Amino Acid Transport Defects in Human Inherited Metabolic Disorders
Abstract
:1. Introduction
2. Dicarboxylic Aminoaciduria (OMIM #222730)
3. Epileptic Encephalopathy SLC1A2-Related (OMIM #617105)
4. Episodic Ataxia Type 6 SLC1A3-Related (OMIM #612656)
5. Spastic Tetraplegia, Thin Corpus Callosum, and Progressive Microcephaly Linked to SLC1A4 (OMIM #616657)
6. Cystinuria (OMIM #220100)
7. Hyperekplexia 3 (OMIM #614618)
8. Retinal Dystrophy SLC6A6-Related
9. Glycine Encephalopathy with Normal Serum Glycine (OMIM #617301)
10. Mental Retardation, Autosomal Recessive 48 (OMIM #616269)
11. Hartnup Disorder (OMIM #234500)
12. Iminoglycinuria (OMIM #242600) and Hyperglycinuria (OMIM #138500)
13. Argininemia SLC7A2-Related
14. Lysinuric Protein Intolerance (OMIM #222700)
15. Retinitis Pigmentosa 68 (OMIM #615725)
16. Deafness, Autosomal Dominant 25 (OMIM #605583)
17. Epileptic Encephalopathy, Early Infantile 39 (OMIM #612949)
18. AGC2 Deficiency (OMIM #605814, #603471)
19. Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) Syndrome (OMIM #238970)
20. Epileptic Encephalopathy, Early Infantile, 3 (OMIM #609304)
21. Foveal Hypoplasia, 2 (OMIM #609218)
22. Cystinosis (OMIM #219800, #219900, and #219750)
23. Other Possible Inherited Conditions Related to Amino Acid Transporters
24. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bröer, S.; Bröer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 2017, 474, 1935–1963. [Google Scholar] [CrossRef] [Green Version]
- Schweikhard, E.S.; Ziegler, C.M. Amino acid secondary transporters: Toward a common transport mechanism. Curr. Top. Membr. 2012, 70, 1–28. [Google Scholar]
- Wong, F.H.; Chen, J.S.; Reddy, V.; Day, J.L.; Shlykov, M.A.; Wakabayashi, S.T.; Sailer, M.H., Jr. The amino Acid-polyamine-organocation superfamily. J. Mol. Microbiol. Biotechnol. 2012, 22, 105–113. [Google Scholar] [CrossRef]
- Verrey, F.; Singer, D.; Ramadan, T.; Vuille-dit-Bille, R.N.; Mariotta, L.; Camargo, S.M. Kidney amino acid transport. Pflugers Arch. 2009, 458, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacin, M.; Estevez, R.; Bertran, J.; Zorzano, A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 1998, 78, 969–1054. [Google Scholar] [CrossRef] [PubMed]
- Broer, S. Adaptation of plasma membrane amino acid transport mechanisms to physiological demands. Pflugers Arch. 2002, 444, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Bussolati, O.; Dall’Asta, V.; Franchi-Gazzola, R.; Sala, R.; Rotoli, B.M.; Visigalli, R.; Casado, J.; Lopez-Fontanals, M.; Pastor-Anglada, M.; Gazzola, G.C. The role of system A for neutral amino acid transport in the regulation of cell volume. Mol. Membr. Biol. 2001, 18, 27–38. [Google Scholar] [CrossRef]
- Christensen, H.N. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol. Rev. 1990, 70, 43–77. [Google Scholar] [CrossRef]
- Hyde, R.; Taylor, P.M.; Hundal, H.S. Amino acid transporters: Roles in amino acid sensing and signalling in animal cells. Biochem. J. 2003, 373, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Matthews, J.C.; Anderson, K.J. Recent advances in amino acid transporters and excitatory amino acid receptors. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 77–84. [Google Scholar] [CrossRef]
- Bode, B.P. Recent molecular advances in mammalian glutamine transport. J. Nutr. 2001, 131, 2475S–2485S. [Google Scholar] [CrossRef] [PubMed]
- Verrey, F.; Jack, D.L.; Paulsen, I.T.; Saier, M.H.J.; Pfeiffer, R. New glycoprotein-associated amino acid transporters. J. Membr. Biol. 1999, 172, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Hediger, M.A.; Romero, M.F.; Peng, J.B.; Rolfs, A.; Takanaga, H.; Bruford, E.A. The ABCs of solute carriers: Physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch. 2004, 447, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Hediger, M.A.; Clémençon, B.; Burrier, R.E.; Bruford, E.A. The ABCs of membrane transporters in health and disease (SLC series). Mol. Asp. Med. 2013, 34, 95–107. [Google Scholar] [CrossRef]
- Meier, C.; Ristic, Z.; Klauser, S.; Verrey, F. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO. J. 2002, 21, 580–589. [Google Scholar] [CrossRef]
- Bevington, A.; Brown, J.; Butler, H.; Govindji, S.; Khalid, K.; Sheridan, K.; Walls, J. Impaired system a amino acid transport mimics the catabolic effects of acid in L6 cells. Eur. J. Clin. Investig. 2002, 32, 590–602. [Google Scholar] [CrossRef]
- Taylor, P.M. Role of Amino Acid Transporters in Amino Acid Sensing. Am. J. Clin. Nutr. 2014, 99, 223S–230S. [Google Scholar] [CrossRef] [Green Version]
- Bröer, S. Amino Acid Transporters as Disease Modifiers and Drug Targets. SLAS. Discov. 2018, 23, 303–320. [Google Scholar] [CrossRef] [Green Version]
- Kandasamy, P.; Gyimesi, G.; Kanai, Y.; Hediger, M.A. Amino acid transporters revisited: New views in health and disease. Trends Biochem. Sci. 2018, 43, 752–789. [Google Scholar] [CrossRef]
- Bailey, C.G.; Ryan, R.M.; Thoeng, A.D.; Ng, C.; King, K.; Vanslambrouck, J.M.; Auray-Blais, C.; Vandenberg, R.J.; Broer, S.; Rasko, J.E.J. Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J. Clin. Investig. 2011, 121, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Bröer, S.; Palacín, M. The role of amino acid transporters in inherited and acquired diseases. Biochem. J. 2011, 436, 193–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teijema, H.L.; van Gelderen, H.H.; Giesberts, M.A.; Laurent de Angulo, M.S. Dicarboxylic aminoaciduria: An inborn error of glutamate and aspartate transport with metabolic implications, in combination with a hyperprolinemia. Metabolism 1974, 23, 115–123. [Google Scholar] [CrossRef]
- Magi, S.; Piccirillo, S.; Amoroso, S.; Lariccia, V. Excitatory amino acid transporters (EAATs): Glutamate transport and beyond. Int. J. Mol. Sci. 2019, 20, 5674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auray-Blais, C.; Giguère, R.; Lemieux, B. Newborn urine screening programme in the province of Quebec: An update of 30 years’ experience. J. Inherit. Metab. Dis. 2003, 26, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Auray-Blais, C.; Cyr, D.; Drouin, R. Quebec neonatal mass urinary screening programme: From micromolecules to macromolecules. J. Inherit. Metab. Dis. 2007, 30, 515–521. [Google Scholar] [CrossRef]
- Swarna, M.; Rao, D.N.; Reddy, P.P. Dicarboxylic aminoaciduria associated with mental retardation. Hum. Genet. 1989, 82, 299–300. [Google Scholar] [CrossRef]
- Melancon, S.B.; Dallaire, L.; Lemieux, B.; Robitaille, P.; Potier, M. Dicarboxylic aminoaciduria: An inborn error of amino acid conservation. J. Pediatr. 1977, 91, 422–427. [Google Scholar] [CrossRef]
- Wang, Y.; Adamczyk, A.; Shugart, Y.Y.; Samuels, J.F.; Grados, M.A.; Greenberg, B.D.; Knowles, J.A.; McCracken, J.T.; Rauch, S.L.; Murphy, D.L.; et al. A screen of SLC1A1 for OCD-related alleles. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153B, 675–679. [Google Scholar] [CrossRef]
- De Salles Andrade, J.B.; Giori, I.G.; Melo-Felippe, F.B.; Vieira-Fonseca, T.; Fontenelle, L.F.; Kohlrausch, F.B. Glutamate transporter gene polymorphisms and obsessive-compulsive disorder: A case-control association study. J. Clin. Neurosci. 2019, 62, 53–59. [Google Scholar] [CrossRef]
- Arnold, P.D.; Sicard, T.; Burroughs, E.; Richter, M.A.; Kennedy, J.L. Glutamate transporter gene SLC1A1 associated with obsessive-compulsive disorder. Arch. Gen. Psychiatry 2006, 63, 769–776. [Google Scholar] [CrossRef]
- Demily, C.; Hubert, L.; Franck, N.; Poisson, A.; Munnich, A.; Besmond, C. Somatic mosaicism for SLC1A1 mutation supports threshold effect and familial aggregation in schizophrenia spectrum disorders. Schizophr. Res. 2018, 197, 583–584. [Google Scholar] [CrossRef] [PubMed]
