Hyperbilirubinemia in Gunn Rats Is Associated with Decreased Inflammatory Response in LPS-Mediated Systemic Inflammation
Abstract
:1. Introduction
2. Results
2.1. Hyperbilirubinemia in Gunn Rats Is Associated with Decreased Systemic Inflammatory Response in LPS-Induced Sepsis
2.2. Pretreatment of Primary Hepatocytes with Bilirubin Protects against Inflammation-Induced Cell Death
2.3. Effect of Bilirubin on NF-κB Pathway
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. In Vivo Studies
4.3. Determination of Complete Blood Count with Differential and Serum Biochemical Markers
4.4. Determination of Serum Cytokine Concentrations
4.5. Flow Cytometry of Lymphocytes
4.6. Gene Expression Analyses
4.7. Primary Rat Hepatocyte Culture
4.8. Determination of Cell Viability and Intracellular Bilirubin Levels
4.9. Western Blot Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | Alanine transaminase |
AST | Aspartate transaminase |
BR | Bilirubin |
IKK | IκB kinase |
IL-6 | Interleukin-6 |
IL-10 | Interleukin-10 |
IL-1β | Interleukin-1β |
LBP | Lipopolysaccharide-binding protein |
LPS | Lipopolysaccharide |
NF-κB | Nuclear factor kappa B |
TLR | Toll-like receptors |
TNF-α | Tumor necrosis factor-α |
TLR | Toll-like receptor |
WBC | White blood cell |
References
- Gazzin, S.; Vitek, L.; Watchko, J.; Shapiro, S.M.; Tiribelli, C. A novel perspective on the biology of bilirubin in health and disease. Trends Mol. Med. 2016, 22, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Jangi, S.; Otterbein, L.; Robson, S. The molecular basis for the immunomodulatory activities of unconjugated bilirubin. Int. J. Biochem. Cell B 2013, 45, 2843–2851. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.H.; Wallner, M.; Molzer, C.; Gazzin, S.; Bulmer, A.C.; Tiribelli, C.; Vitek, L. Looking to the horizon: The role of bilirubin in the development and prevention of age-related chronic diseases. Clin. Sci. 2015, 129, 1–25. [Google Scholar] [CrossRef]
- Basiglio, C.L.; Arriaga, S.M.; Pelusa, F.; Almara, A.M.; Kapitulnik, J.; Mottino, A.D. Complement activation and disease: Protective effects of hyperbilirubinaemia. Clin. Sci. 2010, 118, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Adin, C.A.; VanGundy, Z.C.; Papenfuss, T.L.; Xu, F.; Ghanem, M.; Lakey, J.; Hadley, G.A. Physiologic doses of bilirubin contribute to tolerance of islet transplants by suppressing the innate immune response. Cell Transplant. 2017, 26, 11–21. [Google Scholar] [CrossRef]
- Idelman, G.; Smith, D.L.H.; Zucker, S.D. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase. Redox Biol. 2015, 5, 398–408. [Google Scholar] [CrossRef]
- Vetvicka, V.; Miler, I.; Sima, P.; Taborsky, L.; Fornusek, L. The effect of bilirubin on the Fc receptor expression and phagocytic activity of mouse peritoneal macrophages. Folia Microbiol. 1985, 30, 373–380. [Google Scholar] [CrossRef]
- Nejedla, Z. The development of immunological factors in infants with hyperbilirubinemia. Pediatrics 1970, 45, 102–104. [Google Scholar]
- Rocuts, F.; Zhang, X.Y.; Yan, J.; Yue, Y.A.; Thomas, M.; Bach, F.H.; Czismadia, E.; Wang, H.J. Bilirubin promotes de novo generation of T regulatory cells. Cell Transplant. 2010, 19, 443–451. [Google Scholar] [CrossRef]
- Liu, Y.; Li, P.; Lu, J.; Xiong, W.; Oger, J.; Tetzlaff, W.; Cynader, M. Bilirubin possesses powerful immunomodulatory activity and suppresses experimental autoimmune encephalomyelitis. J. Immunol. 2008, 181, 1887–1897. [Google Scholar] [CrossRef]
- Haga, Y.; Tempero, M.A.; Kay, D.; Zetterman, R.K. Intracellular accumulation of unconjugated bilirubin inhibits phytohemagglutin-induced proliferation and interleukin-2 production of human lymphocytes. Dig. Dis. Sci. 1996, 41, 1468–1474. [Google Scholar] [CrossRef]
- Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef]
- Jerala, R. Structural biology of the LPS recognition. Int. J. Med. Microbiol. 2007, 297, 353–363. [Google Scholar] [CrossRef]
