Changes in Proteome and Protein Phosphorylation Reveal the Protective Roles of Exogenous Nitrogen in Alleviating Cadmium Toxicity in Poplar Plants
Abstract
:1. Introduction
2. Results
2.1. Exogenous Nitrogen Reduces Cadmium Toxicity in Poplar Leaf Photosynthesis and Promotes Growth
2.2. Exogenous Nitrogen Can Enhance the Plants Absorption and Transportation of Cd
2.3. Exogenous Nitrogen Reduces Cadmium-Induced H2O2 and MDA Generation and Enhances Glutathione (GSH) and Phytochelatin (PCs) Accumulation
2.4. Impacts of Cd or Cd + N on the Global Proteome of Poplar Plants
2.5. Impacts of Cd and Cd + N on the Protein Phosphorylation Levels in Poplar Plants
3. Discussion
3.1. Cd Stress Induced Oxidative Injuries and Inhibited Photosynthesis
3.2. Plants Actively Exert a Range of Approaches in the Defense against Cadmium Stress
3.3. Exogenous Nitrogen Alleviated the Toxicity of Cadmium to Poplar Plants
3.4. Exogenous Nitrogen Promoted Protein Phosphorylation to Enhance Poplar Plants’ Resistance to Cadmium Stress
3.5. The Key Regulatory Proteins Play Their Important Roles in Plant Cellular Responses to Cd Stress
4. Conclusions
5. Materials and Methods
5.1. Plant Material and Treatment
5.2. Chlorophyll Content and Cd Assays
5.3. Gas-Exchange Parameters and Chl Fluorescence Measurements
5.4. H2O2, MDA (Malondialdehyde), Total GSH (Glutathione) and PCs (Phytochelatin) Content Analysis
5.5. The Differentially Expressed Proteins and Phosphorylated Proteins Analysis
5.5.1. Protein Extraction, Trypsin Digestion, TMT Labeling and HPLC Fractionation
5.5.2. IMAC Enrichment
5.5.3. LC–MS/MS Analysis
5.5.4. MS/MS Data Search
5.5.5. Relatively Quantified Phosphopeptides
5.5.6. Bioinformatics Analysis
5.5.7. The Heat Map of Different Protein Functional Classification
5.6. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HM | Heavy metal |
N | nitrogen |
Cd | cadmium |
HSP70 | heat shock protein 70 |
POD | peroxidase |
ROS | reactive oxygen species |
O2− | superoxide radicals |
OH | hydroxyl radicals |
H2O2 | hydrogen peroxide |
GSH | glutathione |
PCs | phytochelatins |
Chl a | chlorophyll a |
Chl b | chlorophyll b |
Pnmax | the net rate of photosynthesis |
R | transpiration rate |
AQE | maximum quantum efficiency |
gs | stomatal conductance |
Fv/Fm | maximum quantum efficiency of PS II |
ZFP | zinc finger protein |
elF | eukaryotic translation initiation factor |
SF3BI | eukaryotic translation initiation factor |
GO | Gene Ontology |
MAPK | mitogen activated protein kinase protein |
PA2G4 | proliferation-associated proteins 2G4 |
TCTP | translationally controlled tumor proteins |
Prx | peroxiredoxin |
GST | glutathione transferase |
ABC transporter | the ATP-binding cassette transporter |
TFs | transcription factors |
Bhlh | helix-loop-helix |
VPS | vacuolar protein sorting-associated protein |
References
- Sarwar, N.; Ishaq, W.; Farid, G.; Shaheen, M.R.; Imran, M.; Geng, M.; Hussain, S. Zincecadmium interactions: Impact on wheat physiology and mineral acquisition. Ecotox. Environ. Saf. 2015, 122, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Cuypers, A.; Plusquin, M.; Remans, T.; Jozefczak, M.; Keunen, E.; Gielen, H.; Opedenakker, K.; Nair, A.R.; Munters, E.; Artois, T.J.; et al. Cadmium stress: An oxidative challenge. Biometals 2010, 23, 927–940. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, G.; Farrag, K.; Solerrovira, P.; Ferrara, M.; Nigro, F.; Senesi, N. Heavy metals accumulation and distribution in durum wheat and barley grown in contaminated soils under Mediterranean field conditions. J. Plant. Interact. 2012, 7, 160–174. [Google Scholar] [CrossRef] [Green Version]
- Chaney, R.L.; Ryan, J.A.; Li, Y.M.; Brown, S.L. Soil cadmium as a threat to human health. In Cadmium in Soils and Plants; McLaughlin, M.J., Singh, B.R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 219–256. [Google Scholar]
- McLaughlin, M.J.; Parker, D.R.; Clarke, J.M. Metals and micronutrients-food safety issues. Field. Crop. Res. 1999, 60, 143–163. [Google Scholar] [CrossRef]