- Myles-Worsley, M.; Tiobech, J.; Browning, S.R.; Korn, J.; Goodman, S.; Gentile, K.; Melhem, N.; Byerley, W.; Faraone, S.V.; Middleton, F.A. Deletion at the SLC1A1 glutamate transporter gene co-segregates with schizophrenia and bipolar schizoaffective disorder in a 5-generation family. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 162B, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Afshari, P.; Yao, W.D.; Middleton, F.A. Reduced Slc1a1 expression is associated with neuroinflammation and impaired sensorimotor gating and cognitive performance in mice: Implications for schizophrenia. PLoS ONE 2017, 12, e0183854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdolhosseinzadeh, S.; Sina, M.; Ahmadiani, A.; Asadi, S.; Shams, J. Genetic and pharmacogenetic study of glutamate transporter (SLC1A1) in Iranian patients with obsessive-compulsive disorder. J. Clin. Pharm. Ther. 2019, 44, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Epi4K Consortium. De Novo Mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am. J. Hum. Genet. 2016, 99, 287–298. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S.G.; Kegelman, T.P.; Su, Z.Z.; Das, S.K.; Dash, R.; Dasgupta, S.; Barral, P.M.; Hedvat, M.; Diaz, P.; et al. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: Opportunities for developing novel therapeutics. J. Cell. Physiol. 2011, 226, 2484–2493. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Gusic, M.; Günthner, R.; Alhaddad, B.; Kovacs-Nagy, R.; Makowski, C.; Baumeister, F.; Strom, T.; Meitinger, T.; Prokisch, H.; et al. Biallelic Mutations in SLC1A2; an Additional Mode of Inheritance for SLC1A2-Related Epilepsy. Neuropediatrics 2018, 49, 59–62. [Google Scholar]
- Guella, I.; McKenzie, M.B.; Evans, D.M.; Buerki, S.E.; Toyota, E.B.; Van Allen, M.I.; Epilepsy Genomics Study; Suri, M.; Elmslie, F.; Deciphering Developmental Disorders Study; et al. De Novo Mutations in YWHAG Cause Early-Onset Epilepsy. Am. J. Hum. Genet. 2017, 101, 300–310. [Google Scholar] [CrossRef]
- Stergachis, A.B.; Pujol-Giménez, J.; Gyimesi, G.; Fuster, D.; Albano, G.; Troxler, M.; Picker, J.; Rosenberg, P.A.; Bergin, A.; Peters, J.; et al. Recurrent SLC1A2 variants cause epilepsy via a dominant negative mechanism. Ann. Neurol. 2019, 85, 921–926. [Google Scholar] [CrossRef]
- Rothstein, J.D.; Patel, S.; Regan, M.R.; Haenggeli, C.; Huang, Y.H.; Bergles, D.E.; Jin, L.; Dykes Hoberg, M.; Vidensky, S.; Chung, D.S.; et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005, 433, 73–77. [Google Scholar] [CrossRef]
- Lee, S.G.; Su, Z.Z.; Emdad, L.; Gupta, P.; Sarkar, D.; Borjabad, A.; Volsky, D.J.; Fisher, P.B. Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J. Biol. Chem. 2008, 283, 13116–13123. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, J.; Binder, D.K. Targeting glutamate transporter-1 in neurological diseases. Oncotarget. 2017, 8, 22311–22312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.D.; Jen, J.C.; Choi, S.Y.; Shin, J.H.; Kim, H.S.; Kim, H.J.; Kim, J.S.; Choi, J.H. Late-onset episodic ataxia associated with SLC1A3 mutation. J. Hum. Genet. 2017, 62, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Jen, J.C.; Wan, J.; Palos, T.P.; Howard, B.D.; Baloh, R.W. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 2005, 65, 529–534. [Google Scholar] [CrossRef] [PubMed]
- De Vries, B.; Mamsa, H.; Stam, A.H.; Wan, J.; Bakker, S.L.; Vanmolkot, K.R.; Hann, J.; Terwindt, G.M.; Boon, E.M.; Howard, B.D.; et al. Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch. Neurol. 2009, 66, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Pyle, A.; Smertenko, T.; Bargiela, D.; Griffin, H.; Duff, J.; Appleton, M.; Douroudis, K.; Pfeffer, G.; Santibanez-Koref, M.; Eglon, G.; et al. Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain 2015, 138, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Iwama, K.; Iwata, A.; Shiina, M.; Mitsuhashi, S.; Miyatake, S.; Takata, A.; Miyake, N.; Ogata, K.; Ito, S.; Mizuguchi, T.; et al. A novel mutation in SLC1A3 causes episodic ataxia. J. Hum. Genet. 2018, 63, 207–211. [Google Scholar] [CrossRef]
- Jen, J.C.; Graves, T.D.; Hess, E.J.; Hanna, M.G.; Griggs, R.C.; Baloh, R.W.; CINCH Investigators. Primary episodic ataxias: Diagnosis, pathogenesis and treatment. Brain 2007, 130, 2484–2493. [Google Scholar] [CrossRef] [Green Version]
- Pironti, E.; Salpietro, V.; Cucinotta, F.; Granata, F.; Mormina, E.; Efthymiou, S.; Scuderi, C.; Gagliano, A.; Houlden, H.; Di Rosa, G. A novel SLC1A4 homozygous mutation causing congenital microcephaly, epileptic encephalopathy and spastic tetraparesis: A video-EEG and tractography—Case study. J. Neurogenet. 2018, 32, 316–321. [Google Scholar] [CrossRef]
- Tabatabaie, L.; Klomp, L.W.; Berger, R.; de Koning, T.J. L-serine synthesis in the central nervous system: A review on serine deficiency disorders. Mol. Genet. Metab. 2010, 99, 256–262. [Google Scholar] [CrossRef]
- Kaplan, E.; Zubedat, S.; Radzishevsky, I.; Valenta, A.C.; Rechnitz, O.; Sason, H.; Sajrawi, C.; Bodner, O.; Konno, K.; Esaki, K.; et al. ASCT1 (Slc1a4) transporter is a physiologic regulator of brain d-serine and neurodevelopment. Proc. Natl. Acad. Sci. USA 2018, 115, 9628–9633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heimer, G.; Marek-Yagel, D.; Eyal, E.; Barel, O.; Oz Levi, D.; Hoffmann, C.; Ruzzo, E.K.; Ganelin-Cohen, E.; Lancet, D.; Pras, E.; et al. SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum. Clin. Genet. 2015, 88, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Srour, M.; Hamdan, F.F.; Gan-Or, Z.; Labuda, D.; Nassif, C.; Oskoui, M.; Gana-Weisz, M.; Orr-Urtreger, A.; Rouleau, G.A.; Michaud, J.L. A homozygous mutation in SLC1A4 in siblings with severe intellectual disability and microcephaly. Clin. Genet. 2015, 88, e1–e4. [Google Scholar] [CrossRef] [PubMed]
- Damseh, N.; Simonin, A.; Jalas, C.; Picoraro, J.A.; Shaag, A.; Cho, M.T.; Yaacov, B.; Neidich, J.; Al-Ashhab, M.; Juusola, J.; et al. Mutations in SLC1A4, encoding the brain serine transporter, are associated with developmental delay, microcephaly and hypomyelination. J. Med. Genet. 2015, 52, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Conroy, J.; Allen, N.M.; Gorman, K.; O’Halloran, E.; Shahwan, A.; Lynch, B.; Lynch, S.A.; Ennis, S.; King, M.D. Novel European SLC1A4 variant: Infantile spasms and population ancestry analysis. J. Hum. Genet. 2016, 61, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Thier, S.; Fox, M.; Segal, S.; Rosenberg, L.E. Cystinuria: In vitro demonstration of an intestinal transport defect. Science 1964, 143, 482–484. [Google Scholar] [CrossRef]
- Rosenberg, L.E.; Durant, J.L.; Holland, J.M. Intestinal absorption and renal extraction of cystine and cysteine in cystinuria. N. Engl. J. Med. 1965, 273, 1239–1245. [Google Scholar] [CrossRef]
- Thier, S.O.; Segal, S.; Fox, M.; Blair, A.; Rosenberg, L.E. Cystinuria: Defective intestinal transport of dibasic amino acids and cystine. J. Clin. Investig. 1965, 44, 442–448. [Google Scholar] [CrossRef]
- Eggermann, T.; Venghaus, A.; Zerres, K. Cystinuria: An inborn cause of urolithiasis. Orphanet. J. Rare Dis. 2012, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Sumorok, N.; Goldfarb, D.S. Update on cystinuria. Curr. Opin. Nephrol. Hypertens 2013, 22, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Edvardsson, V.O.; Goldfarb, D.S.; Lieske, J.C.; Beara-Lasic, L.; Anglani, F.; Milliner, D.S.; Palsson, R. Hereditary causes of kidney stones and chronic kidney disease. Pediatr. Nephrol. 2013, 28, 1923–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, K.; Wong, K.; Withington, J.; Bultitude, M.; Doherty, A. Cystinuria-a urologist’s perspective. Nat. Rev. Urol. 2014, 11, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.J.; Schoolwerth, A.C.; Pais, V.M. Cystinuria: Current concepts and future directions. Clin. Nephrol. 2015, 83, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, K.H.; Pedersen, K.V.; Osther, S.S.; Jung, H.U.; Lildal, S.K.; Osther, P.J. How should patients with cystine stone disease be evaluated and treated in the twenty-first century? Urolithiasis 2016, 44, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Saravakos, P.; Kokkinou, V.; Giannatos, E. Cystinuria: Current diagnosis and management. Urology 2014, 83, 693–699. [Google Scholar] [CrossRef]
