Molecular Conformations of Di-, Tri-, and Tetra-α-(2→8)-Linked Sialic Acid from NMR Spectroscopy and MD Simulations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Free-Energy Landscape
2.2. 3J Coupling Constants
2.3. Hydrogen Bonding
2.4. MD Simulations of Tetramer with NOE Restraining
2.5. Helical Conformation?
3. Materials and Methods
3.1. NMR Experiments
3.2. MD Simulation Settings
3.3. Creating Biased Potentials with Local Elevation and Sampling with Umbrella Sampling
3.4. Analysis
3.5. 3J-coupling Constants and NOE Calculations
3.6. Simulations with Distance Restraints
3.7. Thermodynamic Integration and One-Step Perturbation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MD | Molecular Dynamics |
NMR | Nuclear Magnetic Resonance |
NOE | Nuclear Overhauser Effect |
LEUS | Local Elevation Umbrella Sampling |
References
- Sato, C.; Kitajima, K. Structural Analysis of Polysialic Acid. In Experimental Glycoscience; Springer: Tokyo, Japan, 2008; pp. 77–81. [Google Scholar]
- Rutishauser, U. Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat. Rev. Neurosci. 2008, 9, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Lindhout, T.; Iqbal, U.; Willis, L.M.; Reid, A.N.; Li, J.; Liu, X.; Moreno, M.; Wakarchuk, W.W. Site-specific enzymatic polysialylation of therapeutic proteins using bacterial enzymes. Proc. Natl. Acad. Sci. USA 2011, 108, 7397–7402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Constantinou, A.; Chester, K.A.; Vyas, B.; Canis, K.; Haslam, S.M.; Dell, A.; Epenetos, A.A.; Deonarain, M.P. Glycoengineering Approach to Half-Life Extension of Recombinant Biotherapeutics. Bioconjug. Chem. 2012, 23, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Jennings, H.J.; Roy, R.; Michon, F. Determinant specificities of the groups B and C polysaccharides of Neisseria meningitidis. J. Immunol. 1985, 134, 2651–2657. [Google Scholar]
- Michon, F.; Brisson, J.R.; Jennings, H.J. Conformational Differences Between Linear α(2→8)-linked Homosialooligosaccharides and the Epitope of the Group B Meningococcal Polysaccharide. Biochemistry 1987, 26, 8399–8405. [Google Scholar] [CrossRef]
- Brisson, J.R.; Baumann, H.; Imberty, A.; Perez, S.; Jennings, H.J. Helical Epitope of the Group B Meningococcal α(2-8)-linked Sialic acid Polysaccharide. Biochemistry 1992, 31, 4996–5004. [Google Scholar] [CrossRef]
- Evans, S.V.; Sigurskjold, B.W.; Jennings, H.J.; Brisson, J.R.; To, R.; Tse, W.C.; Altman, E.; Weisgerber, C.; Young, N.M.; Frosch, M.; et al. Evidence for the Extended Helical Nature of Polysaccharide Epitopes. The 2.8 Å Resolution Structure and Thermodynamics of Ligand Binding of an Antigen Binding Fragment Specific for α-(2→8)-Polysialic Acid. Biochemistry 1995, 34, 6737–6744. [Google Scholar] [CrossRef]
- Yamasaki, R.; Bacon, B. Three-Dimensional Structural Analysis of the Group B Polysaccharide of Neisseria meningitidis 6275 by Two-Dimensional NMR: The Polysaccharide Is Suggested to Exist in Helical Conformations in Solution. Biochemistry 1991, 30, 851–857. [Google Scholar] [CrossRef]