- Metwally, A.; Safronova, V.I.; Belimov, A.A.; Dietz, K.J. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J. Exp. Bot. 2005, 56, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Küpper, H.; Kochian, L.V. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspicaerulescens (Ganges population). New Phytol. 2010, 185, 114–129. [Google Scholar] [CrossRef] [Green Version]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Romero-Puertas, M.C.; Corpas, F.J.; Sandalio, L.M.; Leterrier, M.; Rodrı’guez-Serrano, M.; del Rı’o, L.A.; Palma, J.M. Glutathione reductase from pea leaves: Response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol. 2006, 170, 43–52. [Google Scholar] [CrossRef]
- Saifullah, G.C.; Bolan, N.; Bibi, S.; Iqbal, M.; Rengel, Z.; Kunhikrishnan, A.; Ok, Y.S. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit. Rev. Plant Sci. 2014, 33, 374–391. [Google Scholar]
- Chen, L.; Han, Y.; Jiang, H.; Korpelainen, H.; Li, C. Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. J. Exp. Bot. 2011, 62, 5037–5050. [Google Scholar] [CrossRef] [Green Version]
- Strycharz, S.; Newman, L. Use of native plants for remediation of trichloroethvlene: I. deciduous trees. Int. J. Phytorem. 2009, 11, 150–170. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.C.; His, H.C.; Chen, C.W.; Lee, H.L.; Hseu, Z.Y. Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications. J. Environ. Manag. 2011, 92, 2818–2822. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, N.; Imranm, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Li, J.T.; Liao, B.; Lan, C.Y.; He, Z.H.; Baker, A.J.M.; Shu, W.S. Cadmium tolerance and accumulation in cultivars of a high biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction. J. Environ. Qual. 2010, 39, 1262–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.; Lei, M.; Chen, T. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci. Total. Environ. 2016, 563, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.M.A.; Kaipiainen, E.K.; Mohsin, M.; Villa, A.; Kuittinen, S.; Pulkkinen, P.; Pelkonen, P.; Mehtätalo, L.; Pappinen, A. Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals. J. Environ. Manag. 2016, 183, 467–477. [Google Scholar] [CrossRef]
- Komárek, M.; Tlustoš, P.; Száková, J.; Chrastný, V.; Ettler, V. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere 2007, 67, 640–651. [Google Scholar] [CrossRef]
- Wu, F.; Yang, W.; Zhang, J.; Zhou, L. Cadmium accumulation and growth responses of a poplar (Populus deltoides×Populus nigra) in cadmium contaminated purple soil and alluvial soil. J. Hazard. Mater. 2010, 177, 268–273. [Google Scholar] [CrossRef]
- Lee, K.Y.; Strand, S.E.; Doty, S.L. Phytoremediation of chlorpyrifos by populus and salix. Int. J. Phytoremediation 2012, 14, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Pollard, A.J.; Reeves, R.D.; Baker, A.J. Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci. 2014, 217, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Lone, M.I.; He, Z.L.; Stoffella, P.J.; Yang, X. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. J. Zhejiang Univ. Sci. B 2008, 9, 210–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaney, R.L.; Angle, J.S.; Broadhurst, C.L.; Peters, C.A.; Tappero, R.V.; Sparks, D.L. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J. Environ. Qual. 2007, 36, 1429–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chia, M.A.; Lombardi, A.T.; Melão, M.D.G.G.; Parrish, C.C. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in chlorella vulgaris (Trebouxiophyceae). Aquat Toxicol. 2015, 160, 87–95. [Google Scholar] [CrossRef]
- Zouari, M.; Elloumi, N.; Ahmed, C.B.; Delmail, D.; Rouina, B.B.; Abdallah, F.B.; Labrousse, P. Exogenous proline enhances growth, mineral uptake, antioxidant defense, and reduces cadmium-induced oxidative damage in young date palm (Phoenix dactylifera L.). Ecol. Eng. 2016, 86, 202–209. [Google Scholar] [CrossRef]
- Li, J.G.; Jin, S.L.; Chen, Y.Q.; Lin, G.L.; Han, X.R.; Li, T.Q.; Yang, X.E.; Zhu, E. Effects of nitrogen fertilizer on the root morphology and cadmium accumulation in low cadmium treatment Sedum alfredii Hance. Chin. Agric. Sci. Bull. 2007, 23, 260–265. [Google Scholar]
- Chang, Y.S.; Chang, Y.J.; Lin, C.T.; Lee, M.C.; Wu, C.W.; Lai, Y.H. Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lanceolate. Int. Biodeterior. Biodegrad. 2013, 85, 709–714. [Google Scholar] [CrossRef]