- Sahota, A.; Tischfield, J.A.; Goldfarb, D.S.; Ward, M.D.; Hu, L. Cystinuria: Genetic aspects, mouse models, and a new approach to therapy. Urolithiasis 2019, 47, 57–66. [Google Scholar] [CrossRef]
- Calonge, M.J.; Gasparini, P.; Chillaron, J.; Chillon, M.; Gallucci, M.; Rousaud, F.; Zelante, L.; Testar, X.; Dallapiccola, B.; Di Silverio, F.; et al. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat. Genet. 1994, 6, 420–425. [Google Scholar] [CrossRef]
- Calonge, M.J.; Volpini, V.; Bisceglia, L.; Rousaud, F.; de Sanctis, L.; Beccia, E.; Zelante, L.; Testar, X.; Zorzano, A.; Estivill, X. Genetic heterogeneity in cystinuria: The SLC3A1 gene is linked to type I but not to type III cystinuria. Proc. Natl. Acad. Sci. USA 1995, 92, 9667–9671. [Google Scholar] [CrossRef] [Green Version]
- Bisceglia, L.; Calonge, M.J.; Totaro, A.; Feliubadaló, L.; Melchionda, S.; García, J.; Testar, X.; Gallucci, M.; Ponzone, A.; Zelante, L.; et al. Localization, by linkage analysis, of the cystinuria type III gene to chromosome 19q13.1. Am. J. Hum. Genet. 1997, 60, 611–616. [Google Scholar]
- Feliubadalo, L.; Font, M.; Purroy, J.; Rousaud, F.; Estivill, X.; Nunes, V.; Golomb, E.; Centola, M.; Aksentijevich, I.; Kreiss, Y.; et al. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat. Genet. 1999, 23, 52–57. [Google Scholar] [CrossRef]
- Biyani, C.S.; Cartledge, J.J. Cystinuria—diagnosis and management. EAU-EBU Update Ser. 2006, 4, 175–183. [Google Scholar] [CrossRef]
- Schwentner, C.; Oswald, J.; Lunacek, A.; Bartsch, G.; Radmayr, C. Giant cystine stone in an infant bladder with no evidence of cystinuria-valence of possible pathomechanisms. Urol. Int. 2005, 75, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Milliner, D.S.; Murphy, M.E. Urolithiasis in pediatric patients. Mayo Clin. Proc. 1993, 68, 241–248. [Google Scholar] [CrossRef]
- Knoll, T.; Zollner, A.; Wendt-Nordahl, G.; Michel, M.S.; Alken, P. Cystinuria in childhood and adolescence: Recommendations for diagnosis, treatment, and follow-up. Pediatr. Nephrol. 2005, 20, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Dasgupta, P.; Khan, M.S. Cystine calculi: Challenging group of stones. Postgrad. Med. J. 2006, 82, 799–801. [Google Scholar] [CrossRef]
- Rhodes, H.L.; Yarram-Smith, L.; Rice, S.J.; Tabaksert, A.; Edwards, N.; Hartley, A.; Woodward, M.N.; Smithson, S.L.; Tomson, C.; Welsh, G.I.; et al. Clinical and genetic analysis of patients with cystinuria in the United Kingdom. Clin. J. Am. Soc. Nephrol. 2015, 10, 1235–1245. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.A.; Mein, R.; Wass, M.; Flinter, F.; Pardy, C.; Bultitude, M.; Thomas, K. The genetic diversity of cystinuria in a UK population of patients. BJU Int. 2015, 116, 109–116. [Google Scholar] [CrossRef]
- Barbey, F.; Joly, D.; Rieu, P.; Mejean, A.; Daudon, M.; Jungers, P. Medical treatment of cystinuria: Critical reappraisal of long-term results. J. Urol. 2000, 163, 1419–1423. [Google Scholar] [CrossRef]
- Chillaron, J.; Font-Llitjos, M.; Fort, J.; Zorzano, A.; Goldfarb, D.S.; Nunes, V.; Palacin, M. Pathophysiology and treatment of cystinuria. Nat. Rev. Nephrol. 2010, 6, 424–434. [Google Scholar] [CrossRef]
- Font-Llitjos, M.; Jimenez-Vidal, M.; Bisceglia, L.; Di Perna, M.; de Sanctis, L.; Rousaud, F.; Zelante, L.; Palacín, M.; Nunes, V. New insights into cystinuria: 40 new mutations, genotype–phenotype correlation, and digenic inheritance causing partial phenotype. J. Med. Genet. 2005, 42, 58–68. [Google Scholar] [CrossRef]
- Gaildrat, P.; Lebbah, S.; Tebani, A.; Sudrie-Arnaud, B.; Tostivint, I.; Bollee, G.; Tubeuf, H.; Charles, T.; Bertholet-Thomas, A.; Goldenberg, A.; et al. Clinical and molecular characterization of cystinuria in a French cohort: Relevance of assessing large-scale rearrangements and splicing variants. Mol. Genet. Genom. Med. 2017, 5, 373–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dello Strologo, L.; Pras, E.; Pontesilli, C.; Beccia, E.; Ricci-Barbini, V.; de Sanctis, L.; Ponzone, A.; Gallucci, M.; Bisceglia, L.; Zelante, L.; et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: A need for a new classification. J. Am. Soc. Nephrol. 2002, 13, 2547–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camargo, S.M.; Bockenhauer, D.; Kleta, R. Aminoacidurias: Clinical and molecular aspects. Kidney Int. 2008, 73, 918–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, M.; Lopes, A.; Mota, C.; Martins, E.; Oliveira, J.; Alves, S.; De Bonis, P.; do Ceu Mota, M.; Dias, C.; Rodrigues-Santos, P.; et al. Clinical, biochemical and molecular characterization of cystinuria in a cohort of 12 patients. Clin. Genet. 2012, 81, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Harnevik, L.; Fjellstedt, E.; Molbaek, A.; Denneberg, T.; Soderkvist, P. Mutation analysis of SLC7A9 in cystinuria patients in Sweden. Genet. Test. 2003, 7, 13–20. [Google Scholar] [CrossRef]
- Font, M.A.; Feliubadalo, L.; Estivill, X.; Nunes, V.; Golomb, E.; Kreiss, Y.; Pras, E.; Bisceglia, L.; D’Adamo, A.P.; Zelante, L.; et al. Functional analysis of mutations in SLC7A9, and genotype–phenotype correlation in non-type I cystinuria. Hum. Mol. Genet. 2001, 10, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Evans, K.; Hayden, M.; Heywood, S.; Hussain, M.; Phillips, A.D.; Cooper, D.N. The human gene mutation database: Towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum. Genet. 2017, 136, 665–677. [Google Scholar] [CrossRef] [Green Version]
- Goodyer, P.R.; Clow, C.; Reade, T.; Girardin, C. Prospective analysis and classification of patients with cystinuria identified in a newborn screening program. J. Pediatr. 1993, 122, 568–572. [Google Scholar] [CrossRef]
- Goodyer, P.; Saadi, I.; Ong, P.; Elkas, G.; Rozen, R. Cystinuria subtype and the risk of nephrolithiasis. Kidney Int. 1998, 54, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Goldfarb, D.S. Potential pharmacologic treatments for cystinuria and for calcium stones associated with hyperuricosuria. Clin. J. Am. Soc. Nephrol. 2011, 6, 2093–2097. [Google Scholar] [CrossRef]
- DeBerardinis, R.J.; Coughlin, C.R.; Kaplan, P. Penicillamine therapy for pediatric cystinuria: Experience from a cohort of American children. J. Urol. 2008, 180, 2620–2623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattah, H.; Hambaroush, Y.; Goldfarb, D.S. Cystine nephrolithiasis. Transl. Androl. Urol. 2014, 3, 228–233. [Google Scholar] [PubMed]
- Asplin, J.R.; Penniston, K.; Goldfarb, D.S. Monosodium urate stones are rare, and urine pH is not low in cystinuria. Am. J. Kidney Dis. 2013, 62, 179–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvari, R.; Brodyansky, I.; Elpeleg, O.; Moses, S.; Landau, D.; Hershkovitz, E. A recessive contiguous gene deletion of chromosome 2p16 associated with cystinuria and a mitochondrial disease. Am. J. Hum. Genet. 2001, 69, 869–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeken, J.; Martens, K.; Francois, I.; Eyskens, F.; Lecointre, C.; Derua, R.; Meulemans, S.; Slootstra, J.W.; Waelkens, E.; de Zegher, F.; et al. Deletion of PREPL, a gene encoding a putative serine oligopeptidase, in patients with hypotonia–cystinuria syndrome. Am. J. Hum. Genet. 2006, 78, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Chabrol, B.; Martens, K.; Meulemans, S.; Cano, A.; Jaeken, J.; Matthijs, G.; Creemers, J.W. Deletion of C2orf34, PREPL and SLC3A1 causes atypical hypotonia–cystinuria syndrome. J. Med. Genet. 2008, 45, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Martens, K.; Heulens, I.; Meulemans, S.; Zaffanello, M.; Tilstra, D.; Hes, F.J.; Rooman, R.; Francois, I.; de Zegher, F.; Jaeken, J.; et al. Global distribution of the most prevalent deletions causing hypotonia-cystinuria syndrome. Eur. J. Hum. Genet. 2007, 15, 1029–1033. [Google Scholar] [CrossRef]