- Yongye, A.B.; Gonzalez-Outeiriño, J.; Glushka, J.; Schultheis, V.; Woods, R.J. The conformational properties of methyl alpha-(2,8)-di/trisialosides and their N-acyl analogues: Implications for anti-Neisseria meningitidis B vaccine design. Biochemistry 2008, 47, 12493–12514. [Google Scholar] [CrossRef] [Green Version]
- Battistel, M.D.; Shangold, M.; Trinh, L.; Shiloach, J.; Freedberg, D.I. Evidence for helical structure in a tetramer of α2-8 sialic acid: Unveiling a structural antigen. J. Am. Chem. Soc. 2012, 134, 10717–10720. [Google Scholar] [CrossRef] [Green Version]
- Henderson, T.J.; Venable, R.M.; Egan, W. Conformational flexibility of the Group B meningococcal polysaccharide in solution. J. Am. Chem. Soc. 2003, 125, 2930–2939. [Google Scholar] [CrossRef] [PubMed]
- Montero-Morales, L.; Maresch, D.; Castilho, A.; Turupcu, A.; Ilieva, K.M.K.; Crescioli, S.; Karagiannis, S.S.N.; Lupinek, C.; Oostenbrink, C.; Altmann, F.; et al. Recombinant plant-derived human IgE glycoproteomics. J. Proteom. 2017, 161, 81–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Göritzer, K.; Turupcu, A.; Maresch, D.; Novak, J.; Altmann, F.; Oostenbrink, C.; Obinger, C.; Strasser, R. Distinct Fc alpha receptor N-glycans modulate the binding affinity to immunoglobulin A (IgA) antibodies. J. Biol. Chem. 2019, 294, 13995–14008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pol-Fachin, L.; Rusu, V.H.; Verli, H.; Lins, R.D. GROMOS 53A6 GLYC, an Improved GROMOS Force Field for Hexopyranose-Based Carbohydrates. J. Chem. Theory Comput. 2012, 8, 4681–4690. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, J.; Kleist, C.; Jakobtorweihen, S.; Hansen, N. Validation and Comparison of Force Fields for Native Cyclodextrins in Aqueous Solution. J. Phys. Chem. B 2018, 122, 1608–1626. [Google Scholar] [CrossRef] [PubMed]
- Turupcu, A.; Diem, M.; Smith, L.J.; Oostenbrink, C. Structural Aspects of the O-glycosylation Linkage in Glycopeptides via MD Simulations and Comparison with NMR Experiments. ChemPhysChem 2019, 20, 1527–1537. [Google Scholar] [CrossRef]
- Turupcu, A.; Oostenbrink, C. Modeling of Oligosaccharides within Glycoproteins from Free-Energy Landscapes. J. Chem. Inf. Model. 2017, 57, 2222–2236. [Google Scholar] [CrossRef] [Green Version]
- Baumann, H.; Brisson, J.R.; Michon, F.; Pon, R.; Jennings, H.J. Comparison of the conformation of the epitope of α(2→8) polysialic acid with its reduced and N-acyl derivatives. Biochemistry 1993, 32, 4007–4013. [Google Scholar] [CrossRef]
- Castillo, A.M.; Patiny, L.; Wist, J. Fast and accurate algorithm for the simulation of NMR spectra of large spin systems. J. Magn. Res. 2011, 209, 123–130. [Google Scholar] [CrossRef]
- Azurmendi, H.F.; Battistel, M.D.; Zarb, J.; Lichaa, F.; Virgen, A.N.; Shiloach, J.; Freedberg, D.I. The β-reducing end in α(2–8)-polysialic acid constitutes a unique structural motif. Glycobiology 2017, 27, 909–911. [Google Scholar] [CrossRef] [Green Version]
