P2X7 Receptor Indirectly Regulates the JAM-A Protein Content via Modulation of GSK-3β
Abstract
:1. Introduction
2. Results
2.1. P2X7−/− Mice Show Strongly Enhanced JAM-A Protein Level in the Lung Parenchyma
2.2. Influence of BLM Treatment on mRNA Expression of JAM-A and Localization in the Lung Tissue of P2X7−/− Mice in Comparison to the WT
2.3. The Inhibition of GSK-3β Leads to the Reduction of the Protein Content of JAM-A under BLM Treatment
2.4. The P2X7R Indirectly Regulates JAM-A Protein Content by the Modulation of GSK-3β(Ser9)
2.5. Localization of JAM-A in Alveolar Epithelial Cells after BLM Treatment and the Influence of oxATP
2.6. The P2X7R Agonist BzATP Affects the JAM-A Protein Content
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Experimental Animals
4.3. Cell Line and Cell Culture
4.4. Precision-Cut Lung Slices (PCLS) and Tissue Culture
4.5. RNA Isolation and Real-Time Reverse Transcription PCR (Real-Time RT PCR)
4.6. Western Blot Analysis
4.7. Immunohistochemistry
4.8. Immunofluorescence
4.9. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BLM | Bleomycin |
GSK-3β | Glycogen synthase kinase-3 beta |
JAM-A | Junctional adhesion molecule-A |
LiCl | Lithium chloride |
PCLS | Precision-cut lung slices |
PKC-β1 | Protein kinase C-beta1 |
P2X7R | P2X7 receptor |
WT | Wildtype |
References
- Johnson, M.D.; Widdicombe, J.H.; Allen, L.; Barbry, P.; Dobbs, L.G. Alveolar epithelial type i cells contain transport proteins and transport sodium, supporting an active role for type i cells in regulation of lung liquid homeostasis. Proc. Natl. Acad. Sci. USA 2002, 99, 1966–1971. [Google Scholar] [CrossRef] [PubMed]
- Kasper, M.; Barth, K. Potential contribution of alveolar epithelial type i cells to pulmonary fibrosis. Biosci. Rep. 2017, 37, 1–18. [Google Scholar] [CrossRef]
- McElroy, M.C.; Kasper, M. The use of alveolar epithelial type i cell-selective markers to investigate lung injury and repair. Eur. Respir. J. 2004, 24, 664–673. [Google Scholar] [CrossRef]
- Ramirez, M.I.; Millien, G.; Hinds, A.; Cao, Y.; Seldin, D.C.; Williams, M.C. T1alpha, a lung type i cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev. Biol. 2003, 256, 61–72. [Google Scholar] [CrossRef]
- Drab, M.; Verkade, P.; Elger, M.; Kasper, M.; Lohn, M.; Lauterbach, B.; Menne, J.; Lindschau, C.; Mende, F.; Luft, F.C.; et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001, 293, 2449–2452. [Google Scholar] [CrossRef] [PubMed]
- Englert, J.M.; Hanford, L.E.; Kaminski, N.; Tobolewski, J.M.; Tan, R.J.; Fattman, C.L.; Ramsgaard, L.; Richards, T.J.; Loutaev, I.; Nawroth, P.P.; et al. A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Am. J. Pathol. 2008, 172, 583–591. [Google Scholar] [CrossRef]
- Gabazza, E.C.; Kasper, M.; Ohta, K.; Keane, M.; D’Alessandro-Gabazza, C.; Fujimoto, H.; Nishii, Y.; Nakahara, H.; Takagi, T.; Menon, A.G.; et al. Decreased expression of aquaporin-5 in bleomycin-induced lung fibrosis in the mouse. Pathol. Int. 2004, 54, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, G.; Blasche, R.; Hofmann, F.; Augstein, A.; Kasper, M.; Barth, K. Effect of p2x7 receptor knockout on aqp-5 expression of type i alveolar epithelial cells. PLoS ONE 2014, 9, e100282. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jin, N.; Narasaraju, T.; Chen, J.; McFarland, L.R.; Scott, M.; Liu, L. Identification of two novel markers for alveolar epithelial type i and ii cells. Biochem. Biophys. Res. Commun. 2004, 319, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Bowler, J.W.; Bailey, R.J.; North, R.A.; Surprenant, A. P2x4, p2y1 and p2y2 receptors on rat alveolar macrophages. Br. J. Pharmacol. 2003, 140, 567–575. [Google Scholar] [CrossRef]