- Yang, G.; Wang, C.; Wang, Y.; Guo, Y.; Zhao, Y.; Yang, C.; Gao, C. Overexpression of ThVHAc1 and its potential upstream regulator, ThWRKY7, improved plant tolerance of Cadmium stress. Sci. Rep. 2016, 6, 18752. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Wan, X.Q.; Zhong, Y. Nitrogen as an important detoxification factor to cadmium stress in poplar plants. J. Plant. Interact. 2014, 9, 249–258. [Google Scholar] [CrossRef]
- Zhang, F.; Li, J.Q.; Huang, J.L.; Lin, L.H.; Wan, X.Q.; Zhao, J.L.; Dong, J.F.; Sun, L.X.; Chen, Q.B. Transcriptome Profling Reveals the Important Role of Exogenous Nitrogen in Alleviating Cadmium Toxicity in Poplar Plants. J. Plant. Growth. Regul. 2017, 36, 942–956. [Google Scholar] [CrossRef]
- Brahim, S.; Joke, D.; Ann, C.; Jean-Paul, N.; Marjo, T.; Arja, T.; Sirpa, K.; Frank, V.B.; Karen, S.; Jaco, V. Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J. Plant Physiol. 2010, 167, 247–254. [Google Scholar]
- Cvjetko, P.; Zovko, M.; Balen, B. Proteomics of heavy metal toxicity in plants. Arh. Hig. Rada. Toksikol. 2014, 65, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ai-Momani, S.; Qi, D.; Ren, Z.; Jones, A.R. Comparative qualitative phosphoproteomics analysis identifies shared phosphorylation motifs and associated biological processes in evolutionary divergent plants. J. Proteom. 2018, 181, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Pourrut, B.; Dumat, C.; Nadeem, M.; Aslam, M.; Pinelli, E. Heavy-metal-induced reactive eoxygen species: Phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol. 2014, 232, 1–44. [Google Scholar] [PubMed]
- Ezemaduka, A.N.; Wang, Y.; Li, X. Expression of CeHSP17 protein in response to heat shock and heavy metal ions. J. Nematol. 2017, 49, 334–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Hu, W.; Gao, Y.; Pan, H.; Zhang, Q. A cytosolic class II small heat shock protein, PfHSP17.2, confers resistance to heat, cold, and salt stresses in transgenic Arabidopsis. Genet. Mol. Biol. 2018, 41, 649–660. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Yang, S.; Zhou, Y.; Dong, C.; Ren, J.; Sun, X.; Yang, Y. Comparative Physiological and Proteomic Analysis Reveals the Leaf Response to Cadmium-Induced Stress in Poplar (Populus yunnanensis). PLoS ONE 2015. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, J.; Guo, Y.; Ma, E. Molecular Cloning and mRNA Expression of Heat Shock Protein Genes and Their Response to Cadmium Stress in the Grasshopper Oxya chinensis. PLoS ONE 2015, 10, e0131244. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, S.; Liu, B. 14-4-4 proteins: Macro-regulators with great potential for improving abiotic stress tolerance in plants. Biochem. Biophys. Res. Commun. 2016, 477, 9–13. [Google Scholar] [CrossRef]
- Pathare, V.; Srivastava, S.; Sonawane, B.V.; Suprasanna, P. Arsenic stress affects the expression profile of genes of 14-3-3 proteins in the shoot of mycorrhiza colonized rice. Physiol. Mol. Bio. Plants. 2016, 22, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.L.; Chen, Q.; Zhao, X.L.; Chen, X.Q.; Zhao, Y.; Wang, L.; Li, K.Z.; Yu, Y.X.; Chen, L.M. Al-enhanced expression and interaction of 14-3-3 protein and plasma membrane H+-ATPase is related to Al-induced citrate secretion in an Al resistant black Soybean. Plant Mol. Biol. Rep. 2013, 31, 1012–1024. [Google Scholar] [CrossRef]
- Parrotta, L.; Guerriero, G.; Sergeant, K.; Cai, G.; Hausman, J.F. Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: Differences in the response mechanisms. Front. Plant Sci. 2015, 6, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukačová, Z.; Švubová, R.; Kohanová, J.; Lux, A. Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regul. 2013, 70, 89–103. [Google Scholar] [CrossRef]
- Meyer, C.L.; Juraniec, M.; Huguet, S.; Chaves-Rodriguez, E.; Salis, P.; Isaure, M.P.; Goormaghtigh, E.; Verbruggen, N. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis helleri. J. Exp. Bot. 2015, 66, 3215–3227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.H.; Bae, J.M.; Huh, G.H. Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene from sweetpotato in response to plant developmental stage and environmental stress. Plant Cell Rep. 2010, 29, 779–791. [Google Scholar] [CrossRef] [Green Version]
- Romero-Puertas, M.C.; Rodríguez-serrano, M.; Corpas, F.J.; Gómez, M.; Delrío, L.A.; Sandalio, L.M. Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell. Environ. 2004, 27, 1122–1134. [Google Scholar] [CrossRef]
