A Kriging Surrogate Model for Uncertainty Analysis of Graphene Based on a Finite Element Method
Abstract
:1. Introduction
2. Model Formation
2.1. Graphene Sheets
2.2. Kriging Surrogate Model
2.3. Latin Hypercube Sampling Method
3. Program Implementation
4. Discussion and Results
4.1. Statistical Results
4.2. Comparison and Discussion
4.3. Uncertainty Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 63, 183–191. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A.; Novoselov, K.; Morozov, S. Two-dimensional gas of massless Dirac fermions in graphene. Nat. Cell Boil. 2005, 438, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911. [Google Scholar] [CrossRef]
- Calizo, I.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Lett. 2007, 7, 2645–2649. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Blakslee, O.L. Elastic Constants of Compression-Annealed Pyrolytic Graphite. J. Appl. Phys. 1970, 41, 3373. [Google Scholar] [CrossRef]
- Yu, M.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science 2000, 287, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Poot, M.; Van Der Zant, H.S.J. Nanomechanical properties of few-layer graphene membranes. Appl. Phys. Lett. 2008, 92, 63111. [Google Scholar] [CrossRef] [Green Version]
- Frank, I.W.; Tanenbaum, D.M.; Van Der Zande, A.M.; McEuen, P.L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2007, 25, 2558. [Google Scholar] [CrossRef]
- Georgantzinos, S.K.; Markolefas, S.; Giannopoulos, G.I.; Katsareas, D.E.; Anifantis, N.K. Designing pinhole vacancies in graphene towards functionalization: Effects on critical buckling load. Superlattices Microstruct. 2017, 103, 343–357. [Google Scholar] [CrossRef]
- Ulybyshev, M.V.; Buividovich, P.V.; Katsnelson, M.I.; Polikarpov, M.I. Monte Carlo study of the semimetal-insulator phase transition in monolayer graphene with a realistic interelectron interaction potential. Phys. Rev. Lett. 2013, 111, 056801. [Google Scholar] [CrossRef] [PubMed]
- Armour, W.; Hands, S.; Strouthos, C. Monte Carlo simulation of the semimetal-insulator phase transition in monolayer graphene. Phys. Rev. B 2010, 81, 125105. [Google Scholar] [CrossRef]
- Feldner, H.; Meng, Z.Y.; Honecker, A.; Cabra, D.; Wessel, S.; Assaad, F.F. Magnetism of finite graphene samples: Mean-field theory compared with exact diagonalization and quantum Monte Carlo simulations. Phys. Rev. B 2010, 81, 115416. [Google Scholar] [CrossRef]
- Whitesides, R.; Frenklach, M. Detailed kinetic Monte Carlo simulations of graphene-edge growth. J. Phys. Chem. A 2009, 114, 689–703. [Google Scholar] [CrossRef]
- Chu, L.; De Cursi, E.S.; El Hami, A.; Eid, M. Application of Latin Hypercube Sampling Based Kriging Surrogate Models in Reliability Assessment. Sci. J. Appl. Math. Stat. 2015, 3, 263. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.; De Cursi, E.S.; El Hami, A.; Eid, M. Reliability Based Optimization with Metaheuristic Algorithms and Latin Hypercube Sampling Based Surrogate Models. Appl. Comput. Math. 2015, 4, 462. [Google Scholar] [CrossRef] [Green Version]
- Helton, J.; Davis, F. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Saf. 2003, 81, 23–69. [Google Scholar] [CrossRef] [Green Version]
- Matheron, G. Principles of geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Cressie, N. The origins of kriging. Math. Geol. 1990, 22, 239–252. [Google Scholar] [CrossRef]
- Currin, C.; Mitchell, T.; Morris, M.; Ylvisaker, D. Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments. J. Am. Stat. Assoc. 1991, 86, 953–963. [Google Scholar] [CrossRef]
- Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient Global Optimization of Expensive Black-Box Functions. J. Optim. 1998, 13, 455–492. [Google Scholar]
- Martin, J.D.; Simpson, T.W. Use of Kriging Models to Approximate Deterministic Computer Models. AIAA J. 2005, 43, 853–863. [Google Scholar] [CrossRef] [Green Version]