- Adinolfi, E.; Giuliani, A.L.; De Marchi, E.; Pegoraro, A.; Orioli, E.; Di Virgilio, F. The p2x7 receptor: A main player in inflammation. Biochem. Pharmacol. 2018, 151, 234–244. [Google Scholar] [CrossRef]
- Barth, K.; Blasche, R.; Neisser, A.; Bramke, S.; Frank, J.A.; Kasper, M. P2x7r-dependent regulation of glycogen synthase kinase 3beta and claudin-18 in alveolar epithelial type i cells of mice lung. Histochem. Cell Biol. 2016, 146, 757–768. [Google Scholar] [CrossRef]
- Riteau, N.; Gasse, P.; Fauconnier, L.; Gombault, A.; Couegnat, M.; Fick, L.; Kanellopoulos, J.; Quesniaux, V.F.; Marchand-Adam, S.; Crestani, B.; et al. Extracellular atp is a danger signal activating p2x7 receptor in lung inflammation and fibrosis. Am. J. Respir. Crit. Care. Med. 2010, 182, 774–783. [Google Scholar] [CrossRef]
- Galam, L.; Rajan, A.; Failla, A.; Soundararajan, R.; Lockey, R.F.; Kolliputi, N. Deletion of p2x7 attenuates hyperoxia-induced acute lung injury via inflammasome suppression. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 310, L572–L581. [Google Scholar] [CrossRef]
- Moncao-Ribeiro, L.C.; Cagido, V.R.; Lima-Murad, G.; Santana, P.T.; Riva, D.R.; Borojevic, R.; Zin, W.A.; Cavalcante, M.C.; Rica, I.; Brando-Lima, A.C.; et al. Lipopolysaccharide-induced lung injury: Role of p2x7 receptor. Respir. Physiol. Neurobiol. 2011, 179, 314–325. [Google Scholar] [CrossRef]
- Monteiro, A.C.; Parkos, C.A. Intracellular mediators of jam-a-dependent epithelial barrier function. Ann. N Y Acad. Sci. 2012, 1257, 115–124. [Google Scholar] [CrossRef]
- Bläsche, R.; Ebeling, G.; Perike, S.; Weinhold, K.; Kasper, M.; Barth, K. Activation of p2x7r and downstream effects in bleomycin treated lung epithelial cells. Int. J. Biochem. Cell Biol. 2012, 44, 514–524. [Google Scholar] [CrossRef]
- Balda, M.S.; Gonzalez-Mariscal, L.; Matter, K.; Cereijido, M.; Anderson, J.M. Assembly of the tight junction: The role of diacylglycerol. J. Cell Biol. 1993, 123, 293–302. [Google Scholar] [CrossRef]
- Tsujio, I.; Tanaka, T.; Kudo, T.; Nishikawa, T.; Shinozaki, K.; Grundke-Iqbal, I.; Iqbal, K.; Takeda, M. Inactivation of glycogen synthase kinase-3 by protein kinase c delta: Implications for regulation of tau phosphorylation. FEBS Lett. 2000, 469, 111–117. [Google Scholar] [CrossRef]
- Severson, E.A.; Kwon, M.; Hilgarth, R.S.; Parkos, C.A.; Nusrat, A. Glycogen synthase kinase 3 (gsk-3) influences epithelial barrier function by regulating occludin, claudin-1 and e-cadherin expression. Biochem. Biophys. Res. Commun. 2010, 397, 592–597. [Google Scholar] [CrossRef]
- Ye, P.; Yu, H.; Simonian, M.; Hunter, N. Ligation of cd24 expressed by oral epithelial cells induces kinase dependent decrease in paracellular permeability mediated by tight junction proteins. Biochem. Biophys. Res. Commun. 2011, 412, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Nusrat, A.; Schnell, F.J.; Reaves, T.A.; Walsh, S.; Pochet, M.; Parkos, C.A. Human junction adhesion molecule regulates tight junction resealing in epithelia. J. Cell Sci. 2000, 113 (Pt 13), 2363–2374. [Google Scholar]
- Kostrewa, D.; Brockhaus, M.; D’Arcy, A.; Dale, G.E.; Nelboeck, P.; Schmid, G.; Mueller, F.; Bazzoni, G.; Dejana, E.; Bartfai, T.; et al. X-ray structure of junctional adhesion molecule: Structural basis for homophilic adhesion via a novel dimerization motif. EMBO J. 2001, 20, 4391–4398. [Google Scholar] [CrossRef]
