Association of Elite Sports Status with Gene Variants of Peroxisome Proliferator Activated Receptors and Their Transcriptional Coactivator
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Review Process
4.2. Literature Search
4.3. Literature Selection
- Genotyping in PPARA, PPARG, PPARD, PPARGC1A, PPARGC1B, and genes.
- The population of athletes.
- Cross-sectional, cohort, case-control, intervention, control trial, or GWAS.
- (1)
- the full text was not available in English;
- (2)
- the study did not contain an appropriate description of athlete performance status;
- (3)
- the study did not include a specification of the selected sports discipline;
- (4)
- the study did not report PPAR frequencies for elite athletes;
- (5)
- the study was not reproducible by the methodological quality criteria.
4.4. Qualitative Synthesis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GWAS | genome-wide association study |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
PPAR | peroxisome proliferator activated receptor |
MEF2C | myocyte enhancer factor 2C |
PROSPERO | international database of prospectively registered systematic reviews in health. |
ACTN3 | alpha-actinin-3 |
DM2 | diabetes mellitus type 2 |
References
- Semenova, E.A.; Fuku, N.; Ahmetov, I.I. Genetic profile of elite endurance athletes. In Sports, Exercise, and Nutritional Genomics; Elsevier Academic Press: London, UK, 2019; pp. 73–104. [Google Scholar]
- Maciejewska-Skrendo, A.; Sawczuk, M.; Cięszczyk, P.; Ahmetov, I.I. Genes and power athlete status. In Sports, Exercise, and Nutritional Genomics; Elsevier Academic Press: London, UK, 2019; pp. 41–72. [Google Scholar]
- Maciejewska-Skrendo, A.; Cięszczyk, P.; Chycki, J.; Sawczuk, M.; Smółka, W. Genetic Markers Associated with Power Athlete Status. J. Hum. Kinet. 2019, 68, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petr, M.; Stastny, P.; Zajac, A.; Tufano, J.J.; Maciejewska-Skrendo, A. The Role of Peroxisome Proliferator-Activated Receptors and Their Transcriptional Coactivators Gene Variations in Human Trainability: A Systematic Review. Int. J. Mol. Sci. 2018, 19, 1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valeeva, E.V.; Ahmetov, I.I.; Rees, T. Psychogenetics and sports. Sports, Exercise, and Nutritional Genomics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 147–165. [Google Scholar]
- Kersten, S.; Desvergne, B.; Wahli, W. Roles of PPARs in health and disease. Nature 2000, 405, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, A.; Ibanez, M.R.; Gatica, A.E.; Yang, S.; Wei, S.; Mei, S.; Falck, J.R.; Capdevila, J.H. Peroxisomal proliferator-activated receptor-α-dependent inhibition of endothelial cell proliferation and tumorigenesis. J. Biol. Chem. 2007, 282, 17685–17695. [Google Scholar] [CrossRef] [Green Version]
- Dubuquoy, L.; Dharancy, S.; Nutten, S.; Pettersson, S.; Auwerx, J.; Desreumaux, P. Role of peroxisome proliferator-activated receptor γ and retinoid X receptor heterodimer in hepatogastroenterological diseases. Lancet 2002, 360, 1410–1418. [Google Scholar] [CrossRef]
- Cabrero, A.; Laguna, J.; Vazquez, M. Peroxisome proliferator-activated receptors and the control of inflammation. Curr. Drug Targets-Inflamm. Allergy 2002, 1, 243–248. [Google Scholar] [CrossRef]
- Leonardini, A.; Laviola, L.; Perrini, S.; Natalicchio, A.; Giorgino, F. Cross-talk between PPAR and insulin signaling and modulation of insulin sensitivity. PPAR Res. 2009. [Google Scholar] [CrossRef] [Green Version]