- Kleijnen, J.P. Kriging metamodeling in simulation: A review. Eur. J. Oper. 2009, 192, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Wu, X. Metamodel-Based Inverse Uncertainty Quantification of Nuclear Reactor Simulators under the Bayesian Framework. Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2017. [Google Scholar]
- Wu, X.; Kozlowski, T.; Meidani, H. Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data. Reliab. Eng. Saf. 2018, 169, 422–436. [Google Scholar] [CrossRef]
- Stein, M.L. Interpolation of Spatial Data: Some Theory for Kriging; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Cressie, N. Statistics for Spatial Data; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Forrester, A.I.; Keane, A.J. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50–79. [Google Scholar] [CrossRef] [Green Version]
- Roustant, O.; Ginsbourger, D.; Deville, Y. Dicekriging, diceoptim: Two R packages for the analysis of computer experiments by kriging-based metamodelling and optimization. J. Stat. Softw. 2012, 51, 54. [Google Scholar] [CrossRef]
- Echard, B.; Gayton, N.; Lemaire, M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation. Struct. Saf. 2011, 33, 145–154. [Google Scholar] [CrossRef]
- Wernik, J.M.; Meguid, S.A. Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 2010, 212, 167–179. [Google Scholar] [CrossRef]
- Parvaneh, V.; Shariati, M. Effect of defects and loading on prediction of Young’s modulus of SWCNTs. Acta Mech. 2011, 216, 281–289. [Google Scholar] [CrossRef]
- Brenner, D.W.; Shenderova, O.A.; Harrison, J.A.; Stuart, S.J.; Ni, B.; Sinnott, S.B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 2002, 14, 783–802. [Google Scholar] [CrossRef]
- Duan, W.H.; Wang, Q.; Liew, K.M.; He, X. Molecular mechanics modeling of carbon nanotube fracture. Carbon 2007, 45, 1769–1776. [Google Scholar] [CrossRef]
- Liu, F.; Ming, P.; Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 2007, 76, 064120. [Google Scholar] [CrossRef]
- Kudin, K.N.; Yakobson, B.I.; Scuseria, G.E. C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 2001, 64, 235406. [Google Scholar] [CrossRef]
- Wei, X.; Fragneaud, B.; Marianetti, C.A.; Kysar, J.W. Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys. Rev. B 2009, 80, 205407. [Google Scholar] [CrossRef]
- Gupta, S.; Dharamvir, K.; Jindal, V.K. Elastic moduli of single-walled carbon nanotubes and their ropes. Phys. Rev. B 2005, 72, 165428. [Google Scholar] [CrossRef]
- Lu, Q.; Huang, R. Nonlinear mechanics of single-atomic-layer graphene sheets. Int. J. Appl. Mech. 2009, 1, 443–467. [Google Scholar] [CrossRef]
- Sadeghzadeh, S.; Khatibi, M. Modal identification of single layer graphene nano sheets from ambient responses using frequency domain decomposition. Eur. J. Mech. A/Solids 2017, 65, 70–78. [Google Scholar] [CrossRef]
- Cadelano, E.; Palla, P.L.; Giordano, S.; Colombo, L. Nonlinear Elasticity of Monolayer Graphene. Phys. Lett. 2009, 102, 235502. [Google Scholar] [CrossRef] [PubMed]
- Reddy, C.D.; Rajendran, S.; Liew, K.M. Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 2006, 17, 864–870. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Y.; Cao, G. Elastic properties of monolayer graphene with different chiralities. J. Phys. Condens. Matter 2013, 25, 125302. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Shi, J.J.; Souza de Cursi, E. Vibration analysis of vacancy defected graphene sheets by Monte Carlo based finite element method. Nanomaterials 2018, 8, 489. [Google Scholar] [CrossRef]
- Warner, J.H.; Lee, G.-D.; He, K.; Robertson, A.W.; Yoon, E.; Kirkland, A.I. Bond Length and Charge Density Variations within Extended Arm Chair Defects in Graphene. ACS Nano 2013, 7, 9860–9866. [Google Scholar] [CrossRef] [PubMed]
- Fasolino, A.; Los, J.H.; Katsnelson, M.I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858. [Google Scholar] [CrossRef]
- Ansari, R.; Rajabiehfard, R.; Arash, B. Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput. Mater. Sci. 2010, 49, 831–838. [Google Scholar] [CrossRef]