- Klepach, T.; Zhang, W.; Carmichael, I.; Serianni, A.S. 13C-1H and 13C-13C NMR J-Couplings in 13C-Labeled N-Acetyl-neuraminic Acid: Correlations with Molecular Structure. J. Org. Chem. 2008, 73, 4376–4387. [Google Scholar] [CrossRef] [PubMed]
- Spiwok, V.; Tvaroska, I. Conformational Free Energy Surface of α-N-Acetylneuraminic Acid: An Interplay Between Hydrogen Bonding and Solvation. J. Phys. Chem. B 2009, 113, 9589–9594. [Google Scholar] [CrossRef] [PubMed]
- Daura, X.; Gunsteren, W.F.V.; Mark, A.E. Folding-Unfolding Thermodynamics of a β-Heptapeptide From Equilibrium Simulations. Proteins 1999, 280, 269–280. [Google Scholar] [CrossRef]
- Hanashima, S.; Sato, C.; Tanaka, H.; Takahashi, T.; Ken, K.; Yamaguchi, Y. NMR study into the mechanism of recognition of the degree of polymerization by oligo/polysialic acid antibodies. Bioorg. Med. Chem. 2013, 21, 6069–6076. [Google Scholar] [CrossRef] [PubMed]
- Ray, G.J.; Ravenscroft, N.; Siekmann, J.J.; Zhang, Z.; Sanders, P.; Shaligram, U.; Szabo, C.M.; Kosma, P. Complete Structural Elucidation of an Oxidized Polysialic Acid Drug Intermediate by Nuclear Magnetic Resonance Spectroscopy. Bioconjug. Chem. 2014, 25, 665–676. [Google Scholar] [CrossRef]
- Schmid, N.; Christ, C.D.; Christen, M.; Eichenberger, A.P.; van Gunsteren, W.F. Architecture, implementation and parallelisation of the GROMOS software for biomolecular simulation. Comput. Phys. Commun. 2012, 183, 890–903. [Google Scholar] [CrossRef]
- Molecular Operating Environment (MOE); Chemical Computing Group: Montreal, QC, Canada, 2013.
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J. Interaction models for water in relation to protein hydration. In Intermolecular Forces; Pullman, B., Ed.; Reidel: Dordrecht, The Netherlands, 1981; pp. 331–342. [Google Scholar]
- Berendsen, H.J.; Postma, J.P.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Hockney, R.W. The potential calculation and some applications. Methods Comput. Phys. 1970, 9, 136–211. [Google Scholar]
- Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Tironi, I.G.; Sperb, R.; Smith, P.E.; van Gunsteren, W.F. A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys. 1995, 102, 5451–5459. [Google Scholar] [CrossRef]
- Heinz, T.N.; van Gunsteren, W.F.; Hünenberger, P.H. Comparison of four methods to compute the dielectric permittivity of liquids from molecular dynamics simulations. J. Chem. Phys. 2001, 115, 1125–1136. [Google Scholar] [CrossRef]
- Heinz, T.N.; Hunenberger, P.H. A fast pairlist-construction algorithm for molecular simulations under periodic boundary conditions. J. Comput. Chem. 2004, 25, 1474–1486. [Google Scholar] [CrossRef] [PubMed]
- Eichenberger, A.P.; Allison, J.R.; Dolenc, J.; Geerke, D.P.; Horta, B.A.; Meier, K.; Oostenbrink, C.; Schmid, N.; Steiner, D.; Wang, D.; et al. GROMOS++ software for the analysis of biomolecular simulation trajectories. J. Chem. Theory Comput. 2011, 7, 3379–3390. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.S.; Hünenberger, P.H. Using the local elevation method to construct optimized umbrella sampling potentials: Calculation of the relative free energies and interconversion barriers of glucopyranose ring conformers in water. J. Comput. Chem. 2010, 31, 1–23. [Google Scholar] [CrossRef]