- Yessoufou, A.; Wahli, W. Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels. Swiss Med Wkly. 2010, 140. [Google Scholar] [CrossRef]
- Kliewer, S.; Forman, B.; Blumberg, B.; Ong, E.; Borgmeyer, U.; Mangelsdorf, D.; Umesono, K.; Evans, R.M. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA 1994, 91, 7355–7359. [Google Scholar] [CrossRef] [Green Version]
- Manickam, R.; Wahli, W. Roles of peroxisome proliferator-activated receptor β/δ in skeletal muscle physiology. Biochimie 2017, 136, 42–48. [Google Scholar] [CrossRef]
- Cagnin, S.; Chemello, F.; Ahmetov, I.I. Genes and response to aerobic training. In Sports, Exercise, and Nutritional Genomics; Elsevier Academic Press: London, UK, 2019; pp. 169–188. [Google Scholar]
- Gleyzer, N.; Scarpulla, R.C. PGC-1-related coactivator (PRC), a sensor of metabolic stress, orchestrates a redox-sensitive program of inflammatory gene expression. J. Biol. Chem. 2011, 286, 39715–39725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handschin, C.; Spiegelman, B.M. Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 2006, 27, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.W.; Christophi, C.A.; Jablonski, K.A.; Billings, L.K.; Delahanty, L.M.; Horton, E.S.; Knowler, W.C.; Florez, J.C.; Diabetes Prevention Program Research Group. Common variation at PPARGC1A/B and change in body composition and metabolic traits following preventive interventions: The Diabetes Prevention Program. Diabetologia 2014, 57, 485–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmetov, I.I.; Williams, A.G.; Popov, D.V.; Lyubaeva, E.V.; Hakimullina, A.M.; Fedotovskaya, O.N.; Mozhayskaya, I.A.; Vinogradova, O.L.; Astratenkova, I.V.; Montgomery, H.E.; et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum. Gen. 2009, 126, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Popov, D.V.; Mozhaiskaia, I.A.; Missina, S.S.; Astratenkova, I.V.; Vinogradova, O.L.; Rogozkin, V.A. Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Rossiǐskii fiziologicheskiǐ zhurnal imeni IM Sechenova/Rossiǐskaia akademiia nauk 2007, 93, 837–843. [Google Scholar]
- Franks, P.W.; Barroso, I.; Luan, J.; Ekelund, U.; Crowley, V.E.F.; Brage, S.; Sandhu, M.S.; Jakes, R.W.; Middelberg, R.P.; Harding, A.H.; et al. PGC-1α Genotype Modifies the Association of Volitional Energy Expenditure with V̇O2max. Med. Sci. Sports. Exerc. 2003, 35, 1998–2004. [Google Scholar] [CrossRef]
- Petr, M.; Št’Astný, P.; Pecha, O.; Šteffl, M.; Šeda, O.; Kohlíková, E. PPARA intron polymorphism associated with power performance in 30-s anaerobic wingate test. PLoS ONE 2014, 9, e107171. [Google Scholar] [CrossRef]
- Tharabenjasin, P.; Pabalan, N.; Jarjanazi, H. Association of PPARGC1A Gly428Ser (rs8192678) polymorphism with potential for athletic ability and sports performance: A meta-analysis. PLoS ONE 2019, 14, e0200967. [Google Scholar] [CrossRef]
- Mathai, A.S.; Bonen, A.; Benton, C.R.; Robinson, D.L.; Graham, T.E. Rapid exercise-induced changes in PGC-1α mRNA and protein in human skeletal muscle. J. Appl. Physiol. 2008, 105, 1098–1105. [Google Scholar] [CrossRef] [Green Version]
