Differential Transcription of SOCS5 and SOCS7 in Multiple Sclerosis Patients Treated with Interferon Beta or Glatiramer Acetate
Abstract
:1. Introduction
2. Results
2.1. Demographic Characteristics and Clinical Parameters
2.2. Transcription of SOCS5 and SOCS7 in MS Patients
2.3. Analysis of SOCS5 and SOCS7 Transcript Levels by Treatment
2.4. Quantification of Cytokines
2.5. Correlation Analysis
2.5.1. SOCS5/7 Transcription and Disease Activity
2.5.2. SOCS Transcript Levels and Cytokine Concentrations
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. RNA Extraction
4.3. Quantitative Real-Time Reverse Transcription-PCR
4.4. Cytokine Quantification
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CNS | Central nervous system |
EDSS | Expanded disability status scale |
ELISA | Enzyme-Linked ImmunoSorbent Assay |
GA | Glatiramer acetate |
IFN | Interferon |
IL | Interleukin |
JAK | Janus kinase |
MIU | Millions of international units |
MS | Multiple sclerosis |
RNA | Ribonucleic acid |
RR | Relapsing-remitting |
RTPCR | Retrotranscription polymerase chain reaction |
SOCS | Supressors of cytokine signaling |
STAT | Signal Transducer nd activator of transcription |
References
- Dilokthornsakul, P.; Valuck, R.J.; Nair, K.V.; Corboy, J.R.; Allen, R.R.; Campbell, J.D. Multiple sclerosis prevalence in the United States commercially insured population. Neurology 2016, 86, 1014–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bove, R.; Chitnis, T. Sexual disparities in the incidence and course of MS. Clin. Immunol. 2013, 149, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Lublin, F.D.; Reingold, S.C. Defining the clinical course of multiple sclerosis: Results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 1996, 46, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Adamec, I.; Crnošija, L.; Junaković, A.; Skorić, M.K.; Habek, M. Progressive multiple sclerosis patients have a higher burden of autonomic dysfunction compared to relapsing remitting phenotype. Clin. Neurophysiol. 2018, 129, 1588–1594. [Google Scholar] [CrossRef] [Green Version]
- Rudick, R.A. Disease-modifying drugs for relapsing-remitting multiple sclerosis and future directions for multiple sclerosis therapeutics. Arch. Neurol. 1999, 56, 1079–1084. [Google Scholar] [CrossRef] [Green Version]
- Pul, R.; Morbiducci, F.; Škuljec, J.; Skripuletz, T.; Singh, V.; Diederichs, U.; Garde, N.; Voss, E.V.; Trebst, C.; Stangel, M. Glatiramer acetate increases phagocytic activity of human monocytes in vitro and in multiple sclerosis patients. PLoS ONE 2012, 7, e51867. [Google Scholar] [CrossRef] [Green Version]
- Hemmer, B.; Kerschensteiner, M.; Korn, T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 2015, 14, 406–419. [Google Scholar] [CrossRef]
- Friese, M.A.; Schattling, B.; Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nature reviews. Neurology 2014, 10, 225–238. [Google Scholar]
- Wong, N.; Nguyen, T.; Brenu, E.W.; Broadley, S.; Staines, D.; Marshall-Gradisnik, S. A Comparison of Cytokine Profiles of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis and Multiple Sclerosis Patients. Int. J. Clin. Med. 2015, 6, 769–783. [Google Scholar] [CrossRef] [Green Version]