- Regal, L.; Shen, X.M.; Selcen, D.; Verhille, C.; Meulemans, S.; Creemers, J.W.M.; Engel, A.G. PREPL deficiency with or without cystinuria causes a novel myasthenic syndrome. Neurology 2014, 82, 1254–1260. [Google Scholar] [CrossRef] [Green Version]
- Taroni, F.; Capone, V.; Berrettini, A.; De Marco, E.A.; Manzoni, G.A.; Montini, G. A Case of Hypotonia-Cystinuria Syndrome with Genito-Urinary Malformations and Extrarenal Involvement. Front. Pediatr. 2019, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- Nagamori, S.; Wiriyasermkul, P.; Guarch, M.E.; Okuyama, H.; Nakagomi, S.; Tadagaki, K.; Nishinaka, Y.; Bodoy, S.; Takafuji, K.; Okuda, S.; et al. Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1. Proc. Natl. Acad. Sci. USA 2016, 113, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Olschok, K.; Vester, U.; Lahme, S.; Kurth, I.; Eggermann, T. No evidence for point mutations in the novel renal cystine transporter AGT1/SLC7A13 contributing to the etiology of cystinuria. BMC Nephrol. 2018, 19, 278. [Google Scholar] [CrossRef] [PubMed]
- Rees, M.I.; Harvey, K.; Pearce, B.R.; Chung, S.K.; Duguid, I.C.; Thomas, P.; Beatty, S.; Graham, G.E.; Armstrong, L.; Shiang, R.; et al. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat. Genet. 2006, 38, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Dafsari, H.S.; Kawalia, A.; Sprute, R.; Karakaya, M.; Malenica, A.; Herkenrath, P.; Nuernberg, P.; Motameny, S.; Thiele, H.; Cirak, S. Novel mutations in SLC6A5 with benign course in hyperekplexia. Cold Spring. Harb. Mol. Case Stud. 2019, 5, a004465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.S.; Chung, S.K.; Thomas, R.H.; Robinson, A.; Hammond, C.L.; Mullins, J.G.; Carta, E.; Harvey, K.; Harvey, R.J.; Rees, M.I. The glycinergic system in human startle disease: A genetic screening approach. Front. Mol. Neurosci. 2010, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, R.J.; Topf, M.; Harvey, K.; Rees, M.I. The genetics of hyperekplexia: More than startle! Trends Genet. 2008, 24, 439–447. [Google Scholar] [CrossRef]
- Bode, A.; Lynch, J.W. The impact of human hyperekplexia mutations on glycine receptor structure and function. Mol. Brain 2014, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.H. Hyperekplexia: Overexcitable and underdiagnosed. Dev. Med. Child Neurol. 2015, 57, 313. [Google Scholar] [CrossRef] [Green Version]
- Villarejo-Lopez, L.; Jimenez, E.; Bartolome-Martin, D.; Zafra, F.; Lapunzina, P.; Aragon, C.; Lopez-Corcuera, B. P2X receptors up-regulate the cell-surface expression of the neuronal glycine transporter GlyT2. Neuropharmacology 2017, 125, 99–116. [Google Scholar] [CrossRef]
- Preising, M.N.; Görg, B.; Friedburg, C.; Qvartskhava, N.; Budde, B.S.; Bonus, M.; Toliat, M.R.; Pfleger, C.; Altmüller, J.; Herebian, D.; et al. Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration. FASEB J. 2019, 33, 11507–11527. [Google Scholar] [CrossRef]
- Vinnakota, S.; Qian, X.; Egal, H.; Sarthy, V.; Sarkar, H.K. Molecular characterization and in situ localization of a mouse retinal taurine transporter. J. Neurochem. 1997, 69, 2238–2250. [Google Scholar] [CrossRef] [Green Version]
- Alfadhel, M.; Nashabat, M.; Al Qahtani, H.; Alfares, A.; Al Mutairi, F.; Al Shaalan, H.; Douglas, G.V.; Wierenga, K.; Juusola, J.; Alrifai, M.T.; et al. Mutation in SLC6A9 encoding a glycine transporter causes a novel form of non-ketotic hyperglycinemia in humans. Hum. Genet. 2016, 135, 1263–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfallaj, R.; Alfadhel, M. Glycine Transporter 1 Encephalopathy from Biochemical Pathway to Clinical Disease: Review. Child Neurol. Open 2019, 6, 2329048x19831486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, R.J.; Carta, E.; Pearce, B.R.; Chung, S.K.; Supplisson, S.; Rees, M.I.; Harvey, K. A critical role for glycine transporters in hyperexcitability disorders. Front. Mol. Neurosci. 2008, 1, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, R.J.; Yee, B.K. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat. Rev. Drug Discov. 2013, 12, 866–885. [Google Scholar] [CrossRef]
- Kurolap, A.; Armbruster, A.; Hershkovitz, T.; Hauf, K.; Mory, A.; Paperna, T.; Hannappel, E.; Tal, G.; Nijem, Y.; Sella, E.; et al. Loss of glycine transporter 1 causes a subtype of glycine encephalopathy with arthrogryposis and mildly elevated cerebrospinal fluid glycine. Am. J. Hum. Genet. 2016, 99, 1172–1180. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, Z.; Willemsen, M.H.; Papon, M.A.; Musante, L.; Benevento, M.; Hu, H.; Venselaar, H.; Wissink-Lindhout, W.M.; Vulto-van Silfhout, A.T.; Vissers, L.E.L.M.; et al. Homozygous SLC6A17 mutations cause autosomal-recessive intellectual disability with progressive tremor, speech impairment, and behavioral problems. Am. J. Hum. Genet. 2015, 96, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.H.; Reith, M.E.; Quick, M.W. Synaptic uptake and beyond: The sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch. 2004, 447, 519–531. [Google Scholar] [CrossRef]
- Bröer, S. The SLC6 orphans are forming a family of amino acid transporters. Neurochem. Int. 2006, 48, 559–567. [Google Scholar] [CrossRef]
- Liu, Q.R.; Mandiyan, S.; López-Corcuera, B.; Nelson, H.; Nelson, N. A rat brain cDNA encoding the neurotransmitter transporter with an unusual structure. FEBS Lett. 1993, 315, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Parra, L.A.; Baust, T.; El Mestikawy, S.; Quiroz, M.; Hoffman, B.; Haflett, J.M.; Yao, J.K.; Torres, G.E. The orphan transporter Rxt1/NTT4 (SLC6A17) functions as a synaptic vesicle amino acid transporter selective for proline, glycine, leucine, and alanine. Mol. Pharmacol. 2008, 74, 1521–1532. [Google Scholar] [CrossRef] [Green Version]
- Zaia, K.A.; Reimer, R.J. Synaptic vesicle protein NTT4/XT1 (SLC6A17) catalyzes Naþ-coupled neutral amino acid transport. J. Biol. Chem. 2009, 284, 8439–8448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seow, H.F.; Bröer, S.; Bröer, A.; Bailey, C.G.; Potter, S.J.; Cavanaugh, J.A.; Rasko, J.E. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat. Genet. 2004, 36, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Kleta, R.; Romeo, E.; Ristic, Z.; Ohura, T.; Stuart, C.; Arcos-Burgos, M.; Dave, M.H.; Wagner, C.A.; Camargo, S.R.; Inoue, S.; et al. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat. Genet. 2004, 36, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Bröer, S. Apical transporters for neutral amino acids: Physiology and pathophysiology. Physiology (Bethesda) 2008, 23, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Bröer, S. The role of the neutral amino acid transporter B0AT1 (SLC6A19) in Hartnup disorder and protein nutrition. IUBMB. Life 2009, 61, 591–599. [Google Scholar] [CrossRef]
- Singer, D.; Camargo, S.M. Collectrin and ACE2 in renal and intestinal amino acid transport. Channels (Austin) 2011, 5, 410–423. [Google Scholar] [CrossRef] [Green Version]
- Scriver, C.R.; Mahon, B.; Levy, H.L.; Clow, C.L.; Reade, T.M.; Kronick, J.; Lemieux, B.; Laberge, C. The Hartnup phenotype: Mendelian transport disorder, multifactorial disease. Am. J. Hum. Genet. 1987, 40, 401–412. [Google Scholar]