- Nezhad, F.Y.; Verbrugge, S.A.J.; Schönfelder, M.; Becker, L.; De Angelis, M.H.; Wackerhage, H. Genes whose gain or loss-of-function increases endurance performance in Mice: A systematic literature review. Front. Physiol. 2019, 10, 262. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Mozhayskaya, I.A.; Flavell, D.M.; Astratenkova, I.V.; Komkova, A.I.; Lyubaeva, E.V.; Tarakin, P.P.; Shenkman, B.S.; Vdovina, A.B.; Netreba, A.I.; et al. PPARα gene variation and physical performance in Russian athletes. Eur. J. Appl. Physiol. 2006, 97, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Astratenkova, I.V.; Rogozkin, V.A. Association of a PPARD polymorphism with human physical performance. Mol. Biol. 2007, 41, 776–780. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Mozhayskaya, I.A.; Lyubaeva, E.V.; Vinogradova, O.L.; Rogozkin, V.A. PPARG Gene polymorphism and locomotor activity in humans. Bull. Exp. Biol. Med. 2008, 146, 630–632. [Google Scholar] [CrossRef] [PubMed]
- Cieszczyk, P.; Sawczuk, M.; Maciejewska, A.; Ficek, K.; Eider, A. Variation in peroxisome proliferator activated receptor α gene in elite combat athletes. Eur. J. Sport. Sci. 2011, 11, 119–123. [Google Scholar] [CrossRef]
- Cocci, P.; Pistolesi, L.; Guercioni, M.; Belli, L.; Carli, D.; Palermo, F.A. Genetic Variants and Mixed Sport Disciplines: A Comparison among Soccer, Combat and Motorcycle Athletes. Ann. Appl. Sport. Sci. 2019, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Drozdovska, S.B.; Dosenko, V.E.; Ahmetov, I.I.; Ilyin, V.N. The association of gene polymorphisms with athlete status in Ukrainians. Biol. Sport 2013, 30, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Eynon, N.; Ruiz, J.R.; Meckel, Y.; Morán, M.; Lucia, A. Mitochondrial biogenesis related endurance genotype score and sports performance in athletes. Mitochondrion 2011, 11, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Eynon, N.; Meckel, Y.; Sagiv, M.; Yamin, C.; Amir, R.; Sagiv, M.; Goldhammer, E.; Duarte, J.A.; Oliveira, J. Do PPARGC1A and PPARα polymorphisms influence sprint or endurance phenotypes? Scand. J. Med. Sci. Sports 2010, 20, e145–e150. [Google Scholar] [CrossRef]
- Egorova, E.S.; Borisova, A.V.; Mustafina, L.J.; Arkhipova, A.A.; Gabbasov, R.T.; Druzhevskaya, A.M.; Astratenkova, I.V.; Ahmetov, I.I. The polygenic profile of Russian football players. J. Sports. Sci. 2014, 32, 1286–1293. [Google Scholar] [CrossRef]
- Ginevičiene, V.; Pranckevičiene, E.; Milašius, K.; Kučinskas, V. Gene variants related to the power performance of the Lithuanian athletes. Cen. Eur. J. Biol. 2011, 6, 48–57. [Google Scholar] [CrossRef]
- Eynon, N.; Alves, A.J.; Yamin, C.; Meckel, Y. PPARA intron 1 A/C polymorphism and elite athlete status. Eur. J. Sport Sci. 2011, 11, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Gineviciene, V.; Jakaitiene, A.; Tubelis, L.; Kucinskas, V. Variation in the ACE, PPARGC1A and PPARA genes in Lithuanian football players. Eur. J. Sport Sci. 2014, 14, S289–S295. [Google Scholar] [CrossRef] [PubMed]
- Gineviciene, V.; Jakaitiene, A.; Aksenov, M.O.; Aksenova, A.V.; Druzhevskaya, A.M.; Astratenkova, I.V.; Egorova, E.S.; Gabdrakhmanova, L.J.; Tubelis, L.; Kucinskas, V.; et al. Association analysis of ACE, ACTN3 and PPARGC1A gene polymorphisms in two cohorts of European strength and power athletes. Biol. Sport 2016, 33, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Freire, M.; Santiago, C.; Verde, Z.; Lao, J.I.; Olivan, J.; Gallego, F.G.; Lucia, A. Unique among unique. Is it genetically determined? Br. J. Sports Med. 2009, 43, 307–309. [Google Scholar] [CrossRef] [PubMed]