- Tikkanen, M.; Rantala, S.; Aro, E.M. Electron flow from PSII to PSI under high light is controlled by PGR5 but not by PSBS. Front Plant Sci. 2015, 6, 521. [Google Scholar] [CrossRef] [Green Version]
- Paredes, M.; Quiles, M.J. The Effects of Cold Stress on Photosynthesis in Hibiscus Plants. PLoS ONE 2015, 10, e0137472. [Google Scholar] [CrossRef] [Green Version]
- Jonak, C.; Nakagami, H.; Hirt, H. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol. 2004, 136, 3276–3283. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.M.; Han, Y.J.; Hwang, O.J.; Lee, S.S.; Shin, A.Y.; Kim, S.Y.; Kim, J.I. Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure. Mol. Cells 2012, 33, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Q.; Li, G.Z.; Gong, Q.Q.; Li, G.X.; Zheng, S.J. OsTCTP, encoding a translationally controlled tumor protein, plays an important role in mercury tolerance in rice. BMC Plant Biol. 2015, 15, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, F.; Deng, Y.; Zhou, B.; Wang, G.; Wang, Y.; Meng, Q. A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress. J. Exp. Bot. 2014, 65, 143–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muradoglu, F.; Gundogdu, M.; Ercisli, S.; Encu, T.; Balta, F.; Jaafar, H.Z.E.; Zia-Ui-Haq, M. Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol. Res. 2015, 48, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, H.A.; Yim, S.H.; Shi, D.H.; Kang, D.; Yu, D.Y.; Rhee, S.G. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 2010, 140, 517–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunetti, P.; Zanella, L.; Paolis, A.D.; Litta, D.D.; Cecchetti, V.; Falasca, G.; Barbieri, M.; Altamura, M.M.; Costantino, P.; Cardarelli, M. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J. Exp. Bot. 2015, 66, 3815–3829. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.F.; Yamaji, N.; Ma, J.F. Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis. Plant Physiol. 2010, 153, 1669–1677. [Google Scholar] [CrossRef] [Green Version]
- Bovet, L.; Feller, U.; Martinoia, E. Possible involvement of plant ABC transporters in cadmium detoxification: A cDNA submicroarray approach. Environ. Int. 2005, 31, 263–267. [Google Scholar] [CrossRef]
- Wang, L.; Xu, C.; Wang, C.; Wang, Y. Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance. BMC Plant Biol. 2012, 12, 118–135. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yang, L.; Yan, X.; Liu, Y.; Wang, R.; Fan, T.; Ren, Y.; Tang, X.; Xiao, F.; Liu, Y.; et al. Zinc-Finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway. Plant Physiol. 2016, 171, 707–719. [Google Scholar] [CrossRef]
- Chou, W.C.; Huang, Y.W.; Tsay, W.S.; Chiang, T.Y.; Huang, D.D.; Huang, H.J. Expression of genes encoding the rice translation initiation factor, eIF5A, is involved in developmental and environmental responses. Physiol. Plant 2004, 121, 50–57. [Google Scholar] [CrossRef]
- Albataineh, M.T.; Kadosh, D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med. Mycol. 2016, 54, 333–352. [Google Scholar] [CrossRef] [PubMed]
- Bonnal, S.; Vigevani, L.; Valcarcel, J. The spliceosome as a target of novel antitumour drugs. Nat. Rev. Drug Discov. 2012, 11, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Kim Guisbert, K.S.; Guisbert, E. SF3B1 is a stress-sensitive splicing factor that regulates both HSF1 concentration and activity. PLoS ONE 2017, 12, e0176382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiappori, F.; Merelli, I.; Milanesi, L.; Colombo, G.; Morra, G. An atomistic view of Hsp70 allosteric crosstalk: From the nucleotide to the substrate binding domain and back. Sci. Rep. 2016, 6, 23474. [Google Scholar] [CrossRef] [PubMed]
- Assimon, V.A.; Southworth, D.R.; Gestwicki, J.E. Specific binding of tetratricopeptide repeat (TPR) proteins to heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) is regulated by affinity and phosphorylation. Biochemistry 2015, 54, 7120–7131. [Google Scholar] [CrossRef] [PubMed]
- Ai, T.N.; Naing, A.H.; Yun, B.W.; Lim, S.H.; Kim, C.K. Overexpression of RsMYB1 enhances anthocyanin accumulation and heavy metal stress tolerance in transgenic Petunia. Front Plant Sci. 2018, 9, 1330. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzym. 1987, 148, 350–382. [Google Scholar]
