wistar | 10 µg (intranigral) | Acute | Loss of TH-positive cells Loss of FG-labelled neurons NADPH-d expression iNOS expression | [110] |
E. coli O55:B5 (Calbiochem) | Wistar | 10 µg (supranigral) | Acute | Loss of TH-positive cells Motor evaluation Astrocyte reaction Microglial activation iNOS expression Neurotophin-3 expression | [91] |
E. coli O111:B4 (Sigma-Aldrich) | Fischer 344 | 10 µg (intrapallidal) | Acute | Loss of TH-positive cells Microglial activation Ferritin expression Iron levels A-synuclein expression Ubiquitin expression Effect of aging on LPS consequences | [113] |
E. coli O26:B6 (Sigma-Aldrich) | Wistar | 2 mg/mL (intranigral) | Acute | Loss of TH-positive cells Microglial activation TH expression Cytokine mRNA expression iNOS expression Caspase-11 expression Effects of p38 MAPK inhibition in LPS consequences Effects of iNOS blockage on LPS consequences | [109] |
S. minnesota (Sigma-Aldrich) | Sprague-Dawley | 16, 32 or 60 µg (intrastriatal) | Acute | DA and DA metabolites Loss of TH-positive cells Microglial activation Pro-inflammatory cytokine expression Insulin receptor expression Mitochondrial activity Effects of cyclooxygenase-2 (COX-2) inhibition and PPAR-c agonist on LPS consequences | [112] |
S. minnesota (Sigma-Aldrich) | Sprague-Dawley | 16 µg (intrastriatal) | Acute | UCP2 expression mitoNEET expression Effects of PPAR-c agonist on LPS consequences | [107] |
S. minnesota (Sigma-Aldrich) | C57BL/6 | 5, 7.5, or 10 μg (intrastriatal) | Acute | Loss of TH-positive cells Motor evaluation NOS expression Effects of NOS inhibition in LPS consequences Effects of iNOS knockout on LPS consequences | [111] |
S. minnesota (Sigma-Aldrich) | Wistar | 2.5 µg/µL (intrastriatal) | Acute | DA Nigrostriatal system evaluation a-synuclein expression Ubiquitin expression Motor evaluation Microglial activation iNOS expression Mitochondrial activity | [108] |
E. coli O111:B4 (Calbiochem) | Fischer 344 | 5 µg (intranigral) | Acute | Loss of TH-positive cells Microglial activation Effects of IκB Kinase-β inhibition on LPS consequences | [187] |
E. coli O26:B6 (Sigma-Aldrich) | ABH-Biozzi | 0.5 mg/kg | Acute | NFκB mRNA expression Cell death evaluation | [95] |
E. coli (Sigma-Aldrich) | C57BL/6 | 10 μg (intrastriatal) | Acute | Motor evaluation DA neuron loss DA and DA metabolites Microglial activation Iron concentration Effects of desferrioxamine on the LPS consequences | [114] |
E. coli O55:B5 (Sigma-Aldrich) | Fischer 344 | 0.25 μg/h (intracerebroventricular) | Chronically (21 or 56 days) | Cytokine protein levels Cytokine mRNA expression Loss of TH-positive cells MHC II-IR microglial density Effects of aging on LPS consequences | [97] |
E. coli O111:B4 (Sigma-Aldrich) | Sprague-Dawley | 5 μg/5 μL (intranigral) | Acute | Astrocyte reaction Microglial activation NFκB transcription Cytokine transcription NOX2 activation NADPH-Oxidase Activity Reactive oxygen species (ROS) production Lipid peroxidation iNOS and NO expression. DA and DA metabolites Effects of NADPH-oxidase inhibition on LPS consequences | [99] |
E. coli (Sigma-Aldrich) | SD rats | 5 mg/mL (intrastriatal) | Acute | Motor evaluation Glial activation Oxidative stress Apoptosis | [103] |
S. minnesota (Sigma-Aldrich) | Sprague-Dawley | 32 μg (intrastriatal) | Acute | Mitochondrial activity and structure Oxidative stress Loss of TH-positive cells | [106] |
E. coli O55:B5 (Sigma-Aldrich) | Wistar | 5 μg/2 μL (intranigral) | Acute | Fever and Sickness Microglial Activation and phagocytic activity Astrocyte Activation Oxidative Stress Cytokine levels Leukocyte brain Infiltration | [98] |
E. coli O111:B4 (Enzo Life Science) | LRRK2 KO C57BL/6 and wild-type | 5 mg/mL (intrastriatal) | Acute | Microglial activation Role of LRRK2 on LPS consequences | [121] |
E. coli (Sigma-Aldrich) | DJ-1 KO C57BL/6 and wild-type | 1 μg/μL (intranigral) | Acute | Dopaninergic normal loss sICAM-1, IFN-γ, IL-1β, IL-1Ra, IL-16, IL-17, and I-TAC expression Role of DJ-1 on LPS consequences | [124] |
LPS | Species Used | Dose and Route of Administration | LPS Injection (Duration) | Evaluated Parameters | References |
---|---|---|---|---|---|
E. coli O55:B5 (Sigma-Aldrich) | C57BL/6 | 1 mg/kg (intraperitoneal) | Acute (single dose) | Ultrastructural Alterations in SN NOS Activity NOS and TNF expression Apoptotic Pathways | [132] |
E. coli O111:B4 (Calbiochem) | C57BL/6, TNFR1/R2−/− KO, TNFR1/R2+/+ WT | 5 mg/kg (intraperitoneal) | Acute (single dose) | TNFα level Loss of TH-positive cells Effects of TNFR knock-out on LPS consequences | [127] |