- Grealy, R.; Herruer, J.; Smith, C.L.E.; Hiller, D.; Haseler, L.J.; Griffiths, L.R. Evaluation of a 7-gene genetic profile for athletic endurance phenotype in ironman championship triathletes. PLoS ONE 2015, 10, e0145171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucia, A.; Gomez-Gallego, F.; Barroso, I.; Rabadan, M.; Bandres, F.; San Juan, A.F.; Chicharro, J.L.; Ekelund, U.; Brage, S.; Earnest, C.P.; et al. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J. Appl. Physiol. (1985) 2005, 99, 344–348. [Google Scholar] [CrossRef] [Green Version]
- Maciejewska, A.; Sawczuk, M.; Cieszczyk, P. Variation in the PPARalpha gene in Polish rowers. J. Sci. Med. Sport 2011, 14, 58–64. [Google Scholar] [CrossRef]
- Maciejewska, A.; Sawczuk, M.; Cieszczyk, P.; Mozhayskaya, I.A.; Ahmetov, I.I. The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J. Sports Sci. 2012, 30, 101–113. [Google Scholar] [CrossRef]
- Maciejewska-Karlowska, A.; Sawczuk, M.; Cieszczyk, P.; Zarebska, A.; Sawczyn, S. Association between the Pro12Ala Polymorphism of the Peroxisome Proliferator-Activated Receptor Gamma Gene and Strength Athlete Status. PLoS ONE 2013, 8, e67172. [Google Scholar] [CrossRef]
- Maciejewska-Karlowska, A.; Hanson, E.D.; Sawczuk, M.; Cieszczyk, P.; Eynon, N. Genomic haplotype within the Peroxisome Proliferator-Activated Receptor Delta (PPARD) gene is associated with elite athletic status. Scand. J. Med. Sci. Sports 2014, 24, e148–e155. [Google Scholar] [CrossRef]
- Muniesa, C.A.; González-Freire, M.; Santiago, C.; Lao, J.I.; Buxens, A.; Rubio, J.C.; Martín, M.A.; Arenas, J.; Gomez-Gallego, F.; Lucia, A. World-class performance in lightweight rowing: Is it genetically influenced? A comparison with cyclists, runners and non-athletes. Br. J. Sports Med. 2010, 44, 898–901. [Google Scholar] [CrossRef] [PubMed]
- Peplonska, B.; Adamczyk, J.G.; Siewierski, M.; Safranow, K.; Maruszak, A.; Sozanski, H.; Gajewski, A.K.; Zekanowski, C. Genetic variants associated with physical and mental characteristics of the elite athletes in the Polish population. Scand. J. Med. Sci. Sports 2017, 27, 788–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiago, C.; Ruiz, J.R.; Muniesa, C.A.; González-Freire, M.; Gómez-Gallego, F.; Lucia, A. Does the polygenic profile determine the potential for becoming a world-class athlete? Insights from the sports of rowing. Scand. J. Med. Sci. Sports 2010, 20, e188–e194. [Google Scholar] [CrossRef] [PubMed]
- Tsianos, G.I.; Evangelou, E.; Boot, A.; Carola Zillikens, M.; Van Meurs, J.B.J.; Uitterlinden, A.G.; Ioannidis, J.P. Associations of polymorphisms of eight muscle—Or metabolism-related genes with performance in Mount Olympus marathon runners. J. Appl. Physiol. 2010, 108, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Tural, E.; Kara, N.; Agaoglu, S.A.; Elbistan, M.; Tasmektepligil, M.Y.; Imamoglu, O. PPAR-α and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol. Biol. Rep. 2014, 41, 5799–5804. [Google Scholar] [CrossRef] [PubMed]
- Yvert, T.; Miyamoto-Mikami, E.; Murakami, H.; Miyachi, M.; Kawahara, T.; Fuku, N. Lack of replication of associations between multiple genetic polymorphisms and endurance athlete status in Japanese population. Physiol. Rep. 2016, 4, e13003. [Google Scholar] [CrossRef]
- Eynon, N.; Birk, R.; Meckel, Y.; Lucia, A.; Nemet, D.; Eliakim, A. Physiological variables and mitochondrial-related genotypes of an athlete who excels in both short and long-distance running. Mitochondrion 2011, 11, 774–777. [Google Scholar] [CrossRef] [Green Version]