- Wu, J.Z.; Ge, Y. Comparative studies on five pretreatment methods in the determination of elements in plant standard sample by ICP-AES. Spectrosc. Spectr. Anal. 1999, 19, 369–372. [Google Scholar]
- Yang, L.; Tian, D.; Todd, C.D.; Luo, Y.; Hu, X. Comparative proteome analyses reveal that nitric oxide is an important signal molecule in the response of rice to aluminum toxicity. J. Proteome Res. 2013, 12, 1316–1330. [Google Scholar] [CrossRef]
- Gupta, S.C.; Goldsbrough, P.B. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol. 1999, 97, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, P.; Srivastava, A.K.; Urmil, S.; Rai, L.C. Phytochelatin plays a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. J. Plant Physiol. 2005, 162, 1220–1225. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Yang, F.; Fan, Y.; Wu, X.; Cheng, Y.; Liu, Q.; Feng, L.; Chen, J.; Wang, Z.; Wang, X.; Yong, T.; et al. Auxin-to-gibberellin ration as a signal for light intensity and quality in regulating soybean growth and matter partitioning. Front Plant Sci. 2018, 9, 1–13. [Google Scholar]
Treatments | Chl a | Chl b | Total Chl |
---|---|---|---|
CK | 1.653 ± 0.021 A | 0.571 ± 0.013 A | 2.224 ± 0.017 A |
Cd | 1.146 ± 0.014 C | 0.267 ± 0.007 B | 1.413 ± 0.011 B |
N + Cd | 1.521 ± 0.039 B | 0.629 ± 0.026 A | 2.150 ± 0.033 A |
Treatments | Pnmax (μmolCO2·m−2s−1) | R (μmolCO2·m−2s−1) | AQE (molCO2·m−1 photon) | gs (mmol·m−2s−1) | Fv/Fm |
---|---|---|---|---|---|
CK | 14.73 ± 0.25 A | 5.21 ± 0.19 A | 0.62 ± 0.002 A | 0.58 ± 0.001 A | 0.823 ± 0.012 A |
Cd | 7.17 ± 0.34 C | 3.39 ± 0.23 B | 0.27 ± 0.004 C | 0.31 ± 0.002 B | 0.531 ± 0.007 C |
N + Cd | 11.16 ± 0.51 B | 5.15 ± 0.32 A | 0.45 ± 0.002 B | 0.49 ± 0.003 A | 0.709 ± 0.004 B |
Treatments | Cd in Soil | Cd in Root | Cd in Leaves |
---|---|---|---|
CK | 0.68 ± 0.002 C | 2.77 ± 0.05 C | 1.41 ± 0.02 C |
Cd | 221.19 ± 3.42 A | 128.56 ± 5.21 B | 78.09 ± 2.58 B |
N + Cd | 152.13 ± 2.45 B | 167.50 ± 5.65 A | 124.52 ± 3.52 A |
Treatments | H2O2 (nmol·g−1·FW) | MDA (μmol·g−1·FW) | GSH (nmol·g−1·FW) | PCs (nmol·g−1·FW) |
---|---|---|---|---|
CK | 52.9 ± 3.4 C | 9.24 ± 1.2 C | 24.6 ± 1.27 C | 121.3 ± 5.45 C |
Cd | 452.7 ± 5.9 A | 22.99 ± 1.4 A | 52.7 ± 2.41 B | 325.9 ± 6.42 B |
N + Cd | 132.1 ± 3.6 B | 13.21 ± 1.5 B | 106.4 ± 3.45 A | 543.4 ± 4.76 A |
Accession Number | Proteins Name | Cd/CK Ration | Regulated Type | Cd/Ck p Value |
Photosynthesis and energy metabolite | ||||
A0A2K1Z195 | photosystem II CP43 reaction center protein-like | 0.639 | down | 0.014 |
A0A2K1WNK6 | ATP synthase CF0 A subunit (chloroplast) | 0.71 | down | 0.026 |
A9PJ06 | ribulose bisphosphate carboxylase/oxygenase activase, chloroplastic isoform X1 | 0.747 | down | 0.037 |
B9H8W5 | thioredoxin-like 2, chloroplastic | 0.634 | down | 0.015 |
A0A2K2BNL0 | “Photosystem I reaction center subunit XI family protein | 0.631 | down | 0.033 |
B9MYU1 | photosystem I subunit O-like | 0.627 | down | 0.034 |
A0A2K1X1I0 | outer envelope pore protein 37, chloroplastic-like | 0.723 | down | 0.007 |
A9PF53 | chaperone protein ClpB3, chloroplastic-like | 0.739 | down | 0.0173 |
Response to stress | ||||
A0A2K2BZL0 | heat shock protein 70 | 2.171 | up | 0.023 |
A0A2K2BGF4 | 14-3-3 protein | 1.372 | up | 0.032 |
A9P8Q7 | 14-3-3-like family protein | 2.068 | up | 0.028 |
A9PCV6 | 14-3-3-like family protein | 1.806 | up | 0.018 |
T2AUM9 | HSP90 | 1.331 | up | 0.0201 |
Q6ZXH8 | Putative pathogenesis-related protein | 2.287 | up | 0.0225 |
A0A2K1XHW1 | TMV resistance protein N | 1.324 | up | 0.016 |
A0A2K1YCK6 | putative disease resistance protein RGA4 isoform X4 | 1.71 | up | 0.029 |
A0A2K2C6K6 | NBS-like putative resistance family protein | 1.415 | up | 0.021 |
A0A2K1XHW1 | TMV resistance protein | 1.324 | up | 0.016 |
A0A1L6K4D3 | Cinnamyl alcohol dehydrogenase (CAD) | 3.77 | up | 0.010 |
DNA and ion binding | ||||
A0A2K1WMZ6 | DNA-binding family protein | 2.176 | up | 0.025 |
A0A2K1XEE1 | nucleotide-binding protein | 1.629 | up | 0.001 |
A0A2K1XN19 | oxidoreductase/transition metal ion-binding protein | 1.393 | up | 0.048 |
A0A2K1Y9H8 | DNA-binding protein | 1.619 | up | 0.026 |
A9P929 | DNA-binding family protein | 1.365 | up | 0.014 |
A9PCK0 | DNA-binding family protein | 1.842 | up | 0.021 |