- Siebenlist, U.; Franzoso, G.; Brown, K. Structure, regulation and function of Nf-Kappa-B. Annu. Rev. Cell Biol. 1994, 10, 405–455. [Google Scholar] [CrossRef]
- Hansen, T.W.R.; Mathiesen, S.B.W.; Walaas, S.I. Bilirubin has widespread inhibitory effects on protein phosphorylation. Pediatr. Res. 1996, 39, 1072–1077. [Google Scholar] [CrossRef]
- Bruno, G.; Saracino, A.; Monno, L.; Angarano, G. The Revival of an “Old” Marker: CD4/CD8 Ratio. Aids Rev. 2017, 19, 81–88. [Google Scholar]
- Dhiman, M.; Garg, N.J. P47(phox-/-)mice are compromised in expansion and activation of CD8(+) T cells and susceptible to trypanosoma cruzi infection. PLoS Pathog. 2014, 10, e1004516. [Google Scholar] [CrossRef]
- Wang, W.Z.W.; Smith, D.L.H.; Zucker, S.D. Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology 2004, 40, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Summers, C.; Rankin, S.M.; Condliffe, A.M.; Singh, N.; Peters, A.M.; Chilvers, E.R. Neutrophil kinetics in health and disease. Trends Immunol. 2010, 31, 318–324. [Google Scholar] [CrossRef]
- Ozer, E.K.; Goktas, M.T.; Kilinc, I.; Toker, A.; Bariskaner, H.; Ugurluoglu, C.; Iskit, A.B. Infliximab alleviates the mortality, mesenteric hypoperfusion, aortic dysfunction, and multiple organ damage in septic rats. Can. J. Physiol. Pharm. 2017, 95, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, K.; Bjork, P.; Bergenfeldt, M.; Hageman, R.; Thompson, R.C. Interleukin-1 receptor antagonist reduces mortality from endotoxin-shock. Nature 1990, 348, 550–552. [Google Scholar] [CrossRef]
- Nullens, S.; Staessens, M.; Peleman, C.; Plaeke, P.; Malhotra-Kumar, S.; Francque, S.; De Man, J.G.; De Winter, B.Y. Beneficial effects of anti-interleukin-6 antibodies on impaired gastrointestinal motility, inflammation and increased colonic permeability in a murine model of sepsis are most pronounced when administered in a preventive setup. PLoS ONE 2016, 11, e0152914. [Google Scholar] [CrossRef] [PubMed]
- Steinhauser, M.E.; Hogaboam, G.M.; Kunkel, S.L.; Lukacs, N.W.; Strieter, R.M.; Standiford, T.J. IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J. Immunol. 1999, 162, 392–399. [Google Scholar]
- Gogos, C.A.; Drosou, E.; Bassaris, H.P.; Skoutelis, A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: A marker for prognosis and future therapeutic options. J. Infect. Dis. 2000, 181, 176–180. [Google Scholar] [CrossRef]
- Silva, R.A.; Appelberg, R. Blocking the receptor for interleukin 10 protects mice from lethal listeriosis. Antimicrob. Agents Chempther. 2001, 45, 1312–1314. [Google Scholar] [CrossRef]
- Wang, M.J.; Jeng, K.C.G.; Ping, L.I. Exogenous cytokine modulation or neutralization of interleukin-10 enhance survival in lipopolysaccharide-hyporesponsive C3H/HeJ mice with Klebsiella infection. Immunology 1999, 98, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Van der Poll, T.; Marchant, A.; Keogh, C.B.; Goldman, M.; Lowry, S.F. Interleukin-10 impairs host defense in murine pneumococcal pneumonia. J. Infect. Dis. 1996, 174, 994–1000. [Google Scholar] [CrossRef]
- Jacobs, M.; Brown, N.; Allie, N.; Gulert, R.; Ryffel, B. Increased resistance to mycobacterial infection in the absence of interleukin-10. Immunology 2000, 100, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Lanone, S.; Bloc, S.; Foresti, R.; Almolki, A.; Taille, C.; Callebert, J.; Conti, M.; Goven, D.; Aubier, M.; Dureuil, B.; et al. Bilirubin decreases nos2 expression via inhibition of NAD(P)H oxidase: Implications for protection against endotoxic shock in rats. FASEB J. 2005, 19, 1890–1892. [Google Scholar] [CrossRef]
- Muchova, L.; Vanova, K.; Zelenka, J.; Lenicek, M.; Petr, T.; Vejrazka, M.; Sticova, E.; Vreman, H.J.; Wong, R.J.; Vitek, L. Bile acids decrease intracellular bilirubin levels in the cholestatic liver: Implications for bile acid-mediated oxidative stress. J. Cell Mol. Med. 2011, 15, 1156–1165. [Google Scholar] [CrossRef]