- Lucia, A.; Oliván, J.; Gómez-Gallego, F.; Santiago, C.; Montil, M.; Foster, C. Citius and longius (faster and longer) with no α-actinin-3 in skeletal muscles? Br. J. Sports Med. 2007, 41, 616–617. [Google Scholar] [CrossRef]
- Aksenov, M.O.; Ilyin, A.B. Training process design in weightlifting sports customized to genetic predispositions. Teoriya i Praktika Fizicheskoy Kultury 2017, 6, 75–77. [Google Scholar]
- Stefan, N.; Thamer, C.; Staiger, H.; Machicao, F.; Machann, J.; Schick, F.; Venter, C.; Niess, A.; Laakso, M.; Fritsche, A.; et al. Genetic variations in PPARD and PPARGC1A determine mitochondrial function and change in aerobic physical fitness and insulin sensitivity during lifestyle intervention. J. Clin. Endocrin. Metabol. 2007, 92, 1827–1833. [Google Scholar] [CrossRef] [Green Version]
- Steinbacher, P.; Feichtinger, R.G.; Kedenko, L.; Kedenko, I.; Reinhardt, S.; Schönauer, A.L.; Leitner, I.; Sänger, A.M.; Stoiber, W.; Kofler, B.; et al. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans. PLoS ONE 2015, 10, e0123881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ring-Dimitriou, S.; Kedenko, L.; Kedenko, I.; Feichtinger, R.G.; Steinbacher, P.; Stoiber, W.; Forster, H.; Felder, T.K.; Muller, E.; Kolfer, B. Does genetic variation in PPARGC1A affect exercise-induced changes in ventilatory thresholds and metabolic syndrome? J. Exerc. Physiol. Online 2014, 17, 1–18. [Google Scholar]
- Hautala, A.J.; Leon, A.S.; Skinner, J.S.; Rao, D.C.; Bouchard, C.; Rankinen, T. Peroxisome proliferator-activated receptor-delta polymorphisms are associated with physical performance and plasma lipids: The HERITAGE Family Study. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H2498–H2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.-L.; Lu, W.-S.; Yan, L.; Wu, M.-C.; Xu, M.-T.; Chen, L.-H.; Cheng, H. Association between peroxisome proliferator-activated receptor-gamma coactivator-1alpha gene polymorphisms and type 2 diabetes in southern Chinese population: Role of altered interaction with myocyte enhancer factor 2C. Chin. Med. J. 2007, 120, 1878–1885. [Google Scholar] [CrossRef]
- Moher, D.; Schulz, K.F.; Simera, I.; Altman, D.G. Guidance for developers of health research reporting guidelines. PLoS Med. 2010, 7, e1000217. [Google Scholar] [CrossRef] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Prev. Med. 2007, 45, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Swann, C.; Moran, A.; Piggott, D. Defining elite athletes: Issues in the study of expert performance in sports psychology. Psych. Sport Exerc. 2015, 16, 3–14. [Google Scholar] [CrossRef] [Green Version]
Elite Athlete vs. Subelite Athlete | Elite Athlete vs. Controls | |
---|---|---|
Strength and power oriented | PPARG rs1801282 Ala allele PPARA rs4253778 C allele | PPARG rs1801282 Ala allele PPARA 7 rs4253778 C allele PPARArs4253778 * GG genotype, G allele PPARA rs4253778 C allele PPARGC1A rs8192678 Gly/Gly genotype |
Endurance oriented | PPARA rs4253778 G allele PPARD rs2016520 C allele PPARGC1A rs8192678 Gly allele, Gly/Gly genotype | PPAR rs4253778 * C allele PPARD rs2016520 C allele PPARGC1B rs773267 C allele PPARA rs4253778 GG genotype, G allele PPARGC1A rs8192678 Gly4 allele, Gly/Gly genotype |
Mixed endurance/power | PPARA rs4253778 C allele, CC genotype PPARD haplotypes: rs2016520, rs2267668, rs1053049 A/C/C |
Participant Type (n) | Gene/Variation | Results | Authors |