- Georgantzinos, S.K.; Giannopoulos, G.I.; Anifantis, N.K. On the coupling of axial and shear deformations of single-walled carbon nanotubes and graphene: A numerical study. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 2010, 224, 163–172. [Google Scholar] [CrossRef]
- Rouhi, S.; Ansari, R. Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Phys. E Low-Dimens. Syst. Nanostructures 2012, 44, 764–772. [Google Scholar] [CrossRef]
- Georgantzinos, S.K. A new finite element for an efficient mechanical analysis of graphene structures using computer aided design/computer aided engineering techniques. J. Comput. Theor. Nanosci. 2017, 14, 5347–5354. [Google Scholar] [CrossRef]
Definition | Interval | Units | |
---|---|---|---|
Bz | The length of bonds in the Zigzag type | 0.15–0.4 | nm |
Ba | The length of bonds in the Armchair type | 0.15–0.4 | nm |
Dz | The diameter of bonds’ section in the Zigzag type | 0.02–0.05 | nm |
Da | The diameter of bonds’ section in the Armchair type | 0.02–0.05 | nm |
Wz | The number of hexagons in width in the Zigzag type | 6–20 | / |
Wa | The number of hexagons in width in the Armchair type | 6–20 | / |
Hz | The number of hexagons in height in the Zigzag type | 20–60 | / |
Ha | The number of hexagons in height in the Armchair type | 20–60 | / |
Ez | Young’s modulus of graphene sheets in the Zigzag type | 0.2–2 | TPa |
Ea | Young’s modulus of graphene sheets in the Armchair type | 0.2–2 | TPa |
Rz | Poisson ratio of graphene sheets in the Zigzag type | 0.1–0.5 | / |
Ra | Poisson ratio of graphene sheets in the Armchair type | 0.1–0.5 | / |
Tz | Physical density of graphene sheets in the Zigzag type | 1500–4000 | kg/m3 |
Ta | Physical density of graphene sheets in the Armchair type | 1500–4000 | kg/m3 |
Mean (THz) | Variance (THz^2) | Maximum (THz) | Minimum (THz) | |
---|---|---|---|---|
F1-Z | 3.0060 | 7.2567 | 21.1325 | 0.1654 |
F2-Z | 4.7177 | 18.3757 | 42.7713 | 0.2730 |
F3-Z | 6.2362 | 31.1114 | 44.2943 | 0.3413 |
F4-Z | 7.8909 | 49.5804 | 63.4948 | 0.4411 |
F1-A | 3.1309 | 9.7822 | 24.3613 | 0.2442 |
F2-A | 4.8098 | 21.6774 | 43.1523 | 0.4345 |
F3-A | 6.4075 | 38.0443 | 55.5136 | 0.5552 |
F4-A | 8.0964 | 62.0176 | 72.8086 | 0.7306 |
Interval | Mean (THz) | Variance (THz^2) | Maximum (THz) | Minimum (THz) | |
---|---|---|---|---|---|
Bz (nm) | 0.2–0.35 | 2.1151 | 0.0367 | 2.3469 | 1.7151 |
Ba (nm) | 0.2–0.35 | 2.1472 | 0.1742 | 2.6792 | 1.3697 |
Dz (nm) | 0.025–0.045 | 2.0073 | 0.2933 | 3.1165 | 1.0013 |
Da (nm) | 0.025–0.045 | 1.9239 | 0.3184 | 3.0748 | 1.0522 |
Wz | 8–18 | 1.9574 | 0.1890 | 2.9359 | 1.2455 |
Wa | 8–18 | 2.0740 | 0.4036 | 3.7651 | 1.3056 |
Hz | 30–50 | 2.0945 | 0.0695 | 2.7333 | 1.6979 |
Ha | 30–50 | 1.9636 | 0.0796 | 2.5998 | 1.4943 |
Interval | Mean (THz) | Variance (THz^2) | Maximum (THz) | Minimum (THz) | |
---|---|---|---|---|---|
Ez (TPa) | 0.6–1.3 | 1.7847 | 0.0457 | 2.1255 | 1.3774 |
Ea (TPa) | 0.6–1.3 | 1.5794 | 0.0639 | 2.0562 | 1.1876 |
Rz | 0.16–0.3 | 1.9990 | 0.0016 | 2.0442 | 1.9204 |
Ra | 0.16–0.3 | 1.9200 | 0.0004 | 1.9421 | 1.8707 |
Tz (g/cm3) | 1.6–3.6 | 2.0531 | 0.1223 | 2.5258 | 1.4059 |
Ta (g/cm3) | 1.6–3.6 | 1.9587 | 0.0583 | 2.3490 | 1.5493 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Chu, L.; Braun, R. A Kriging Surrogate Model for Uncertainty Analysis of Graphene Based on a Finite Element Method. Int. J. Mol. Sci. 2019, 20, 2355. https://doi.org/10.3390/ijms20092355
Shi J, Chu L, Braun R. A Kriging Surrogate Model for Uncertainty Analysis of Graphene Based on a Finite Element Method. International Journal of Molecular Sciences. 2019; 20(9):2355. https://doi.org/10.3390/ijms20092355
Chicago/Turabian StyleShi, Jiajia, Liu Chu, and Robin Braun. 2019. "A Kriging Surrogate Model for Uncertainty Analysis of Graphene Based on a Finite Element Method" International Journal of Molecular Sciences 20, no. 9: 2355. https://doi.org/10.3390/ijms20092355
APA StyleShi, J., Chu, L., & Braun, R. (2019). A Kriging Surrogate Model for Uncertainty Analysis of Graphene Based on a Finite Element Method. International Journal of Molecular Sciences, 20(9), 2355. https://doi.org/10.3390/ijms20092355