- Baron, D.N.; Dent, C.E.; Harris, H.; Hart, E.W.; Jepson, J.B. Hereditary pellagra-like skin rash with temporary cerebellar ataxia, constant renal aminoaciduria and other bizarre biochemical features. Lancet 1956, 268, 421–428. [Google Scholar] [CrossRef]
- Cheon, C.K.; Lee, B.H.; Ko, J.M.; Kim, H.J.; Yoo, H.W. Novel mutation in SLC6A19 causing late-onset seizures in Hartnup disorder. Pediatr. Neurol. 2010, 42, 369–371. [Google Scholar] [CrossRef]
- Pillai, N.R.; Yubero, D.; Shayota, B.J.; Oyarzábal, A.; Ghosh, R.; Sun, Q.; Azamian, M.S.; Arjona, C.; Brandi, N.; Palau, F.; et al. Loss of CLTRN function produces a neuropsychiatric disorder and a biochemical phenotype that mimics Hartnup disease. Am. J. Med. Genet. A 2019, 179, 2459–2468. [Google Scholar] [CrossRef]
- Bröer, S.; Bailey, C.G.; Kowalczuk, S.; Ng, C.; Vanslambrouck, J.M.; Rodgers, H.; Auray-Blais, C.; Cavanaugh, J.A.; Bröer, A.; Rasko, J.E. Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. J. Clin. Investig. 2008, 118, 3881–3892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesney, R.W. Iminoglycinuria. In The Metabolic and Molecular Bases of Inherited Disease. Vol. III, 8th ed.; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., Eds.; McGraw-Hill: New York, NY, USA, 2001; pp. 4971–4981. [Google Scholar]
- Yahyaoui, R.; Blasco-Alonso, J.; Benito, C.; Rodríguez-García, E.; Andrade, F.; Aldámiz-Echevarría, L.; Muñoz-Hernández, M.C.; Vega, A.I.; Pérez-Cerdá, C.; García-Martín, M.L.; et al. A new metabolic disorder in human cationic amino acid transporter-2 that mimics arginase 1 deficiency in newborn screening. J. Inherit. Metab. Dis. 2019, 42, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Hoshide, R.; Ikeda, Y.; Karashima, S.; Matsuura, T.; Komaki, S.; Kishino, T.; Niikawa, N.; Endo, F.; Matsuda, I. Molecular cloning, tissue distribution, and chromosomal localization of human cationic amino acid transporter 2 (HCAT2). Genomics 1996, 38, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Toivonen, M.; Tringham, M.; Kurko, J.; Terho, P.; Simell, O.; Heiskanen, K.M.; Mykkänen, J. Interactions of y+LAT1 and 4F2hc in the y+l amino acid transporter complex: Consequences of lysinuric protein intolerance-causing mutations. Gen. Physiol. Biophys. 2013, 32, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Perheentupa, J.; Visakorpi, J.K. Protein intolerance with deficient transport of basic aminoacids. Another inborn error of metabolism. Lancet 1965, 2, 813–816. [Google Scholar] [CrossRef]
- Noguchi, A.; Takahashi, T. Overview of symptoms and treatment for lysinuric protein intolerance. J. Hum. Genet. 2019, 64, 849–858. [Google Scholar] [CrossRef]
- Posey, J.E.; Burrage, L.C.; Miller, M.J.; Liu, P.; Hardison, M.T.; Elsea, S.H.; Sun, Q.; Yang, Y.; Willis, A.S.; Schlesinger, A.E.; et al. Lysinuric protein intolerance presenting with multiple fractures. Mol. Genet. Metab. Rep. 2014, 1, 176–183. [Google Scholar] [CrossRef]
- Svedström, E.; Parto, K.; Marttinen, M.; Virtama, P.; Simell, O. Skeletal manifestations of lysinuric protein intolerance. A follow-up study of 29 patients. Skelet. Radiol. 1993, 22, 11–16. [Google Scholar] [CrossRef]
- Güzel-Ozantürk, A.; Ozgül, R.K.; Unal, O.; Hişmi, B.; Aydın, H.İ.; Sivri, S. Molecular and clinical evaluation of Turkish patients with lysinuric protein intolerance. Gene 2013, 521, 293–295. [Google Scholar] [CrossRef]
- Bijarnia-Mahay, S.; Jain, V.; Bansal, R.K.; Reddy, G.M.; Haberle, J. Lysinuric protein intolerance presenting with recurrent hyperammonemic encephalopathy. Indian Pediatr. 2016, 53, 732–734. [Google Scholar] [CrossRef]
- Lukkarinen, M.; Näntö-Salonen, K.; Ruuskanen, O.; Lauteala, T.; Säkö, S.; Nuutinen, M.; Simell, O. Varicella and varicella immunity in patients with lysinuric protein intolerance. J. Inherit. Metab. Dis. 1998, 21, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Tanner, L.M.; Näntö-Salonen, K.; Niinikoski, H.; Jahnukainen, T.; Keskinen, P.; Saha, H.; Kananen, K.; Helanterä, A.; Metso, M.; Linnanvuo, M.; et al. Nephropathy advancing to end-stage renal disease: A novel complication of lysinuric protein intolerance. J. Pediatr. 2007, 150, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, C.; Bednarek, N.; Vuiblet, V.; Boyer, O.; Brassier, A.; De Lonlay, P.; Galmiche, L.; Krug, P.; Baudouin, V.; Pichard, S.; et al. Renal involvement in a French paediatric cohort of patients with lysinuric protein intolerance. JIMD. Rep. 2016, 29, 11–17. [Google Scholar] [PubMed] [Green Version]
- Kärki, M.; Näntö-Salonen, K.; Niinikoski, H.; Tanner, L.M. Urine beta2-microglobulin is an early marker of renal involvement in LPI. JIMD Rep. 2016, 25, 47–55. [Google Scholar]
- Valimahamed-Mitha, S.; Berteloot, L.; Ducoin, H.; Ottolenghi, C.; de Lonlay, P.; de Blic, J. Lung involvement in children with lysinuric protein intolerance. J. Inherit. Metab. Dis. 2015, 38, 257–263. [Google Scholar] [CrossRef]
- Parenti, G.; Sebastio, G.; Strisciuglio, P.; Incerti, B.; Pecoraro, C.; Terracciano, L.; Andria, G. Lysinuric protein intolerance characterized by bone marrow abnormalities and severe clinical course. J. Pediatr. 1995, 126, 246–251. [Google Scholar] [CrossRef]
- Simell, O. Lysinuric protein intolerance and other cationic aminoacidurias. In The Metabolic and Molecular Basis of Inherited Disease; Scriver, C.R., Beaudet, A.L., Sly, S.W., Valle, D., Eds.; McGraw-Hill: New York, NY, USA, 2001; pp. 4933–4956. [Google Scholar]
- Palacin, M.; Borsani, G.; Sebastio, G. The molecular bases of cystinuria and lysinuric protein intolerance. Curr. Opin. Genet. Dev. 2001, 11, 328–335. [Google Scholar] [CrossRef]
- Tringham, M.; Kurko, J.; Tanner, L.; Tuikkala, J.; Nevalainen, O.S.; Niinikoski, H.; Näntö-Salonen, K.; Hietala, M.; Simell, O.; Mykkänen, J. Exploring the transcriptomic variation caused by the Finnish founder mutation of lysinuric protein intolerance (LPI). Mol. Genet. Metab. 2012, 105, 408–415. [Google Scholar] [CrossRef]
- Jin, Z.B.; Huang, X.F.; Lv, J.N.; Xiang, L.; Li, D.Q.; Chen, J.; Huang, C.; Wu, J.; Lu, F.; Qu, J. SLC7A14 linked to autosomal recessive retinitis pigmentosa. Nat. Commun. 2014, 5, 3517. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.Y.; Zheng, S.L.; Li, J.; Zhu, Q.; Duan, W.H.; Zhang, Y.; Zhu, Y.T.; Hu, M. Phenotypic variability of SLC7A14 mutations in patients with inherited retinal dystrophy. Ophthalmic Genet. 2019, 40, 118–123. [Google Scholar] [CrossRef]
- Greene, C.C.; McMillan, P.M.; Barker, S.E.; Kurnool, P.; Lomax, M.I.; Burmeister, M.; Lesperance, M.M. DFNA25, a novel locus for dominant nonsyndromic hereditary hearing impairment, maps to 12q21-24. Am. J. Hum. Genet. 2001, 68, 254–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruel, J.; Emery, S.; Nouvian, R.; Bersot, T.; Amilhon, B.; Van Rybroek, J.M.; Rebillard, G.; Lenoir, M.; Eybalin, M.; Delprat, B.; et al. Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am. J. Hum. Genet. 2008, 83, 278–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, N.; Lee, S.; Park, H.J.; Lee, B.; Kwon, T.J.; Bok, J.; Park, C.I.; Lee, K.Y.; Baek, J.I.; Kim, U.K. Identification of a novel splicing mutation within SLC17A8 in a Korean family with hearing loss by whole-exome sequencing. Gene 2017, 627, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Seal, R.P.; Akil, O.; Yi, E.; Weber, C.M.; Grant, L.; Yoo, J.; Clause, A.; Kandler, K.; Noebels, J.L.; Glowatzki, E.; et al. Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron 2008, 57, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Akil, O.; Seal, R.P.; Burke, K.; Wang, C.; Alemi, A.; During, M.; Edwards, R.H.; Lustig, L.R. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 2012, 75, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Amoedo, N.D.; Punzi, G.; Obre, E.; Lacombe, D.; De Grassi, A.; Pierri, C.L.; Rossignol, R. AGC1/2, the mitochondrial aspartate-glutamate carriers. Biochim. Biophys. Acta. 2016, 1863, 2394–2412. [Google Scholar] [CrossRef]