---|---|---|---|
Russian endurance (swimming, track-and-field, triathlon, cross-country skiing, biathlon, skating, road cycling (390), and strength oriented athletes (rowing, boxing, ice-hockey, wrestling, court tennis, weightlifting (396); controls: (1242) | PPARA rs4253778 (intron 7G/C) | C allele: endurance oriented < controls (p < 0.0001) C allele: power oriented > controls (p < 0.0001) CC genotype: mixed endurance/power oriented > controls (p = 0.0012) C allele: increasing with anaerobic component (p < 0.029) C allele: increasing frequency in power oriented elite athletes (p = 0.0316) G allele: increasing frequency in endurance oriented elite athletes (p < 0.0001) | Ahmetov et al., 2006 [25] |
Russian elite, subelite athletes, and nonelite athletes (1539); controls (610) | PPARD rs2016520 (+294T/C) | C allele: athletes > controls (p < 0.0001) C allele: athletes in endurance oriented sports > controls (p < 0.0001) C allele: cyclic endurance oriented elite sports > subelite (p < 0.01) C allele: most pronounced between high and top level long-distance athletes (p = 0.013) | Ahmetov et al., 2007 [26] |
Russian athletes of various strength and speed disciplines (260); controls (1073) | PPARG rs1801282 (Pro12Ala) | 12Ala allele: athletes > controls (p < 0.0001) 12Ala allele: skate sprinters (p = 0.0002), throwers (p = 0.012), weightlifters (p = 0.003) > controls 12Ala allele: honored masters of sports > masters of sports of international rank > masters of sports > candidate masters of sports (p < 0.0001) | Ahmetov et al., 2008 [27] |
Russian long endurance (cycling, biathlon, triathlon, long distance racing) and middle endurance (3–10 km runners, skaters, 5–10 km cross-country skiers, 800–1500 m swimmers) athletes (577); controls (1132) | PPARA rs4253778 (intron 7G/C) PPARD rs2016520 (+294T/C) PPARG rs1801282 (missense C/G) PPARGC1A rs8192678 (missense A/G) PPARGC1B rs7732671 (missense C/G) interactions of 10 genetic polymorphisms | C allele: long endurance athletes < non-athletes (p = 0.018) C allele: long endurance athletes > h (p = 0.006) NS A (Ser) allele: long endurance athletes < non-athletes (p < 0.001) C allele: long endurance athletes > non-athletes (p = 0.004) High number (≥9) of “endurance” alleles: long endurance elite > subelite > nonelite (p = 0.01) High number (≥9) of “endurance” alleles: middle endurance elite > subelite > nonelite (p = 0.003) | Ahmetov et al., 2009 [18] |
Polish elite and subelite combat athletes (60); controls (181) | PPARA rs4253778 (intron 7G/C) | GG genotype: athletes > controls (p = 0.04) G allele: athletes > controls (p = 0.01) | Cieszczyk et al., 2011 [28] |
Italian elite athletes (combat sports, motorcycle, soccer) (113); controls not included | PPARA (rs4253778) (intron 7G/C) | GG genotype: soccer > combat sports and motorcycle G allele: soccer > combat sports and motorcycle | Cocci et al., 2019 [29] |
Ukrainian elite, subelite athletes, and nonelite, endurance and power oriented athletes (210); controls (326) | PPARA rs4253778 (intron 7G/C) PPARG rs1801282 (Pro12Ala) PPARGC1B rs7732671 (Ala2032Pro) Total genetic score of 6 gene polymorphisms | NS 12Ala allele: power oriented > endurance oriented (p = 0.008) NS TGS: power oriented athletes > control (p = 0.0142) | Drozdovska et al., 2013 [30] |