- Panitch, H.S.; Haley, A.S.; Hirsch, R.L.; Johnson, K.P. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1987, 1, 893–895. [Google Scholar] [CrossRef]
- Pokryszko-Dragan, A.; Frydecka, I.; Kosmaczewska, A.; Ciszak, L.; Bilińska, M.; Gruszka, E.; Podemski, R.; Frydecka, D. Stimulated peripheral production of interferon-gamma is related to fatigue and depression in multiple sclerosis. Clin. Neurol. Neurosurg. 2012, 114, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- McFarland, H.F.; Martin, R. Multiple sclerosis: A complicated picture of autoimmunity. Nat. Immunol. 2007, 8, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Shabgah, A.G.; Fattahi, E.; Shahneh, F.Z. Interleukin-17 in human inflammatory diseases. Postepy Derm. Alergol. 2014, 31, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Waisman, A.; Hauptmann, J.; Regen, T. The role of IL-17 in CNS diseases. Acta Neuropathol. 2015, 129, 625–637. [Google Scholar] [CrossRef]
- Hedegaard, C.J.; Krakauer, M.; Bendtzen, K.; Lund, H.; Sellebjerg, F.; Nielsen, C.H. T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology 2008, 125, 161–169. [Google Scholar] [CrossRef]
- Ghaffari, S.A.; Nemati, M.; Hajghani, H.; Ebrahimi, H.; Sheikhi, A.; Jafarzadeh, A. Circulating concentrations of interleukin (IL)-17 in patients with multiple sclerosis: Evaluation of the effects of gender, treatment, disease patterns and IL-23 receptor gene polymorphisms. Iran. J. Neurol. 2017, 16, 15–25. [Google Scholar]
- Gold, R.; Luhder, F. Interleukin-17--extended features of a key player in multiple sclerosis. Am. J. Pathol. 2008, 172, 8–10. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Yang, X.; Miao, L.; Liu, Z.G.; Li, W.; Zhao, Z.X.; Sun, X.J.; Jiang, G.X.; Chen, S.D.; Cheng, Q. Serum level of interleukin-6 in Chinese patients with multiple sclerosis. J. Neuroimmunol. 2012, 249, 109–111. [Google Scholar] [CrossRef]
- Stelmasiak, Z.; Kozioł-Montewka, M.; Dobosz, B.; Rejdak, K.; Bartosik-Psujek, H.; Mitosek-Szewczyk, K.; Belniak-Legieć, E. Interleukin-6 concentration in serum and cerebrospinal fluid in multiple sclerosis patients. Med. Sci. Monit. 2000, 6, 1104–1108. [Google Scholar]
- Tamiya, T.; Kashiwagi, I.; Takahashi, R.; Yasukawa, H.; Yoshimura, A. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: Regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 980–985. [Google Scholar] [CrossRef] [Green Version]
- Alexander, W. Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol. 2002, 2, 410–416. [Google Scholar] [CrossRef]
- Kubo, M.; Hanada, T.; Yoshimura, A. Suppressors of cytokine signaling and immunity. Nat. Immunol. 2003, 4, 1169–1176. [Google Scholar] [CrossRef]
- Sedeno-Monge, V.; Arcega-Revilla, R.; Rojas-Morales, E.; Santos-López, G.; Perez-García, J.G.; Sosa-Jurado, F.; Vallejo-Ruiz, V.; Solis-Morales, G.L.; Aguilar-Rosas, S.; Reyes-Leyva, J. Quantitative analysis of the suppressors of cytokine signaling 1 and 3 in peripheral blood leukocytes of patients with multiple sclerosis. J. Neuroimmunol. 2014, 273, 117–119. [Google Scholar] [CrossRef]
- Linossi, E.M.; Chandrashekaran, I.R.; Kolesnik, T.B.; Murphy, J.M.; Webb, A.R.; Willson, T.A.; Kedzierski, L.; Bullock, A.N.; Babon, J.J.; Norton, S.; et al. Suppressor of Cytokine Signaling (SOCS) 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1. PLoS ONE 2013, 8, e70536. [Google Scholar] [CrossRef]