- Alkan, H.F.; Walter, K.E.; Luengo, A.; Madreiter-Sokolowski, C.T.; Stryeck, S.; Lau, A.N.; Al-Zoughbi, W.; Lewis, C.A.; Thomas, C.J.; Hoefler, G.; et al. Cytosolic aspartate availability determines cell survival when glutamine is limiting. Cell Metab. 2018, 28, 706–720. [Google Scholar] [CrossRef] [Green Version]
- Falk, M.J.; Li, D.; Gai, X.; McCormick, E.; Place, E.; Lasorsa, F.M.; Otieno, F.G.; Hou, C.; Kim, C.E.; Abdel-Magid, N.; et al. AGC1 deficiency causes infantile epilepsy, abnormal myelination, and reduced N-acetylaspartate. JIMD Rep. 2014, 14, 77–85. [Google Scholar]
- Wibom, R.; Lasorsa, F.M.; Tohonen, V.; Barbaro, M.; Sterky, F.H.; Kucinski, T.; Naess, K.; Jonsson, M.; Pierri, C.L.; Palmieri, F.; et al. AGC1 deficiency associated with global cerebral hypomyelination. N. Engl. J. Med. 2009, 361, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Dahlin, M.; Martin, D.A.; Hedlund, Z.; Jonsson, M.; von Dobeln, U.; Wedell, A. The ketogenic diet compensates for AGC1 deficiency and improves myelination. Epilepsia 2015, 56, e176–e181. [Google Scholar] [CrossRef] [Green Version]
- Kavanaugh, B.C.; Warren, E.B.; Baytas, O.; Schmidt, M.; Merck, D.; Buch, K.; Liu, J.S.; Phornphutkul, C.; Caruso, P.; Morrow, E.M. Longitudinal MRI findings in patient with SLC25A12 pathogenic variants inform disease progression and classification. Am. J. Med. Genet. A 2019, 179, 2284–2291. [Google Scholar] [CrossRef] [PubMed]
- Saheki, T.; Kobayashi, K. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J. Hum. Genet. 2002, 47, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Saheki, T.; Kobayashi, K.; Iijima, M.; Moriyama, M.; Yazaki, M.; Takei, Y.; Ikeda, S. Metabolic derangements in deficiency of citrin, a liver-type mitochondrial aspartate–glutamate carrier. Hepatol. Res. 2005, 33, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.X.; Zeng, H.S.; Zhang, Z.H.; Mao, M.; Zheng, Q.Q.; Zhao, S.T.; Cheng, Y.; Chen, F.P.; Wen, W.R.; Song, Y.Z. Molecular diagnosis of pediatric patients with citrin deficiency in China: SLC25A13 mutation spectrum and the geographic distribution. Sci. Rep. 2016, 6, 29732. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.Z.; Guo, L.; Yang, Y.L.; Han, L.S.; Kobayashi, K.; Saheki, T. Failure to thrive and dyslipidemia caused by citrin deficiency. A novel clinical phenotype. Chin. J. Contemp. Pediatr. 2009, 11, 328–332. [Google Scholar]
- Ohura, T.; Kobayashi, K.; Tazawa, Y.; Nishi, I.; Abukawa, D.; Sakamoto, O.; Iinuma, K.; Saheki, T. Neonatal presentation of adult-onset type II citrullinemia. Hum. Genet. 2001, 108, 87–90. [Google Scholar] [CrossRef]
- Tazawa, Y.; Kobayashi, K.; Ohura, T.; Abukawa, D.; Nishinomiya, F.; Hosoda, Y.; Yamashita, M.; Nagata, I.; Kono, Y.; Yasuda, T.; et al. Infantile cholestatic jaundice associated with adult-onset type II citrullinemia. J. Pediatr. 2001, 138, 735–740. [Google Scholar] [CrossRef]
- Tamamori, A.; Okano, Y.; Ozaki, H.; Fujimoto, A.; Kajiwara, M.; Fukuda, K.; Kobayashi, K.; Saheki, T.; Tagami, Y.; Yamano, T. Neonatal intrahepatic cholestasis caused by citrin deficiency: Severe hepatic dysfunction in an infant requiring liver transplantation. Eur. J. Pediatr. 2002, 161, 609–613. [Google Scholar] [CrossRef]
- Ohura, T.; Kobayashi, K.; Tazawa, Y.; Abukawa, D.; Sakamoto, O.; Tsuchiya, S.; Saheki, T. Clinical pictures of 75 patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). J. Inherit. Metab. Dis. 2007, 30, 139–144. [Google Scholar] [CrossRef]
- Tang, C.F.; Liu, S.C.; Feng, Y.; Mei, H.F.; Liu, H.P.; Feng, J.W.; Ye, L.X.; Wang, G.Q.; Liu, L.; Huang, Y.L. Newborn screening program and blood amino acid profiling in early neonates with citrin deficiency. Zhonghua Er Ke Za Zhi 2019, 57, 797–801. [Google Scholar]
- Iijima, M.; Jalil, A.; Begum, L.; Yasuda, T.; Yamaguchi, N.; Xian Li, M.; Kawada, N.; Endou, H.; Kobayashi, K.; Saheki, T. Pathogenesis of adult-onset type II citrullinemia caused by deficiency of citrin, a mitochondrial solute carrier protein: Tissue and subcellular localization of citrin. Adv. Enzym. Regul. 2001, 41, 325–342. [Google Scholar] [CrossRef]
- Okano, Y.; Ohura, T.; Sakamoto, O.; Inui, A. Current treatment for citrin deficiency during NICCD and adaptation/compensation stages: Strategy to prevent CTLN2. Mol. Genet. Metab. 2019, 127, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Häberle, J.; Boddaert, N.; Burlina, A.; Chakrapani, A.; Dixon, M.; Huemer, M.; Karall, D.; Martinelli, D.; Crespo, P.S.; Santer, R.; et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J. Rare Dis. 2012, 7, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho, J.A.; Obie, C.; Biery, B.; Goodman, B.K.; Hu, C.A.; Almashanu, S.; Steel, G.; Casey, R.; Lambert, M.; Mitchell, G.A.; et al. Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat. Genet. 1999, 22, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Tessa, A.; Fiermonte, G.; Dionisi-Vici, C.; Paradies, E.; Baumgartner, M.R.; Chien, Y.H.; Loguercio, C.; de Baulny, H.O.; Nassogne, M.C.; Schiff, M.; et al. Identification of novel mutations in the SLC25A15 gene in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome: A clinical, molecular, and functional study. Hum. Mutat. 2009, 30, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Kanazawa, N.; Kato, S.; Kawakami, M.; Inoue, Y.; Kuhara, T.; Inoue, T.; Takeshita, K.; Tsujino, S. Diagnosis of Japanese patients with HHH syndrome by molecular genetic analysis: A common mutation, R179X. J. Hum. Genet. 2001, 46, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, D.; Diodato, D.; Ponzi, E.; Monné, M.; Boenzi, S.; Bertini, E.; Fiermonte, G.; Dionisi-Vici, C. The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. Orphanet J. Rare Dis. 2015, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Salvi, S.; Santorelli, F.M.; Bertini, E.; Boldrini, R.; Meli, C.; Donati, A.; Burlina, A.B.; Rizzo, C.; Di Capua, M.; Fariello, G.; et al. Clinical and molecular findings in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. Neurology 2001, 57, 911–914. [Google Scholar] [CrossRef]
- Olivieri, G.; Pro, S.; Diodato, D.; Di Capua, M.; Longo, D.; Martinelli, D.; Bertini, E.; Dionisi-Vici, C. Corticospinal tract damage in HHH syndrome: A metabolic cause of hereditary spastic paraplegia. Orphanet J. Rare Dis. 2019, 14, 208. [Google Scholar] [CrossRef] [Green Version]
- Molinari, F.; Raas-Rothschild, A.; Rio, M.; Fiermonte, G.; Encha-Razavi, F.; Palmieri, L.; Palmieri, F.; Ben-Neriah, Z.; Kadhom, N.; Vekemans, M.; et al. Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. Am. J. Hum. Genet. 2005, 76, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Molinari, F.; Kaminska, A.; Fiermonte, G.; Boddaert, N.; Raas-Rothschild, A.; Plouin, P.; Palmieri, L.; Brunelle, F.; Palmieri, F.; Dulac, O.; et al. Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin. Genet. 2009, 76, 188–194. [Google Scholar] [CrossRef]
- Lemattre, C.; Imbert-Bouteille, M.; Gatinois, V.; Benit, P.; Sanchez, E.; Guignard, T.; Tran Mau-Them, F.; Haquet, E.; Rivier, F.; Carme, E.; et al. Report on three additional patients and genotype-phenotype correlation in SLC25A22-related disorders group. Eur. J. Hum. Genet. 2019, 27, 1692–1700. [Google Scholar] [CrossRef]