Israeli national/international track-and-field athletes (155); controls 240 | PPARA rs4253778 (intron 7G/C) PPARGC1A rs8192678 (Gly482Ser) PPARD rs2016520 (+294T/C) Total genetic score of 6 gene polymorphisms | Associated with endurance performance CI 95% Gly allele: endurance > controls (p < 0.05 *) Gly/Gly genotype: endurance > strength oriented > controls (p < 0.05 *) Associated with endurance performance CI 95%. NS TGS: endurance athletes > control and power athletes (p < 0.001) elite status NS | Eynon et al., 2011 [31] |
Israeli track-and-field athletes (155); controls (240) | PPARA rs4253778 (intron 7G/C) PPARGC1A rs8192678 (Gly482Ser) | NS Ser/Ser genotype: endurance athletes < sprinters (p = 0.016) and controls (p = 0.012) Gly allele, Gly/Gly genotype elite athletes > non elite (p = 0.02) | Eynon et al., 2010 [32] |
Russian elite, subelite, and nonelite soccer players (246); controls (872) | PPARA rs4253778 (intron 7G/C) PPARD rs2016520 (T294C) PPARG rs1801282 (Pro12Ala) PPARGC1A rs8192678 (Gly482Ser) Total genetic score of 8 gene polymorphisms | CC genotype: soccer players > controls (p = 0.0001) C allele: soccer players > controls (p = 0.0007) C allele: attackers > controls (p < 0.0001) C allele: elite soccer players > controls (p = 0.007) NS NS NS TGS: elite soccer players > subelite > nonelite (p = 0.002) TGS: elite soccer goalkeepers and midfielders > subelite > nonelite (p = 0.002) | Egorova et al., 2013 [33] |
Lithuanian athletes, endurance (biathlon, pentathlon, road cycling, cross-country skiing, swimming, rowing, track-and-field long distance) power (weightlifting, track-and-field short distance) mixed (tennis, handball, boxing, wrestling, football) (193); controls (250) | PPARGC1A rs8192678 (Gly482Ser) PPARA rs4253778 (intron 7G/C) | Gly/Gly < Ser/Ser genotypes: anaerobic alactic maximum power (AAMP) in endurance and power athletes (p = 0.024) C allele: athletes > controls (p = 0.046) CC genotype: nonelite < subelite < elite | Gineviciene et al., 2011 [34] |
Participant Type (n) | Gene/Variation | Results | Authors |
---|---|---|---|
Israeli track-and-field athletes (155); controls (240) | PPARA rs135539 (intron 1A/C) | NS | Eynon et al., 2011 [35] |
Lithuanian professional male footballers (199); controls (167) | PPARGC1A rs8192678 (Gly482Ser) PPARA rs4253778 (intron 7C/G) | Gly/Gly genotype: forwards > controls (p = 0.044) GG genotype: controls > forwards (p = 0.034) | Gineviciene et al., 2014 [36] |
Russian powerlifters, weightlifters, throwers (161); controls (1202) | PPARGC1A rs8192678 (Gly482Ser) | Gly/Gly genotype: powerlifters > controls (p = 0.002) Weightlifters and throwers no difference from controls | Gineviciene et al., 2016 [37] |
African and Spanish cross-country runners of different levels, one world champion (9) (case study) | PPARGC1A rs8192678 (Gly482Ser) | Gly/Gly genotype: present in the world champion, but not in all of the top cross-country runners | Gonzales Freire et al. [38] |
Mixed nation elite endurance triathletes (196); controls not included | PPARGC1A rs8192678 (Gly482Ser) Total Genetic Score of 7 gene polymorphisms | NS TGS was not significantly associated with performance time | Grealy et al., 2015 [39] |
Spanish male endurance athletes (104); controls (200) | PPARGC1A rs8192678 (Gly482Ser) | Ser482 allele: athletes < unfit controls (p = 0.01) | Lucia et al., 2015 [40] |
Polish rowers (55); controls (115) | PPARA rs4253778 (intron 7C/G) | GG genotype: elite rowers > controls (p = 0.04) G allele: all rowers > controls (p = 0.03) G allele: elite rowers > controls (p = 0.01) | Maciejewska et al., 2011 [41] |
