Detection of Nonylphenol with a Gold-Nanoparticle-Based Small-Molecule Sensing System Using an ssDNA Aptamer
Abstract
:1. Introduction
2. Results
2.1. Screening Aptamer Candidates against Nonylphenol via rGO-SELEX
2.2. Binding Affinity of the Selected Aptamer to Nonylphenol
2.3. Specificity Test against Similar Chemicals
2.4. Nonylphenol Detecting Test from Real Sample
2.5. Conformational Change of Aptamer against Nonylphenol Addition
2.6. LOD Determination of NP7 Aptamer in the AuNP-Based Sensor System
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Construction of the ssDNA Library
4.3. Reduced Graphene-Oxide (rGO) SELEX against Nonylphenol
4.4. Sequence Analysis and Selection of Candidates for Nonylphenol Detection
4.5. Gold Nanoparticle Synthesis
4.6. Characterization of the Aptamer with AuNP
4.7. Circular Dichroism Spectropolarimetry Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NP | Nonylphenol |
4-n-NP | 4-n-Nonylphenol |
LOD | Limit of Detection |
EDCs | Endocrine-disrupting chemicals |
AuNPs | Gold nanoparticles |
rGO | reduced graphene oxide |
CD | Circular dichroism |
SELEX | Systematic evolution of ligands using the exponential enrichment |
BPA | Bisphenol A |
DEHP | Diethylhexyl phthalate |
PP | Phenylphenol |
References
- Damstra, T.; Barlow, S.; Bergman, A.; Kavlock, R.; Kraak, G.V.D. Global assessment of the State-of-the-Science of Endocrine Disruptors, 1st ed.; World Health Organization: Geneva, Switzerland, 2002; pp. 5–9. [Google Scholar]
- Mallozzi, M.; Leone, C.; Manurita, F.; Bellati, F.; Caserta, D. Endocrine Disrupting Chemicals and Endometrial Cancer: An Overview of Recent Laboratory Evidence and Epidemiological Studies. Int. J. Env. Res. Public Health 2017, 14, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, A.; Guieysse, B.; Jefferson, B.; Cartmell, E. Nonylphenol in the Environment: A Critical Review on Occurrence, Fate, Toxicity and Treatment in Wastewaters. Environ. Int. 2008, 34, 1033–1049. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, S.D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650. [Google Scholar] [PubMed]
- Ha, N.R.; Lee, S.C.; Hyun, J.W.; Yoon, M.Y. Development of inhibitory ssDNA aptamers for the FtsZ cell division protein from citrus canker phytopathogen. Process Biochem. 2016, 51, 24–33. [Google Scholar] [CrossRef]
- Lian, Y.; He, F.; Wang, H.; Tong, F. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus. Biosens. Bioelectron. 2015, 65, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Pan, Y.; Fang, H.; Guo, M.; Nie, Z. An aptamer-based quartz crystal microbalance biosensor for sensitive and selective detection of leukemia cells using silver-enhanced gold nanoparticle label. Talanta 2014, 126, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Hermann, T.; Patel, D.J. Adaptive recognition by nucleic acid aptamers. Science 2000, 287, 820–825. [Google Scholar] [CrossRef] [Green Version]
- Stoltenburg, R.; Nikolaus, N.; Strehlitz, B. Capture-SELEX: Selection of DNA aptamers for aminoglycoside antibiotics. J. Anal. Methods Chem. 2012, 1, 1–14. [Google Scholar] [CrossRef]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 2005, 383, 83–91. [Google Scholar] [CrossRef]
- Park, J.W.; Tatavarty, R.; Kim, D.W.; Jung, H.T.; Gu, M.B. Immobilization-free screening of aptamers assisted by graphene oxide. Chem. Commun. 2012, 48, 2071–2073. [Google Scholar] [CrossRef]
- Wu, M.; Kempaiah, R.; Huang, P.-J.J.; Maheshwari, V.; Liu, J. Adsorption and Desorption of DNA on Graphene Oxide Studied by Fluorescently Labeled Oligonucleotides. Langmuir 2011, 27, 2731–2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.-H.; Li, J.; Lin, M.-H.; Wang, Y.-W.; Yang, H.H.; Chen, X.; Chen, G.N. Amplified Aptamer-Based Assay through Catalytic Recycling of the Analyte. Angew. Chem. Int. Ed. 2010, 49, 8454–8457. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct. Mater. 2010, 20, 453–459. [Google Scholar] [CrossRef]
- Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.E.; Chávez, J.L.; Hagen, J.A.; Kelley-Loughnane, N. Design and Development of Aptamer–Gold Nanoparticle Based Colorimetric Assays for In-the-field Applications. J. Vis. Exp. 2016, 112, 54063. [Google Scholar]
- Liu, Z.; Liu, B.; Ding, J.; Liu, J. Fluorescent sensors using DNA-functionalized graphene oxide. Anal. Bioanal. Chem. 2014, 406, 6885–6902. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Tang, L.; Wang, Y.; Jiang, J.; Scott, H.; Li, J. Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Anal. Chem. 2010, 82, 2341–2346. [Google Scholar] [CrossRef]
- Li, M.; Zhou, X.; Guo, S.; Wu, N. Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens. Bioelectron. 2013, 43, 69–74. [Google Scholar] [CrossRef]
- Raston, N.A.H.; Gu, M.-B. Highly amplified detection of visceral adipose tissue-derived serpin (vaspin) using a cognate aptamer duo. Biosens. Bioelectron. 2015, 70, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Kinghorn, A.B.; Fraser, L.A.; Liang, S.; Shiu, S.C.-C.; Tanner, J.A. Aptamer Bioinformatics. Int. J. Mol. Sci. 2017, 18, 2516. [Google Scholar] [CrossRef] [Green Version]