B9I6G6 | calcium-binding EF hand family protein | 1.487 | up | 0.003 |
U5GT53 | DNA-binding family protein | 1.34 | up | 0.011 |
A0A2K1XU09 | zinc finger family protein | 1.577 | up | 0.004 |
A9PEW2 | zinc finger CCCH domain-containing protein | 1.342 | up | 0.014 |
Transporters related to cadmium transport | ||||
A0A2K1Z3W9 | probable cadmium/zinc-transporting ATPase HMA1 | 1.321 | up | 0.014 |
A0A2K2ADM8 | ABC transporter family protein | 1.513 | up | 0.016 |
A9P875 | copper transport protein CCH | 1.352 | up | 0.001 |
A9P8F9 | Copper-transporting ATPase RAN1 family protein | 1.342 | up | 0.049 |
B9GJX7 | ABC transporter family protein | 1.442 | up | 0.013 |
B9GTB1 | sugar transporter family protein | 1.575 | up | 0.031 |
B9HIU2 | sugar transporter family protein | 1.751 | up | 0.028 |
Antioxidant activity | ||||
A0A2K1Z5Z6 | oxidoreductase family protein | 1.324 | up | 0.014 |
A0A2K1XV17 | peroxisome biogenesis protein 6 | 1.381 | up | 0.0461 |
B9ICD9 | “superoxide dismutase [Fe], chloroplastic isoform X2 | 1.338 | up | 0.0282 |
Accession Number | Proteins Name | Cd + N/Cd Ration | Regulated Type | Cd + N/Cd p Value |
Photosynthesis and energy metabolite | ||||
A0A2K2BLH9 | probable glutamyl endopeptidase, chloroplastic | 1.336 | up | 0.039 |
U7E2H1 | probable starch synthase 4, chloroplastic/amyloplastic isoform X2 | 1.634 | up | 0.004 |
B9HQD5 | rubisco subunit binding-protein alpha subunit | 1.359 | up | 0.029 |
Q3LUR8 | Glyceraldehyde-3-phosphate dehydrogenase | 1.484 | up | 0.002 |
B9GHJ1 | thioredoxin family protein | 1.859 | up | 0.013 |
Response to stress | ||||
A0A2K1XHW1 | TMV resistance protein N | 1.353 | up | 0.015 |
A0A2K1Y4T9 | signal recognition particle 14 kDa family protein | 1.307 | up | 0.008 |
A0A2K1YPP0 | disulfide isomerase family protein | 2.338 | up | 0.002 |
A0A2K2BTY0 | vacuolar-sorting receptor 6-like | 1.837 | up | 0.012 |
A0A2K2CBE6 | probable disease resistance protein At4g27220 | 1.342 | up | 0.032 |
B9GVR1 | stress inducible family protein | 1.431 | up | 0.015 |
B9HKA3 | 6a-hydroxymaackiain methyltransferase family protein | 1.301 | up | 0.021 |
B9HSN8 | UDP-N-acetylglucosamine pyrophosphorylase family protein | 1.954 | up | 0.048 |
A0A2K2AYX4 | ATP-dependent RNA helicase family protein | 1.509 | up | 0.043 |
A0A2K2C8D8 | DEAD-box ATP-dependent RNA helicase 46 | 1.405 | up | 0.047 |
B9HX26 | huntingtin-interacting protein K-like | 2.393 | up | 0.013 |
Transporters related to Cadmium transport | ||||
A0A2K1ZUT7 | oligopeptide transporter family protein | 1.358 | up | 0.003 |
B9HXP4 | vesical transport v-SNARE 12 family protein | 2.084 | up | 0.025 |
A9PJD4 | transmembrane protein | 2.243 | up | 0.032 |
Antioxidant activity | ||||
K9MCB1 | Catalase | 1.647 | up | 0.018 |
A0A2K1ZES8 | Peroxiredoxin family protein (Prx) | 3.867 | up | 0.004 |
A0A193KWX3 | Glutathione S-transferase | 1.731 | up | 0.036 |
A0A193KWY1 | Glutathione S-transferase | 1.642 | up | 0.014 |
Q5CCP3 | Glutathione S-transferase | 1.481 | up | 0.006 |
Regulation | ||||
A0A2K2C504 | transcription initiation factor TFIID subunit 15b-like | 1.359 | up | 0.024 |
A0A2K2B8L4 | zinc finger protein At1g67325-like isoform X1 (ZFPs) | 1.634 | up | 0.032 |
A0A2K1YFZ8 | dof zinc finger protein DOF1.4-like (ZFPs) | 1.784 | up | 0.002 |
Accession Number | Proteins Name | Cd + N/CK Ration | Regulated Type | Cd + N/CK p Value |
Photosynthesis and energy metabolite | ||||
Q3LUR8 | Glyceraldehyde-3-phosphate dehydrogenase | 1.42 | up | 0.002 |
A9PFQ2 | ribulose bisphosphate carboxylase/oxygenase activase, chloroplastic-like isoform X1 | 1.476 | up | 0.014 |
A9PJF4 | Ribulose bisphosphate carboxylase/oxygenase activase family protein | 1.371 | up | 0.032 |
B9HQD5 | rubisco subunit binding-protein alpha subunit | 1.392 | up | 0.029 |
B9I5M2 | rubisco accumulation factor 1, chloroplastic | 2.213 | up | 0.007 |
A0A2K2C7R0 | Photosystem I reaction center subunit XI family protein | 2.657 | up | 0.001 |
A9PEL0 | photosystem II 11 kDa family protein | 1.526 | up | 0.014 |
A9PFW0 | photosynthetic NDH subunit of subcomplex B 4 | 2.815 | up | 0.004 |
U5GXD4 | phosphoenolpyruvate carboxylase family protein | 1.351 | up | 0.012 |
A0A0U1XA51 | Phosphoenolpyruvate carboxylase | 1.648 | up | 0.002 |
B9GHJ1 | thioredoxin family protein (TRX) | 2.181 | up | 0.023 |