E. coli O111:B4 (Sigma-Aldrich) | C57BL/6 | 5 mg/kg (intraperitoneal) | Weekly injected with five doses of LPS Monthly injected with two to five doses of LPS | Motor evaluation Loss of TH-positive cells α-synuclein accumulation Microglial activation Sex differences in LPS consequences | [129] |
E. coli O111:B4 (Sigma-Aldrich) | B6C3F1 WT and transgenic mice for mutant α-synuclein | 3 × 106 EU/kg (intraperitoneal) | Acute (single injection) | Nigral TH-positive cells evaluation α-synuclein aggregation Cytokine levels Microglial activation Differences in acute and chronic neuroinflammation Effects iNOS inhibition of iNOS inhibition and NADPH oxidase blockage on LPS consequences | [61] |
E. coli O111:B4 | C57BL/6 | 0.2 mg/kg (intraperitoneal) | Acute (single injection) | Cytokine expression. TH-positive cells evaluation Microglial activation iNOS mRNA expression NF-κB mRNA expression. gp91phox level Oxidative stress Effects of HCT1026 on LPS consequences | [134] |
E. coli O55:B5 (Sigma-Aldrich) | 129/SvEv and α-syn gene-ablated mice | 1 mg/kg (intraperitoneal) | Acute (single dose) | Blood–brain barrier integrity | [130] |
E. coli O111:B4 (Calbiochem) | B6.129S6-Cybbtm1Din (NOX2−/−) and C57BL/6 000664 (NOX2+/+) | 5 mg/kg (intraperitoneal) | Acute (single injection) | NOX2 expression ROS production Microglial activation Effects of oxidases inhibition on LPS consequences | [133] |
E. coli (Sigma-Aldrich) | C57BL/6 | 5 mg/kg (intraperitoneal) | Acute (single injection) | TH-positive cells evaluation α-syn aggregation and levels Microglial activation Autophagic activity | [131] |
E. coli O111:B4 (Sigma-Aldrich) | C57BL/6 and PKCδ KO mice | 5 mg/kg (intraperitoneal) | Acute (single injection) | Motor evaluation Cytokine release and expression. Effects of PKCδ KO on LPS consequences | [190] |
S. abortus equi (Enzo Life Sciences) | C57BL/6 | 1 μg/g (intraperitoneal) | Motor evaluation TH-positive cells evaluation DA and DA metabolites Microglial and astrocytic activation Cytokine levels and expression | [128] |
LPS | Species Used | Dose and Route of Administration | LPS Injection (Duration) | Evaluated Parameters | References |
---|---|---|---|---|---|
E. coli O55:B5 (Calbiochem) | C57BL/6 EP4 floxed mice | 5 mg/kg (intraperitoneal) | Acute | Quantification of COX-2, iNOS, TNF-α, IL-6, and IL-1β mRNA levels in hippocampus | [175] |
E. coli O55:B5 (Sigma-Aldrich) | G93A-SOD1 C/EBPδ(−/−) mice | 200 μg/animal (intraperitoneal) 1 μg/μL (intraperitoneal) | Acute 2, 8, 16, 24, and 48 h | C/EBPδ expression in mouse brain Quantification of NOS-2, COX-2, TNF-α, IL-1β, and IL-6 mRNA TNF-α, IL-1β and IL-6 serum levels | [142] |
E. coli O55:B5 (Sigma-Aldrich) | TDP-43A315T and C57BL/6 mice | 1 mg/kg of body weight (intraperitoneal) | Chronic (Once a week for two months) | TDP-43 accumulation in the cytoplasm of spinal motor neurons TDP-43 aggregation | [145] |
LPS | Species Used | Dose and Route of Administration | LPS Injection (Duration) | Evaluated Parameters | References |
---|---|---|---|---|---|
E. coli (Sigma-Aldrich) | Transgenic YAC128 and wild type | 1 mg/kg (intraperitoneal) | Chronic (Once a week for four months) | Microglial activation Neurovascular integrity Blood brain barrier integrity | [159] |
E. coli O111:B4 (Sigma-Aldrich) | Transgenic R6/2 and wild type | 2 mg/kg (intraperitoneal) | Acute | NF-κB activation Inflammatory evaluation Motor evaluation | [62] |
E. coli O127:B8 (Sigma-Aldrich) | Transgenic R6/2 and wild type | 0.3 mg/kg (intraperitoneal) | Acute | TNF gene expression. IL-6 gene expression Sex-dependent effects of LPS injection | [160] |
E. coli O111:B4 (Sigma-Aldrich) | Transgenic R6/2 and wild type | 2 μg/animal (intraperitoneal) | Chronic (Once a week for seven weeks) | Splenic immune cells evaluation T-cell activity Motor evaluation | [65] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, C.R.A.; Gomes, G.F.; Candelario-Jalil, E.; Fiebich, B.L.; de Oliveira, A.C.P. Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int. J. Mol. Sci. 2019, 20, 2293. https://doi.org/10.3390/ijms20092293
Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. International Journal of Molecular Sciences. 2019; 20(9):2293. https://doi.org/10.3390/ijms20092293
Chicago/Turabian StyleBatista, Carla Ribeiro Alvares, Giovanni Freitas Gomes, Eduardo Candelario-Jalil, Bernd L. Fiebich, and Antonio Carlos Pinheiro de Oliveira. 2019. "Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration" International Journal of Molecular Sciences 20, no. 9: 2293. https://doi.org/10.3390/ijms20092293
APA StyleBatista, C. R. A., Gomes, G. F., Candelario-Jalil, E., Fiebich, B. L., & de Oliveira, A. C. P. (2019). Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. International Journal of Molecular Sciences, 20(9), 2293. https://doi.org/10.3390/ijms20092293