- Goubert, E.; Mircheva, Y.; Lasorsa, F.M.; Melon, C.; Profilo, E.; Sutera, J.; Becq, H.; Palmieri, F.; Palmieri, L.; Aniksztejn, L.; et al. Inhibition of the mitochondrial glutamate carrier SLC25A22 in astrocytes leads to intracellular glutamate accumulation. Front. Cell. Neurosci. 2017, 11, 149. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, T.; Pisciotta, L.; Prato, G.; Meola, I.; Zara, F.; Fiorillo, C.; Baratto, S.; Severino, M.; De Grandis, E.; Mancardi, M.M. Severe early-onset developmental and epileptic encephalopathy (DEE) associated with novel compound heterozygous pathogenic variants in SLC25A22: Case report and literature review. Seizure 2019, 70, 56–58. [Google Scholar] [CrossRef]
- Reid, E.S.; Williams, H.; Anderson, G.; Benatti, M.; Chong, K.; James, C.; Ocaka, L.; GOSgene; Hemingway, C.; Little, D.; et al. Mutations in SLC25A22: Hyperprolinaemia, vacuolated fibroblasts and presentation with developmental delay. J. Inherit. Metab. Dis. 2017, 40, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [Green Version]
- Poduri, A.; Heinzen, E.L.; Chitsazzadeh, V.; Lasorsa, F.M.; Elhosary, P.C.; LaCoursiere, C.M.; Martin, E.; Yuskaitis, C.J.; Hill, R.S.; Atabay, K.D.; et al. SLC25A22 is a novel gene for migrating partial seizures in infancy. Ann. Neurol. 2013, 74, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Toral, M.A.; Velez, G.; Boudreault, K.; Schaefer, K.A.; Xu, Y.; Saffra, N.; Bassuk, A.G.; Tsang, S.H.; Mahajan, V.B. Structural modeling of a novel SLC38A8 mutation that causes foveal hypoplasia. Mol. Genet. Genom. Med. 2017, 5, 202–209. [Google Scholar] [CrossRef]
- Al-Araimi, M.; Pal, B.; Poulter, J.A.; van Genderen, M.M.; Carr, I.; Cudrnak, T.; Brown, L.; Sheridan, E.; Mohamed, M.D.; Bradbury, J.; et al. A new recessively inherited disorder composed of foveal hypoplasia, optic nerve decussation defects and anterior segment dysgenesis maps to chromosome 16q23.3-24.1. Mol. Vis. 2013, 19, 2165–2172. [Google Scholar]
- Poulter, J.A.; Al-Araimi, M.; Conte, I.; van Genderen, M.M.; Sheridan, E.; Carr, I.M.; Parry, D.A.; Shires, M.; Carrella, S.; Bradbury, J.; et al. Recessive mutations in SLC38A8 cause foveal hypoplasia and optic nerve misrouting without albinism. Am. J. Hum. Genet. 2013, 93, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Perez, Y.; Gradstein, L.; Flusser, H.; Markus, B.; Cohen, I.; Langer, Y.; Marcus, M.; Lifshitz, T.; Kadir, R.; Birk, O.S. Isolated foveal hypoplasia with secondary nystagmus and low vision is associated with a homozygous SLC38A8 mutation. Eur. J. Hum. Genet. 2014, 22, 703–706. [Google Scholar] [CrossRef] [Green Version]
- Gahl, W.A.; Thoene, J.G.; Schneider, J.A. Cystinosis. N. Engl. J. Med. 2002, 347, 111–121. [Google Scholar] [CrossRef]
- Kalatzis, V.; Cherqui, S.; Antignac, C.; Gasnier, B. Cystinosin, the protein defective in cystinosis, is a H(+)-driven lysosomal cystine transporter. EMBO J. 2001, 20, 5940–5949. [Google Scholar] [CrossRef]
- Nesterova, G.; Gahl, W. Nephropathic cystinosis: Late complications of a multisystemic disease. Pediatr. Nephrol. 2008, 23, 863–878. [Google Scholar] [CrossRef]
- Cherqui, S.; Courtoy, P.J. The renal Fanconi syndrome in cystinosis: Pathogenic insights and therapeutic perspectives. Nat. Rev. Nephrol. 2017, 13, 115–131. [Google Scholar] [CrossRef]
- Al-Haggar, M. Cystinosis as a lysosomal storage disease with multiple mutant alleles: Phenotypic-genotypic correlations. World J. Nephrol. 2013, 2, 94–102. [Google Scholar]
- Servais, A.; Morinière, V.; Grünfeld, J.P.; Noel, L.H.; Goujon, J.M.; ChadefauxVekemans, B.; Antignac, C. Late-onset nephropathic cystinosis: Clinical presentation, outcome, and genotyping. Clin. J. Am. Soc. Nephrol. 2008, 3, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Anikster, Y.; Lucero, C.; Guo, J.; Huizing, M.; Shotelersuk, V.; Bernardini, I.; McDowell, G.; Iwata, F.; Kaiser-Kupfer, M.I.; Jaffe, R.; et al. Ocular nonnephropathic cystinosis: Clinical, biochemical, and molecular correlations. Pediatr. Res. 2000, 47, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Labbé, A.; Niaudet, P.; Loirat, C.; Charbit, M.; Guest, G.; Baudouin, C. In vivo confocal microscopy and anterior segment optical coherence tomography analysis of the cornea in nephropathic cystinosis. Ophthalmology 2009, 116, 870–876. [Google Scholar] [CrossRef]
- Emma, F.; Nesterova, G.; Langman, C.; Labbé, A.; Cherqui, S.; Goodyer, P.; Janssen, M.C.; Greco, M.; Topaloglu, R.; Elenberg, E.; et al. Nephropathic cystinosis: An international consensus document. Nephrol. Dial. Transplant. 2014, 29 (Suppl. 4), iv87–94. [Google Scholar] [CrossRef] [Green Version]
- Bäumner, S.; Weber, L.T. Nephropathic Cystinosis: Symptoms, Treatment, and Perspectives of a Systemic Disease. Front. Pediatr. 2018, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Servais, A.; Saitovitch, A.; Hummel, A.; Boisgontier, J.; Scemla, A.; Sberro-Soussan, R.; Snanoudj, R.; Lemaitre, H.; Legendre, C.; Pontoizeau, C.; et al. Central nervous system complications in adult cystinosis patients. J. Inherit. Metab. Dis. 2019, 1–9. [Google Scholar] [CrossRef]
- Harrison, F.; Yeagy, B.A.; Rocca, C.J.; Kohn, D.B.; Salomon, D.R.; Cherqui, S. Hematopoietic stem cell gene therapy for the multisystemic lysosomal storage disorder cystinosis. Mol. Ther. 2013, 21, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Cascio, L.; Chen, C.F.; Pauly, R.; Srikanth, S.; Jones, K.; Skinner, C.D.; Stevenson, R.E.; Schwartz, C.E.; Boccuto, L. Abnormalities in the genes that encode large amino acid transporters increase the risk of autism spectrum disorder. Mol. Genet. Genomic. Med. 2019, e1036. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, M.; Scriver, C.R. Mechanisms of aminoaciduria. In The Kidney: Physiology and Pathophysiology; Seldin, D.W., Giebisch, G., Eds.; Raven Press: New York, NY, USA, 1985. [Google Scholar]
- Kihara, H.; Valente, M.; Porter, M.T.; Fluharty, A.L. Hyperdibasicaminoaciduria in a mentally retarded homozygote with a peculiar response to phenothiazines. Pediatrics 1973, 51, 223–229. [Google Scholar]
- Whelan, D.T.; Scriver, C.R. Hyperdibasicaminoaciduria: An inherited disorder of amino acid transport. Pediat. Res. 1968, 2, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Santarelli, S.; Wagner, K.V.; Labermaier, C.; Uribe, A.; Dournes, C.; Balsevich, G.; Hartmann, J.; Masana, M.; Holsboer, F.; Chen, A.; et al. SLC6A15, a novel stress vulnerability candidate, modulates anxiety and depressive-like behavior: Involvement of the glutamatergic system. Stress 2016, 19, 83–90. [Google Scholar] [CrossRef]
- Santarelli, S.; Namendorf, C.; Anderzhanova, E.; Gerlach, T.; Bedenk, B.; Kaltwasser, S.; Wagner, K.; Labermaier, C.; Reichel, J.; Drgonova, J.; et al. The amino acid transporter SLC6A15 is a regulator of hippocampal neurochemistry and behavior. J. Psychiatr. Res. 2015, 68, 261–269. [Google Scholar] [CrossRef]
- Knöpfel, E.B.; Vilches, C.; Camargo, S.M.R.; Errasti-Murugarren, E.; Stäubli, A.; Mayayo, C.; Munier, F.L.; Miroshnikova, N.; Poncet, N.; Junza, A.; et al. Dysfunctional LAT2 Amino Acid Transporter Is Associated with Cataract in Mouse and Humans. Front. Physiol. 2019, 10, 688. [Google Scholar] [CrossRef] [Green Version]
- Vilches, C.; Boiadjieva-Knöpfel, E.; Bodoy, S.; Camargo, S.; López de Heredia, M.; Prat, E.; Ormazabal, A.; Artuch, R.; Zorzano, A.; Verrey, F.; et al. Cooperation of Antiporter LAT2/CD98hc with Uniporter TAT1 for Renal Reabsorption of Neutral Amino Acids. J. Am. Soc. Nephrol. 2018, 29, 1624–1635. [Google Scholar] [CrossRef]
SLC | Substrate(s) | Function | Associated Inherited Metabolic Disease |
---|---|---|---|
SLC1A1 | Glu, Asp, Cys | System XAG | Dicarboxylic aminoaciduria |
SLC1A2 | Glu, Asp | System XAG | Early infantile epileptic encephalopathy |
SLC1A3 | Glu, Asp | System XAG | Episodic ataxia type 6 |
SLC1A4 | Glu, neutral AA | System ASC | Spastic tetraplegia, thin corpus callosum, and progressive microcephaly |