A0A2K2B424 | ferredoxin family protein (FRX) | 1.657 | up | 0.031 |
A0A2K2B297 | cytochrome c oxidase family protein | 2.27 | up | 0.004 |
A0A2K2BVX5 | PGR5-like protein 1A, chloroplastic | 5.151 | up | 0.006 |
A0A2K2B5R5 | PGR5-like protein 1A | 2.849 | up | 0.014 |
Response to stress | ||||
A0A2K1WUP1 | HSP-interacting protein | 1.92 | up | 0.024 |
B9HBT8 | hsp70 nucleotide exchange factor fes1-like | 4.264 | up | 0.017 |
A0A2K1YTL5 | heat shock family protein | 2.386 | up | 0.019 |
A0A2K2BZL0 | heat shock protein 70 | 2.46 | up | 0.038 |
B9HMG7 | heat shock protein 70 cognate | 2.509 | up | 0.010 |
B9HMG8 | heat shock protein 70 cognate | 2.533 | up | 0.012 |
B9HTJ7 | heat shock protein 70 | 1.913 | up | 0.013 |
B9HV59 | heat shock protein 70 | 1.421 | up | 0.046 |
B9N9W5 | heat shock protein 70 cognate | 1.972 | up | 0.012 |
B9NBF4 | heat shock protein 70 cognate | 2.374 | up | 0.007 |
U5G4Y8 | heat shock cognate 70 kDa protein 2-like | 3.306 | up | 0.015 |
B9HKN2 | DnaJ family protein | 5.113 | up | 0.005 |
A0A2K2BGB8 | 14-3-3-like protein GF14 omicron | 3.609 | up | 0.021 |
A9PBC6 | 14-3-3-like protein GF14 omicron | 3.217 | up | 0.048 |
A9PCV6 | 14-3-3-like family protein | 1.579 | up | 0.035 |
A0A2K1XHW1 | TMV resistance protein N | 1.791 | up | 0.003 |
A0A2K2BWJ4 | Mitogen-activated protein kinase (MAPK) | 2.968 | up | 0.012 |
A9PK38 | translationally controlled tumor-like family protein (TCTP) | 2.311 | up | 0.015 |
B9NAI3 | translationally controlled tumor-like family protein (TCTP) | 2.239 | up | 0.014 |
B9IGC6 | proliferation-associated protein 2G4-like (PA2G4) | 6.879 | up | 0.011 |
A0A2K2C4E6 | proliferation-associated protein 2G4-like (PA2G4) | 2.238 | up | 0.035 |
Transporters related to cadmium transport | ||||
A0A2K1X4J9 | ABC transporter G family member 22 isoform X2 | 1.582 | up | 0.0211 |
A0A2K2ADM8 | ABC transporter family protein | 1.658 | up | 0.010 |
B9HGA2 | ABC transporter family protein | 1.481 | up | 0.002 |
B9HQM5 | ABC transporter family protein | 1.511 | up | 0.042 |
A0A2K2C2F2 | calcium-transporting ATPase 4, endoplasmic reticulum-type-like | 2.026 | up | 0.007 |
A9P875 | copper transport protein CCH | 1.55 | up | 0.013 |
A9P8F9 | Copper-transporting ATPase RAN1 family protein | 1.427 | up | 0.041 |
Antioxidant activity | ||||
A0A2K1XV17 | peroxisome biogenesis protein 6 (POD) | 1.534 | up | 0.004 |
A0A2K1YAM2 | peroxisomal membrane protein PEX14-like isoform X2 | 1.94 | up | 0.011 |
A0A2K1ZES8 | Peroxiredoxin family protein ((Prx) | 3.588 | up | 0.005 |
B9NBW2 | glutathione transferase (GST) | 1.447 | up | 0.029 |
D2WL67 | glutathione transferase GST | 1.373 | up | 0.002 |
DNA and ion binding | ||||
A0A2K1XEJ1 | oxidoreductase/transition metal ion-binding protein | 1.726 | up | 0.038 |
A0A2K1XN19 | oxidoreductase/transition metal ion-binding protein | 1.449 | up | 0.037 |
A0A2K1XB60 | GTP-binding protein TypA/BipA homolog | 1.388 | up | 0.025 |
A0A2K2CA16 | calcium-binding EF-hand protein | 1.734 | up | 0.016 |
A9P926 | GTP-binding protein beta chain | 1.533 | up | 0.013 |
A9P929 | DNA-binding family protein | 1.446 | up | 0.002 |
A9PCK0 | DNA-binding family protein | 1.626 | up | 0.008 |
A9PCU6 | calcium-binding EF hand family protein | 2.142 | up | 0.007 |
B9I2F7 | calcium binding family protein | 3.052 | up | 0.021 |
B9I2G9 | GTP-binding protein beta chain | 1.448 | up | 0.026 |
B9I6G6 | calcium-binding EF hand family protein | 1.43 | up | 0.029 |
Storage protein | ||||
A0A2K1Y5T5 | vacuolar protein sorting-associated protein 18 homolog (VPS) | 1.581 | up | 0.008 |
A0A2K2BLH8 | vacuolar protein sorting-associated protein (VPS) | 1.625 | up | 0.039 |
A0A2K2BTY0 | vacuolar-sorting receptor 6-like (VPS) | 2.753 | up | 0.0001 |
U5GBE7 | Vacuolar protein sorting-associated protein 35 (VPS) | 2.391 | up | 0.019 |
A9PGW6 | bark storage protein B-like (BSP) | 4.043 | up | 0.018 |
Regulation | ||||
A0A2K1XQU0 | transcription factor 4G-like (TF4G) | 2.062 | up | 0.003 |
A0A2K1XWY2 | WRKY transcription factor 1 (WRKY1) | 1.34 | up | 0.001 |
A0A2K1YGZ3 | eukaryotic translation initiation factor 4E family protein (elF4E) | 2.135 | up | 0.032 |
A0A2K1Z7J5 | Translation initiation factor IF-3 (eIF3) | 1.751 | up | 0.042 |
A0A2K2BI09 | transcription factor (TF) | 3.313 | up | 0.019 |