Polish and Russian athletes of various disciplines (1605); controls (1816) | PPARGC1A rs8192678 (Gly482Ser) | Ser482 allele: athletes < unfit controls (p = 0.0001) | Maciejewska et al., 2012 [42] |
Polish athletes (endurance, strength-endurance, speed-power, sprint-strength, strength, 660); controls (684) | PPARG rs1801282 (Pro12Ala) | 12Ala allele: strength athletes > controls (p = 0.0007) | Maciejewska et al., 2013 [43] |
Polish athletes (endurance, strength-endurance, speed-power, sprinters, 660); controls (704) | PPARD rs2016529 PPARD rs1053049 PPARD rs2267668 haplotypes rs2267668/ rs2016520/rs1053049 | rs2016529 CC genotype: athletes > controls (p < 0.00001) rs1053049 TT genotype: athletes > controls (p < 0.0001) NSFG haplotype A/C/C: athletes < controls (p < 0.000001) | Maciejewska et al., 2014 [44] |
Spanish professional cyclists, Olympic-class runners, world-class rowers (141); controls (123) | PPARGC1A rs8192678 (Gly482Ser) | NS | Muniesa et al., 2010 [45] |
Polish elite athletes of different sports disciplines: power and endurance (413); controls (451) | PPARGC1A rs8192678 (Gly482Ser) PPARG rs1801282 (Pro12Ala) | NS NS | Peplonska et al., 2017 [46] |
Spanish world-class rowers (39); controls (123) | PPARGC1A rs8192678 (Gly482Ser) | NS | Santiago et al., 2010 [47] |
Greek endurance athletes (438); controls not included | PPARGC1A rs8192678 (Gly482Ser) PPARA rs4253778 (intron 7C/G) PPARD rs2267668 PPARD rs6902123 PPARD rs1053049 | NS NS NS NS NS | Tsianos et al., 2010 [48] |
Turkish elite level endurance athletes (60); controls (110) | PPARA rs4253778 (intron 7C/G) PPARGC1A rs8192678 (Gly482Ser) | GG genotype: athletes > controls (p = 0.006) G allele: athletes > controls (p < 0.001) Gly/Gly genotype: athletes < controls (p < 0.001) Gly482 allele: athletes < controls (p < 0.001) | Tural et al., 2014 [49] |
Japanese endurance track-and-field athletes (175); controls (645) | PPARD rs2016520 (+294T/C) PPARGC1A rs8192678 (Gly482Ser) PPARGC1B rs7732671 (Ala2032Pro) Total Genetic Score of 20 gene polymorphisms | NS NS NS NS | Yvert et al., 2016 [50] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petr, M.; Maciejewska-Skrendo, A.; Zajac, A.; Chycki, J.; Stastny, P. Association of Elite Sports Status with Gene Variants of Peroxisome Proliferator Activated Receptors and Their Transcriptional Coactivator. Int. J. Mol. Sci. 2020, 21, 162. https://doi.org/10.3390/ijms21010162
Petr M, Maciejewska-Skrendo A, Zajac A, Chycki J, Stastny P. Association of Elite Sports Status with Gene Variants of Peroxisome Proliferator Activated Receptors and Their Transcriptional Coactivator. International Journal of Molecular Sciences. 2020; 21(1):162. https://doi.org/10.3390/ijms21010162
Chicago/Turabian StylePetr, Miroslav, Agnieszka Maciejewska-Skrendo, Adam Zajac, Jakub Chycki, and Petr Stastny. 2020. "Association of Elite Sports Status with Gene Variants of Peroxisome Proliferator Activated Receptors and Their Transcriptional Coactivator" International Journal of Molecular Sciences 21, no. 1: 162. https://doi.org/10.3390/ijms21010162
APA StylePetr, M., Maciejewska-Skrendo, A., Zajac, A., Chycki, J., & Stastny, P. (2020). Association of Elite Sports Status with Gene Variants of Peroxisome Proliferator Activated Receptors and Their Transcriptional Coactivator. International Journal of Molecular Sciences, 21(1), 162. https://doi.org/10.3390/ijms21010162