- Cuzzocrea, S.; Mazzon, E.; Esposito, E.; Muia, C.; Abdelrahman, M.; Di Paola, R.; Crisafulli, C.; Bramanti, P.; Thiemermann, C. Glycogen synthase kinase-3beta inhibition attenuates the development of ischaemia/reperfusion injury of the gut. Intensive Care. Med. 2007, 33, 880–893. [Google Scholar] [CrossRef] [PubMed]
- Gurrieri, C.; Piazza, F.; Gnoato, M.; Montini, B.; Biasutto, L.; Gattazzo, C.; Brunetta, E.; Cabrelle, A.; Cinetto, F.; Niero, R.; et al. 3-(2,4-dichlorophenyl)-4-(1-methyl-1h-indol-3-yl)-1h-pyrrole-2,5-dione (sb216763), a glycogen synthase kinase-3 inhibitor, displays therapeutic properties in a mouse model of pulmonary inflammation and fibrosis. J. Pharmacol. Exp. Ther. 2010, 332, 785–794. [Google Scholar] [CrossRef]
- Bazzoni, G.; Tonetti, P.; Manzi, L.; Cera, M.R.; Balconi, G.; Dejana, E. Expression of junctional adhesion molecule-a prevents spontaneous and random motility. J. Cell Sci. 2005, 118, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xiao, L.; Sun, L.; Liu, F. Wnt/beta-catenin signaling: A promising new target for fibrosis diseases. Physiol. Res. 2012, 61, 337–346. [Google Scholar]
- Mitchell, L.A.; Overgaard, C.E.; Ward, C.; Margulies, S.S.; Koval, M. Differential effects of claudin-3 and claudin-4 on alveolar epithelial barrier function. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 301, L40–L49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solle, M.; Labasi, J.; Perregaux, D.G.; Stam, E.; Petrushova, N.; Koller, B.H.; Griffiths, R.J.; Gabel, C.A. Altered cytokine production in mice lacking p2x(7) receptors. J. Biol. Chem. 2001, 276, 125–132. [Google Scholar] [CrossRef]
- Herzog, C.R.; Soloff, E.V.; McDoniels, A.L.; Tyson, F.L.; Malkinson, A.M.; Haugen-Strano, A.; Wiseman, R.W.; Anderson, M.W.; You, M. Homozygous codeletion and differential decreased expression of p15ink4b, p16ink4a-alpha and p16ink4a-beta in mouse lung tumor cells. Oncogene 1996, 13, 1885–1891. [Google Scholar] [PubMed]
- Held, H.D.; Martin, C.; Uhlig, S. Characterization of airway and vascular responses in murine lungs. Br. J. Pharmacol. 1999, 126, 1191–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linge, A.; Morishima, N.; Kasper, M.; Barth, K. Bleomycin induces caveolin-1 and -2 expression in epithelial lung cancer a549 cells. Anticancer Res. 2007, 27, 1343–1351. [Google Scholar] [PubMed]
- Pfleger, C.; Ebeling, G.; Blasche, R.; Patton, M.; Patel, H.H.; Kasper, M.; Barth, K. Detection of caveolin-3/caveolin-1/p2x7r complexes in mice atrial cardiomyocytes in vivo and in vitro. Histochem. Cell Biol. 2012, 138, 231–241. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wesslau, K.-P.; Stein, A.; Kasper, M.; Barth, K. P2X7 Receptor Indirectly Regulates the JAM-A Protein Content via Modulation of GSK-3β. Int. J. Mol. Sci. 2019, 20, 2298. https://doi.org/10.3390/ijms20092298
Wesslau K-P, Stein A, Kasper M, Barth K. P2X7 Receptor Indirectly Regulates the JAM-A Protein Content via Modulation of GSK-3β. International Journal of Molecular Sciences. 2019; 20(9):2298. https://doi.org/10.3390/ijms20092298
Chicago/Turabian StyleWesslau, Karl-Philipp, Anabel Stein, Michael Kasper, and Kathrin Barth. 2019. "P2X7 Receptor Indirectly Regulates the JAM-A Protein Content via Modulation of GSK-3β" International Journal of Molecular Sciences 20, no. 9: 2298. https://doi.org/10.3390/ijms20092298
APA StyleWesslau, K. -P., Stein, A., Kasper, M., & Barth, K. (2019). P2X7 Receptor Indirectly Regulates the JAM-A Protein Content via Modulation of GSK-3β. International Journal of Molecular Sciences, 20(9), 2298. https://doi.org/10.3390/ijms20092298