- Seki, Y.; Hayashi, K.; Matsumoto, A.; Seki, N.; Tsukada, J.; Ransom, J.; Naka, T.; Kishimoto, T.; Yoshimura, A.; Kubo, M. Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proc. Natl. Acad. Sci. USA 2002, 99, 13003–13008. [Google Scholar] [CrossRef] [Green Version]
- Martens, N.; Uzan, G.; Wery, M.; Hooghe, R.; Hooghe-Peters, E.L.; Gertler, A. Suppressor of cytokine signaling 7 inhibits prolactin, growth hormone, and leptin signaling by interacting with STAT5 or STAT3 and attenuating their nuclear translocation. J. Biol. Chem. 2005, 280, 13817–13823. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Jin, J.; Peng, X.; Ramgolam, V.S.; Markovic-Plese, S. Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4+ lymphocytes. J. Immunol. 2008, 180, 6988–6996. [Google Scholar] [CrossRef] [Green Version]
- Toghi, M.; Taheri, M.; Arsang-Jang, S.; Ohadi, M.; Mirfakhraie, R.; Mazdeh, M.; Sayad, A. SOCS gene family expression profile in the blood of multiple sclerosis patients. J. Neurol. Sci. 2017, 375, 481–485. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Jeon, S.B.; Chang, C.Y.; Goh, E.A.; Kim, S.S.; Kim, H.J.; Song, J.; Park, E.J. Glatiramer acetate attenuates the activation of CD4(+) T cells by modulating STAT1 and -3 signaling in glia. Sci. Rep. 2017, 7, 40484. [Google Scholar] [CrossRef]
- Youssef, S.; Stüve, O.; Patarroyo, J.C.; Ruiz, P.J.; Radosevich, J.L.; Hur, E.M.; Bravo, M.; Mitchell, D.J.; Sobel, R.A.; Steinman, L.; et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 2002, 420, 78–84. [Google Scholar] [CrossRef]
- Nath, N.; Giri, S.; Prasad, R.; Singh, A.K.; Singh, I. Potential targets of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor for multiple sclerosis therapy. J. Immunol. 2004, 172, 1273–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogusan, Z.; Hooghe-Petersa, E.L.; Berusa, D.; Velkeniersa, B.; Hoogheab, R. Expression of SOCS genes in normal and leukemic human leukocytes stimulated by prolactin, growth hormone and cytokines. J. Neuroimmunol. 2000, 109, 34–39. [Google Scholar] [CrossRef]
- Orton, S.M.; Herrera, B.H.; Yee, I.M.; Valdar, W.; Ramagopalan, S.V.; Sadovnick, A.D.; Ebers, G.C. Sex ratio of multiple sclerosis in Canada: A longitudinal study. Lancet Neurol. 2006, 5, 932–936. [Google Scholar] [CrossRef]
- Bove, R.M.; Healy, B.; Augustine, A.; Musallam, A.; Gholipour, T.; Chitnis, T. Effect of gender on late-onset multiple sclerosis. Mult. Scler. 2012, 18, 1472–1479. [Google Scholar] [CrossRef]
- Ribbons, K.A.; McElduff, P.; Boz, C.; Trojano, M.; Izquierdo, G.; Duquette, P.; Girard, M.; Grand’Maison, F.; Hupperts, R.; Grammond, P.; et al. Male Sex Is Independently Associated with Faster Disability Accumulation in Relapse-Onset MS but Not in Primary Progressive MS. PLoS ONE 2015, 10, e0122686. [Google Scholar] [CrossRef] [Green Version]
- Sedeno-Monge, V.; Santos-López, G.; Rocha-Gracia, R.C.; Meléndez-Mena, D.; Ramírez-Mata, A.; Vallejo-Ruiz, V.; Reyes-Leyva, J. Quantitative analysis of interferon alpha receptor subunit 1 and suppressor of cytokine signaling 1 gene transcription in blood cells of patients with chronic hepatitis C. Virol. J. 2010, 7, 243. [Google Scholar] [CrossRef] [Green Version]