SLC1A5 | Neutral AA | System ASC | |
SLC1A6 | Glu, Asp | System XAG | |
SLC1A7 | Glu, Asp | System XAG | |
SLC3A1 | Cys, dibasic, and neutral AA | Heavy chains of heterodimeric AAT | Cystinuria |
SLC3A2 | Dibasic and neutral AA | Heavy chains of heterodimeric AAT | |
SLC6A5 | Gly | Gly transporter | Hyperekplexia 3 |
SLC6A6 | Tau | Tau transporter | Retinal dystrophy |
SLC6A7 | Pro | Pro transporter | |
SLC6A9 | Gly | Gly transporter | Glycine encephalopathy with normal serum glycine |
SLC6A14 | Cationic and neutral AA | System B0,+ | |
SLC6A15 | Pro, Met, BCAAs | System B0 | |
SLC6A17 | Pro, Gly, Leu, Ala, Glu | System B0 | Mental retardation, autosomal recessive 48 |
SLC6A18 | Gly, Ala | System Gly | Hyperglycinuria |
SLC6A19 | Neutral AA | System B0 | Hartnup disorder, iminoglycinuria, hyperglycinuria |
SLC6A20 | Pro | System IMINO | Iminoglycinuria, hyperglycinuria |
SLC7A1 | Lys, Arg, Orn | System y+ | |
SLC7A2 | Lys, Arg, Orn | System y+ | SLC7A2-related argininemia |
SLC7A3 | Lys, Arg, Orn | System y+ | |
SLC7A4 | Cationic AA | System y+ | |
SLC7A5 | Leu, Hys, Met, Ile, Val, Phe, Tyr, Trp | System L | |
SLC7A6 | Lys, Arg, Orn, Hys, Met, Leu | System y+L | |
SLC7A7 | Lys, Arg, Orn, Hys, Met, Leu, Ala, Cys | System y+L | Lysinuric protein intolerance |
SLC7A8 | Neutral AA | System L | |
SLC7A9 | Cys, dibasic and neutral AA | System b0,+ | Cystinuria |
SLC7A10 | Gly, Ala, Ser, Cys, Thr | System ASC | |
SLC7A11 | Glu, Asp, Cys | System y+ | |
SLC7A12 | Gly, Ala, Ser, Cys, Thr | System ASC | |
SLC7A13 | Glu, Asp, Cys | Glu/Asp/Cys transporter | Cystinuria |
SLC7A14 | Arg, Lys, Orn | System C | Retinitis pigmentosa 68 |
SLC16A10 | Trp, Tyr, Phe | System T | |
SLC17A6 | Glu | Vesicular Glu transporter | |
SLC17A7 | Glu | Vesicular Glu transporter | |
SLC17A8 | Glu | Vesicular Glu transporter | Deafness, autosomal dominant 25 |
SLC25A2 | Lys, Arg, Hys, Orn, Cit, ADMA | Orn/Cit carrier | |
SLC25A12 | Asp, Glu | Asp/Glu carrier | Early infantile epileptic encephalopathy, 39 |
SLC25A13 | Asp, Glu | Asp/Glu carrier | AGC2 deficiency |
SLC25A15 | Lys, Arg, Hys, Orn, Cit | Orn/Cit carrier | Hyperornithinemia-hyperammonemia- homocitrullinuria (HHH) syndrome |
SLC25A18 | Glu | Glu carrier | |
SLC25A22 | Glu | Glu carrier | Early infantile epileptic encephalopathy, 3 |
SLC25A29 | Arg, Lys, Orn, Hys | Basic AA transporter | |
SLC32A1 | Gly, GABA | Vesicular Gly/GABA transporter | |
SLC36A1 | Gly, Pro, Ala | Proton AA symporter | |
SLC36A2 | Gly, Pro, Ala | Proton AA symporter | Iminoglycinuria, hyperglycinuria |
SLC36A3 | Gly, Pro, Ala? | Proton AA symporter | |
SLC36A4 | Pro, Trp, Ala | Proton AA symporter | |
SLC38A1 | Gly, Alan, Ser, Cys, Gln, Asn, Hys, Met, Thr, Pro, Tyr, Val | System A | |
SLC38A2 | Gly, Pro, Ala, Ser, Cys, Gln, Asn, Hys, Met | System A | |
SLC38A3 | Gly, Pro, Ala, Ser, Cys, Gln, Met, Hys, Lys, Arg | System N | |
SLC38A4 | Gly, Ala, Ser, Cys, Gln, Asn, Met | System A | |
SLC38A5 | Gln, Asn, Hys, Ala | System N | |
SLC38A7 | Gln, Ala, Hys, Asn, Ser | System N | |
SLC38A8 | Gln, Ala, Arg, Hys, Asp | System A | Foveal hypoplasia, 2 |
SLC38A9 | Gln | Lysosomal Gln transceptor | |
SLC38A10 | Gln, Ala, Glu, Asp, Ser | System A | |
SLC43A1 | Leu, Ile, Met, Phe, Val | System L | |
SLC43A2 | Leu, Ile, Met, Phe, Val | System L | |
SLC66A4 | Cys and cystathionine | Lysosomal Cys transporter | Cystinosis |
Amino Acid Transporter | Gene/Locus | Location | Associated Inherited Metabolic Disease | Phenotype MIM Number | Inheritance | Clinical Manifestations |
---|---|---|---|---|---|---|
EAAT3 | SLC1A1 | 9p24.2 | Dicarboxylic aminoaciduria | 222730 | AR | Possibly benign in most cases. Associated with OCD and schizophrenia |
EAAT2 | SLC1A2 | 11p13 | Early infantile epileptic encephalopathy | 617105 | AR/AD | Severe early-onset epileptic encephalopathy |
EAAT1 | SLC1A3 | 5p13.2 | Episodic ataxia type 6 | 612656 | AD | Episodic ataxia, seizures, migraine, alternating hemiplegia |
ASCT1 | SLC1A4 | 2p14 | Spastic tetraplegia, thin corpus callosum, and progressive microcephaly | 616657 | AR | Spastic tetraplegia, thin corpus callosum, and progressive microcephaly |
rBAT | SLC3A1 | 2p21 | Cystinuria | 220100 | AR/AD | Cystine stones |
GLYT2 | SLC6A5 | 11p15.1 | Hyperekplexia 3 | 614618 | AR/AD | Startle reflex, generalized muscle stiffness, sudden infant death |
TAUT | SLC6A6 | 3p25.1 | Retinal dystrophy | - | AR | Early-onset atypical panretinal degeneration |
GLYT1 | SLC6A9 | 1p34.1 | Glycine encephalopathy with normal serum glycine | 617301 | AR | Early-onset encephalopathy with severe hypotonia, dysmorphic features, and abnormal antenatal findings |
NTT4 | SLC6A17 | 1p13.3 | Mental retardation, autosomal recessive 48 | 616269 | AR | Intellectual disability with progressive tremor, speech impairment, facial dysmorphism, and behavioral problems |
B0AT1 | SLC6A19 | 5p.15.33 | Hartnup disorder Hyperglycinuria Iminoglycinuria | 234500 138500 242600 | AR AD AR/AD | Pellagra-like dermatitis, intermittent cerebellar ataxia, neuropsychiatric symptoms Possibly benign Possibly benign |
SIT1 | SLC6A20 | 3p21.31 | Iminoglycinuria Hyperglycinuria | 242600 138500 | AR/AD AD | Possibly benign Possibly benign |
CAT-2 | SLC7A2 | 8p22 | Argininemia SLC7A2-related | - | AR | Unknown |
y+LAT1 | SLC7A7 | 14q11.2 | Lysinuric protein intolerance | 222700 | AR | Hyperammonemia, protein intolerance, growth failure, renal disease, lung disease, immunological alterations |
b0,+ AT | SLC7A9 | 19q13.11 | Cystinuria | 220100 | AR/AD | Cystine stones |
SLC7A14 | SLC7A14 | 3q26.2 | Retinitis pigmentosa 68 | 615725 | AR | Retinitis pigmentosa/Leber congenital amaurosis |
VGLUT3 | SLC17A8 | 12q23.1 | Deafness, autosomal dominant 25 | 605583 | AD | Slowly progressive high frequency sensorineural hearing loss |
AGC1 | SLC25A12 | 2q31.1 | Early infantile epileptic encephalopathy, 39 | 612949 | AR | Progressive encephalopathy, hypotonia, microcephaly, myoclonic epilepsy |
AGC2 | SLC25A13 | 7q21.3 | Neonatal intrahepatic cholestasis Citrullinemia type II | 605814 603471 | AR | Neonatal intrahepatic cholestasis with persistent jaundice Neuropsychiatric symptoms, ammonia intoxication |
ORC1 | SLC25A15 | 13q14.11 | Hyperornithinemia-hyperammonemia- homocitrullinuria syndrome | 238970 | AR | Episodic hyperammonemia and neurological symptoms |
GC1 | SLC25A22 | 11p15.5 | Early infantile epileptic encephalopathy, 3 | 609304 | AR | Myoclonic epilepsy, progressive microcephaly, hypotonia |
PAT2 | SLC36A2 | 5q33.1 | IminoglycinuriaHyperglycinuria | 242600 138500 | AR/ADAD | Possibly benignPossibly benign |
SNAT8 | SLC38A8 | 16q23.3 | Foveal hypoplasia, 2 | 609218 | AR | Low vision, secondary nystagmus |
CTNS | SLC66A4 (CTNS) | 17p13.2 | Cystinosis | 219800 219900 219750 | AR | Fanconi syndrome, photophobia, neurological deterioration |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahyaoui, R.; Pérez-Frías, J. Amino Acid Transport Defects in Human Inherited Metabolic Disorders. Int. J. Mol. Sci. 2020, 21, 119. https://doi.org/10.3390/ijms21010119
Yahyaoui R, Pérez-Frías J. Amino Acid Transport Defects in Human Inherited Metabolic Disorders. International Journal of Molecular Sciences. 2020; 21(1):119. https://doi.org/10.3390/ijms21010119
Chicago/Turabian StyleYahyaoui, Raquel, and Javier Pérez-Frías. 2020. "Amino Acid Transport Defects in Human Inherited Metabolic Disorders" International Journal of Molecular Sciences 21, no. 1: 119. https://doi.org/10.3390/ijms21010119
APA StyleYahyaoui, R., & Pérez-Frías, J. (2020). Amino Acid Transport Defects in Human Inherited Metabolic Disorders. International Journal of Molecular Sciences, 21(1), 119. https://doi.org/10.3390/ijms21010119