- McKeague, M.; DeRosa, M.C. Challenges and Opportunities for Small Molecule Aptamer Development. J. Nucleic Acids. 2012, 2012, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Savory, N.; Abe, K.; Ikebukuro, K. Methods for Improving Aptamer Binding Affinity. Molecules 2016, 21, 421. [Google Scholar] [CrossRef] [PubMed]
- Monnot, M.; Mauffret, O.; Lescot, E.; Fermandjian, S. Probing intercalation and conformational effects of the anticancer drug 2-methyl-9-hydroxyellipticinium acetate in DNA fragments with circular dichroism. Eur. J. Biochem. 1992, 204, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Das, P.; Basak, S.; Chattopadhyay, N. Binding Interaction of Cationic Phenazinium Dyes with Calf Thymus DNA: A Comparative Study. J. Phys. Chem. B 2008, 112, 9243–9249. [Google Scholar] [CrossRef]
- Kim, A.-R.; Ha, N.-R.; Jung, I.-P.; Kim, S.-H.; Yoon, M.-Y. Development of a ssDNA aptamer system with reduced graphene oxide (rGO) to detect nonylphenol ethoxylate in domestic detergent. J. Mol. Recognit. 2019, 32, e2764. [Google Scholar] [CrossRef]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Waugh, A.; Gendron, P.; Altman, R.; Brown, J.W.; Case, D.; Gautheret, D.; Harvey, S.C.; Leontis, N.; Westbrook, J.; Westhof, E.; et al. RNAML: A standard syntax for exchanging RNA information. RNA 2002, 8, 707–717. [Google Scholar] [CrossRef] [Green Version]
- Zuker, M.; Jacobson, A.B. Using Reliability Information to Annotate RNA Secondary Structures. RNA 1998, 4, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.H.; Kim, A.R.; Kim, S.H.; Lee, S.J.; Chung, H.; Yoon, M.Y. Development of a novel imaging agent using peptide-coated gold nanoparticles toward brain glioma stem cell marker CD133. Acta Biomater. 2017, 47, 182–192. [Google Scholar] [CrossRef]
- Ha, N.R.; Jung, I.P.; Kim, S.H.; Kim, A.R.; Yoon, M.Y. Paper chip-based colorimetric sensing assay for ultra-sensitive detection of residual kanamycin. Process Biochem. 2017, 62, 161–168. [Google Scholar] [CrossRef]
- Lim, H.; Kim, A.; Yoon, M.; You, Y.; Chua, B.; Son, A. Development of quantum dot aptasensor and its portable analyzer for the detection of di-2-ethylhexyl phthalate. Biosens. Bioelectron. 2018, 121, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-H.; Son, A. Fluorescence resonance energy transfer based quantum dot-Aptasensor for the selective detection of microcystin-LR in eutrophic water. Chem. Eng. J. 2019, 359, 1493–1501. [Google Scholar] [CrossRef]
- Huang, H.; Li, Y.; Liu, J.; Tong, J.; Su, X. Detection of bisphenol A in food packaging based on fluorescent conjugated polymer PPESO3 and enzyme system. Food Chem. 2015, 185, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yang, J.; Ye, J.; Xu, L.; Xu, H.; Zhan, S.; Xia, B.; Wang, L. Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles. Anal. Biochem. 2016, 499, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Yakovleva, J.N.; Lobanova, A.Y.; Shutaleva, E.A.; Kourkina, M.A.; Mart’ianov, A.A.; Zherdev, A.V.; Dzantiev, B.B.; Eremin, S.A. Express detection of nonylphenol in water samples by fluorescence polarization immunoassay. Anal. Bioanal. Chem. 2004, 378, 634–641. [Google Scholar] [CrossRef]
Target | Detection Method | LOD | Reference |
---|---|---|---|
Nonylphenol ethoxylate | Fluorescence-based aptasensor system | 696 pM | [26] |
Bisphenol A | Fluorescence-based enzyme-sensor system | 400 nM | [34] |
Bisphenol A | AuNP-based aptasensor system | 1.50 nM | [35] |
Nonylphenol | Fluorescence polarization immunoassay | 231 mM (= 51 mg/L) | [36] |
Nonylphenol | AuNP-based aptasensor system | 2.239 nM | This study |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, A.-R.; Kim, S.-H.; Kim, D.; Cho, S.W.; Son, A.; Yoon, M.-Y. Detection of Nonylphenol with a Gold-Nanoparticle-Based Small-Molecule Sensing System Using an ssDNA Aptamer. Int. J. Mol. Sci. 2020, 21, 208. https://doi.org/10.3390/ijms21010208
Kim A-R, Kim S-H, Kim D, Cho SW, Son A, Yoon M-Y. Detection of Nonylphenol with a Gold-Nanoparticle-Based Small-Molecule Sensing System Using an ssDNA Aptamer. International Journal of Molecular Sciences. 2020; 21(1):208. https://doi.org/10.3390/ijms21010208
Chicago/Turabian StyleKim, A-Ru, Sang-Heon Kim, Dabin Kim, Seo Won Cho, Ahjeong Son, and Moon-Young Yoon. 2020. "Detection of Nonylphenol with a Gold-Nanoparticle-Based Small-Molecule Sensing System Using an ssDNA Aptamer" International Journal of Molecular Sciences 21, no. 1: 208. https://doi.org/10.3390/ijms21010208
APA StyleKim, A. -R., Kim, S. -H., Kim, D., Cho, S. W., Son, A., & Yoon, M. -Y. (2020). Detection of Nonylphenol with a Gold-Nanoparticle-Based Small-Molecule Sensing System Using an ssDNA Aptamer. International Journal of Molecular Sciences, 21(1), 208. https://doi.org/10.3390/ijms21010208