Variables | Study Groups | Treatment Type | IFN-β Types | ||||
---|---|---|---|---|---|---|---|
Control (n = 29) | MS (n = 36) | IFN-β (n = 25) | GA (n = 11) | IFN-β 1A (n = 10) | IFN-β 1B (n = 15) | ||
Age (Years) | 38.5 ± 11.5 | 36.8 ± 8.7 | 36.9 ± 9.6 | 36.5 ± 6.3 | 39.5 ± 12.7 | 35.5 ± 7.7 | |
Gender (Female/Male) | 13/16 | 21/15 | 16/9 | 5/6 | 7/3 | 9/6 | |
EDSS Value | 0 | 2.6 ± 1.36 | 2.08 ± 0.88 | 4.3 ± 1.7 | 1.85 ± 0.74 | 2.2 ± 0.96 | |
Functional Systems Evaluated by EDSS | PF n (%) | _ | 23 (69.7) | 14 (60.9) | 9 (90) | 3 (37.5) | 11 (73.3) |
SF n (%) | _ | 24 (72.7) | 17 (73.9) | 7 (70) | 5 (62.5) | 12 (80) | |
BBF n (%) | _ | 20 (60.6) | 13 (56.5) | 7 (70) | 6 (75) | 7 (46.6) | |
CCF n (%) | _ | 22 (66.7) | 14 (60.9) | 8 (80) | 4 (50) | 10 (66.6) | |
CF n (%) | _ | 10 (30.3) | 7 (30.4) | 3 (30) | 1 (12.5) | 6 (40) | |
BSF n (%) | _ | 5 (15.2) | 2 (8.7) | 3 (30) | 0 | 2 (13.3) | |
VF n (%) | _ | 10 (33.3) | 6 (26.1) | 5 (50) | 1 (12.5) | 5 (33.3) | |
Evolution of the Disease (Years) | _ | 6.5 ± 4.1 | 6.1 ± 4.6 | 7.4 ± 3.3 | 7.3 ± 6.4 | 5.5 ± 3.4 | |
Cytokines (pg/mL) | IFN-γ | 0 (0–106) | 60 (0–160) | 68 (0–160) | 51 (0–114) | 38 (14–160) | 91 (0–131) |
IL-17 | 1.2 (0–15) | 1.9 (0–15) | 1.2 (0–14) | 4 (0.2–15) | 0.6 (0–7.6) | 1.7 (0–13) | |
IL-6 | 0 (0–39) | 0 (0–18) | 0.3 (0–16) | 0 (0–18) | 0 (0–2) | 1.4 (0–16) | |
Genes Expression SOCS | SOCS5 | 1.06 ± 0.16 | 0.918 ± 0.14 | 0.912 ± 0.14 | 0.931 ± 0.1 | 0.913 ± 0.11 | 0.947 ± 0.05 |
SOCS7 | 1.008 ± 018 | 0.823 ± 0.13 | 0.65 ± 0.10 | 1.368 ± 0.2 | 0.484 ± 0.02 | 0.674 ± 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Morales, E.; Santos-López, G.; Hernández-Cabañas, S.; Arcega-Revilla, R.; Rosas-Murrieta, N.; Jasso-Miranda, C.; El-Kassis, E.G.; Reyes-Leyva, J.; Sedeño-Monge, V. Differential Transcription of SOCS5 and SOCS7 in Multiple Sclerosis Patients Treated with Interferon Beta or Glatiramer Acetate. Int. J. Mol. Sci. 2020, 21, 218. https://doi.org/10.3390/ijms21010218
Rojas-Morales E, Santos-López G, Hernández-Cabañas S, Arcega-Revilla R, Rosas-Murrieta N, Jasso-Miranda C, El-Kassis EG, Reyes-Leyva J, Sedeño-Monge V. Differential Transcription of SOCS5 and SOCS7 in Multiple Sclerosis Patients Treated with Interferon Beta or Glatiramer Acetate. International Journal of Molecular Sciences. 2020; 21(1):218. https://doi.org/10.3390/ijms21010218
Chicago/Turabian StyleRojas-Morales, Emmanuel, Gerardo Santos-López, Samuel Hernández-Cabañas, Raúl Arcega-Revilla, Nora Rosas-Murrieta, Carolina Jasso-Miranda, Elie Girgis El-Kassis, Julio Reyes-Leyva, and Virginia Sedeño-Monge. 2020. "Differential Transcription of SOCS5 and SOCS7 in Multiple Sclerosis Patients Treated with Interferon Beta or Glatiramer Acetate" International Journal of Molecular Sciences 21, no. 1: 218. https://doi.org/10.3390/ijms21010218
APA StyleRojas-Morales, E., Santos-López, G., Hernández-Cabañas, S., Arcega-Revilla, R., Rosas-Murrieta, N., Jasso-Miranda, C., El-Kassis, E. G., Reyes-Leyva, J., & Sedeño-Monge, V. (2020). Differential Transcription of SOCS5 and SOCS7 in Multiple Sclerosis Patients Treated with Interferon Beta or Glatiramer Acetate. International Journal of Molecular Sciences, 21(1), 218. https://doi.org/10.3390/ijms21010218