- Su, G.L.; Freeswick, P.D.; Geller, D.A.; Wang, Q.; Shapiro, R.A.; Wan, Y.H.; Billiar, T.R.; Tweardy, D.J.; Simmons, R.L.; Wang, S.C. Molecular-cloning, characterization, and tissue distribution of rat lipopolysaccharide-binding protein - evidence for extrahepatic expression. J. Immunol. 1994, 153, 743–752. [Google Scholar]
- Shimazu, R.; Akashi, S.; Ogata, H.; Nagai, Y.; Fukudome, K.; Miyake, K.; Kimoto, M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 1999, 189, 1777–1789. [Google Scholar] [CrossRef]
- Lamping, N.; Dettmer, R.; Schroder, N.W.J.; Pfeil, D.; Hallatschek, W.; Burger, R.; Schumann, R.R. LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria. J. Clin. Investig. 1998, 101, 2065–2071. [Google Scholar] [CrossRef] [PubMed]
- Perkins, N.D. Integrating cell-signalling pathways with NF-kappa B and IKK function. Nat. Rev. Mol. Cell. Bio. 2007, 8, 49–62. [Google Scholar] [CrossRef]
- Mazzone, G.L.; Rigato, I.; Ostrow, J.D.; Tiribelli, C. Bilirubin effect on endothelial adhesion molecules expression is mediated by the NF-kappa B signaling pathway. Biosci. Trends 2009, 3, 151–157. [Google Scholar] [PubMed]
- Soares, M.P.; Seldon, M.P.; Gregoire, I.P.; Vassilevskaia, T.; Berberat, P.O.; Yu, J.; Tsui, T.Y.; Bach, F.H. Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J. Immunol. 2004, 172, 3553–3563. [Google Scholar] [CrossRef]
- Gibbs, P.E.M.; Maines, M.D. Biliverdin inhibits activation of NF-kappa B: Reversal of inhibition by human biliverdin reductase. Int. J. Cancer 2007, 121, 2567–2574. [Google Scholar] [CrossRef]
- Nuhn, P.; Mitkus, T.; Ceyhan, G.O.; Kunzli, B.M.; Bergmann, F.; Fischer, L.; Giese, N.; Friess, H.; Berberat, P.O. Heme oxygenase 1-generated carbon monoxide and biliverdin attenuate the course of experimental necrotizing pancreatitis. Pancreas 2013, 42, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Jimi, E.; Strickland, I.; Voll, R.E.; Long, M.X.; Ghosh, S. Differential role of the transcription factor NF-kappa B in selection and survival of CD4(+) and CD8(+) thymocytes. Immunity 2008, 29, 523–537. [Google Scholar] [CrossRef]
- McDonagh, A.F.; Assisi, F. The ready isomerization of bilirubin IX- in aqueous solution. Biochem. J. 1972, 129, 797–800. [Google Scholar] [CrossRef]
- Berry, M.N.; Grivell, A.R.; Grivell, M.B.; Phillips, J.W. Isolated hepatocytes-past, present and future. Cell Biol. Toxicol. 1997, 13, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Zelenka, J.; Lenicek, M.; Muchova, L.; Jirsa, M.; Kudla, M.; Balaz, P.; Zadinova, M.; Ostrow, J.D.; Wong, R.J.; Vitek, L. Highly sensitive method for quantitative determination of bilirubin in biological fluids and tissues. J. Chromatogr. B 2008, 867, 37–42. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valaskova, P.; Dvorak, A.; Lenicek, M.; Zizalova, K.; Kutinova-Canova, N.; Zelenka, J.; Cahova, M.; Vitek, L.; Muchova, L. Hyperbilirubinemia in Gunn Rats Is Associated with Decreased Inflammatory Response in LPS-Mediated Systemic Inflammation. Int. J. Mol. Sci. 2019, 20, 2306. https://doi.org/10.3390/ijms20092306
Valaskova P, Dvorak A, Lenicek M, Zizalova K, Kutinova-Canova N, Zelenka J, Cahova M, Vitek L, Muchova L. Hyperbilirubinemia in Gunn Rats Is Associated with Decreased Inflammatory Response in LPS-Mediated Systemic Inflammation. International Journal of Molecular Sciences. 2019; 20(9):2306. https://doi.org/10.3390/ijms20092306
Chicago/Turabian StyleValaskova, Petra, Ales Dvorak, Martin Lenicek, Katerina Zizalova, Nikolina Kutinova-Canova, Jaroslav Zelenka, Monika Cahova, Libor Vitek, and Lucie Muchova. 2019. "Hyperbilirubinemia in Gunn Rats Is Associated with Decreased Inflammatory Response in LPS-Mediated Systemic Inflammation" International Journal of Molecular Sciences 20, no. 9: 2306. https://doi.org/10.3390/ijms20092306
APA StyleValaskova, P., Dvorak, A., Lenicek, M., Zizalova, K., Kutinova-Canova, N., Zelenka, J., Cahova, M., Vitek, L., & Muchova, L. (2019). Hyperbilirubinemia in Gunn Rats Is Associated with Decreased Inflammatory Response in LPS-Mediated Systemic Inflammation. International Journal of Molecular Sciences, 20(9), 2306. https://doi.org/10.3390/ijms20092306