A0A2K2CCU4 | translation initiation factor IF-2 family protein (eIF2A) | 3.319 | up | 0.023 |
A9PC51 | eukaryotic translation initiation factor 4G isoform X1 (elF4G) | 1.64 | up | 0.029 |
B9GP88 | eukaryotic translation initiation factor 4G isoform X1 (elF4G) | 1.518 | up | 0.005 |
M9Z3T5 | Eukaryotic translation initiation factor 5A (eIF5A) | 1.816 | up | 0.002 |
M9ZCJ4 | Eukaryotic translation initiation factor 5A (eIF5A) | 2.299 | up | 0.006 |
A0A2K1XU09 | zinc finger family protein (ZFPs) | 1.671 | up | 0.007 |
A9PCM2 | zinc finger protein GIS2-like (ZFPs) | 1.686 | up | 0.004 |
U5FQR8 | zinc finger matrin-type protein 2 (ZFPs) | 1.485 | up | 0.026 |
Protein Accession | Position | CdN/Ck Ratio | Regulated Type | Cd N/Ck p Value | Amino Acid | Protein Description |
---|---|---|---|---|---|---|
A0A2K1WUE2 | 493 | 1.28 | Up | 0.0064 | S | eukaryotic translation initiation factor isoform (eIF) |
A0A2K1XQU0 | 1237 | 1.669 | Up | 0.0414 | S | eukaryotic translation initiation factor 4G-like (eIF) |
B9GP88 | 987 | 1.704 | Up | 0.018 | T | eukaryotic translation initiation factor 4G isoform X1 (eIF) |
B9GP88 | 988 | 1.899 | Up | 0.0271 | S | eukaryotic translation initiation factor 4G isoform X1 (eIF) |
A0A2K1XBQ3 | 26 | 1.458 | Up | 0.0485 | S | ABC transporter G family member (ABC transporter protein) |
A0A2K2ACX1 | 110 | 1.241 | Up | 0.00616 | S | ABC transporter G family member (ABC transporter protein) |
A0A2K1XB30 | 251 | 1.671 | Up | 0.028 | S | zinc finger family protein (ZFP) |
A0A2K1XB30 | 382 | 1.867 | Up | 0.0199 | S | zinc finger family protein (ZFP) |
A0A2K2ATR0 | 296 | 1.991 | Up | 0.00726 | S | zinc-finger homeodomain protein 9-like (ZFP) |
B9HN74 | 557 | 1.421 | Up | 0.0354 | S | heat shock protein 70 (HSP70) |
B9HV59 | 10 | 1.345 | Up | 0.0299 | S | heat shock protein 70 (HSP70) |
B9HV59 | 12 | 3.554 | Up | 0.00632 | S | heat shock protein 70 (HSP70) |
B9HV59 | 14 | 1.493 | Up | 0.0000634 | T | heat shock protein 70 (HSP70) |
U7E2Z8 | 604 | 2.388 | Up | 0.0185 | S | heat shock-related family protein (HSP70) |
W8PVS7 | 250 | 2.7 | Up | 0.0191 | T | Peroxidase (POD) |
A0A2K2C6G4 | 246 | 1.816 | Up | 0.0231 | T | splicing factor 3B subunit 1-like (SF3B1) |
A0A2K2C6G4 | 185 | 2.175 | Up | 0.0149 | T | splicing factor 3B subunit 1-like (SF3B1) |
A0A2K2C6G4 | 207 | 2.355 | Up | 0.0341 | T | splicing factor 3B subunit 1-like (SF3B1) |
A0A2K2C6G4 | 209 | 2.086 | Up | 0.0351 | T | splicing factor 3B subunit 1-like (SF3B1) |
A0A2K2C6G4 | 353 | 1.529 | Up | 0.0387 | T | splicing factor 3B subunit 1-like (SF3B1) |
A0A2K2C6G4 | 244 | 1.92 | Up | 0.0127 | T | splicing factor 3B subunit 1-like (SF3B1) |
A0A2K2C6G4 | 219 | 1.954 | Up | 0.0089 | T | splicing factor 3B subunit 1-like (SF3B1) |
A0A2K2C6G4 | 125 | 1.484 | Up | 0.0462 | T | splicing factor 3B subunit 1-like (SF3B1) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Wu, X.; Tian, F.; Chen, Q.; Luo, P.; Zhang, F.; Wan, X.; Zhong, Y.; Liu, Q.; Lin, T. Changes in Proteome and Protein Phosphorylation Reveal the Protective Roles of Exogenous Nitrogen in Alleviating Cadmium Toxicity in Poplar Plants. Int. J. Mol. Sci. 2020, 21, 278. https://doi.org/10.3390/ijms21010278
Huang J, Wu X, Tian F, Chen Q, Luo P, Zhang F, Wan X, Zhong Y, Liu Q, Lin T. Changes in Proteome and Protein Phosphorylation Reveal the Protective Roles of Exogenous Nitrogen in Alleviating Cadmium Toxicity in Poplar Plants. International Journal of Molecular Sciences. 2020; 21(1):278. https://doi.org/10.3390/ijms21010278
Chicago/Turabian StyleHuang, Jinliang, Xiaolu Wu, Feifei Tian, Qi Chen, Pengrui Luo, Fan Zhang, Xueqin Wan, Yu Zhong, Qinglin Liu, and Tiantian Lin. 2020. "Changes in Proteome and Protein Phosphorylation Reveal the Protective Roles of Exogenous Nitrogen in Alleviating Cadmium Toxicity in Poplar Plants" International Journal of Molecular Sciences 21, no. 1: 278. https://doi.org/10.3390/ijms21010278
APA StyleHuang, J., Wu, X., Tian, F., Chen, Q., Luo, P., Zhang, F., Wan, X., Zhong, Y., Liu, Q., & Lin, T. (2020). Changes in Proteome and Protein Phosphorylation Reveal the Protective Roles of Exogenous Nitrogen in Alleviating Cadmium Toxicity in Poplar Plants. International Journal of Molecular Sciences, 21(1), 278. https://doi.org/10.3390/ijms21010278