- Huber, T.; Torda, A.E.; van Gunsteren, W.F. Local elevation: A method for improving the searching properties of molecular dynamics simulation. J. Comput. Aided Mol. Des. 1994, 8, 695–708. [Google Scholar] [CrossRef]
- Van Gunsteren, W.F.; Billeter, S.; Eising, A.; Hünenberger, P.; Krüger, P.; Mark, A.; Scott, W.; Tironi, I. Biomolecular Simulation: The GROMOS96 Manual and User Guide; Vdf Hochschulverlag AG an der ETH Zürich: Groningen, Zürich, 1996. [Google Scholar]
- van Gunsteren, W.F.; Allison, J.R.; Daura, X.; Dolenc, J.; Hansen, N.; Mark, A.E.; Oostenbrink, C.; Rusu, V.H.; Smith, L.J. Deriving Structural Information from Experimentally Measured Data on Biomolecules. Angew. Chem. Int. Ed. 2016, 55, 15990–16010. [Google Scholar] [CrossRef]
- Haasnoot, C.A.; de Leeuw, F.A.; Altona, C. The relationship between proton-proton NMR coupling constants and substituent electronegativities-I. An empirical generalization of the karplus equation. Tetrahedron 1980, 36, 2783–2792. [Google Scholar] [CrossRef]
- Stenutz, R.; Carmichael, I.; Widmalm, G.; Serianni, A.S. Hydroxymethyl group conformation in saccharides: Structural dependencies of 2JHH, 3JHH, and 1JCH spin-spin coupling constants. J. Org. Chem. 2002, 67, 949–958. [Google Scholar] [CrossRef]
- Schmid, N.; Allison, J.R.; Dolenc, J.; Eichenberger, A.P.; Kunz, A.P.E.; van Gunsteren, W.F. Biomolecular structure refinement using the GROMOS simulation software. J. Biomol. NMR 2011, 51, 265–281. [Google Scholar] [CrossRef]
- Kirkwood, J.G. Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 1935, 3, 300–313. [Google Scholar] [CrossRef]
- Wang, L.; Deng, Y.; Wu, Y.; Kim, B.; LeBard, D.N.; Wandschneider, D.; Beachy, M.; Friesner, R.A.; Abel, R. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery. J. Chem. Theory Comput. 2017, 13, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Zwanzig, R.W. High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. J. Chem. Phys. 1954, 22, 1420–1426. [Google Scholar] [CrossRef]
dimer1H | dimer2H | |||||
---|---|---|---|---|---|---|
Residue | NMR a | LEUS | Residue | NMR b | LEUS | |
JH6H7 [Hz] | b | 1.4 ± 0.1 | 1.4 ± 0.2 | b | < 1.5 | 0.9 ± 0.1 |
a | <1.0 | 0.9 ± 0.3 | a | < 1.5 | 0.8 ± 0.1 | |
JH7H8 [Hz] | b | 9.5 ± 0.9 | 3.7 ± 0.6 | b | 9.6 ± 0.5 | 8.4 ± 0.1 |
a | 1.5 ± 0.2 | 1.8 ± 0.1 | a | 7.3 ± 0.5 | 7.4 ± 0.1 | |
JH8H9R [Hz] | b | 6.1 ± 0.6 | 6.1 ± 0.1 | b | 6.0 ± 0.5 | 6.6 ± 0.1 |
a | 6.1 ± 0.6 | 6.3 ± 0.1 | a | 4.0 ± 0.5 | 6.5 ± 0.1 | |
JH8H9S [Hz] | b | 2.4 ± 0.2 | 1.1 ± 0.1 | b | 2.6 ± 0.5 | 1.5 ± 0.1 |
a | 4.1 ± 0.4 | 2.2 ± 0.5 | a | 3.3 ± 0.5 | 1.4 ± 0.1 |
trimer1C | dimer3C | ||||
---|---|---|---|---|---|
Residue | NMR a | LEUS | Residue | LEUS | |
JH6H7 [Hz] | c | 1.5 ± 0.2 | 1.0 ± 0.2 | b | 1.0 ± 0.1 |
b | < 1.0 | 1.0 ± 0.3 | a | 0.9 ± 0.1 | |
a | < 1.0 | 1.0 ± 0.2 | |||
JH7H8 [Hz] | c | 9.6 ± 1.0 | 4.7 ± 0.5 | b | 2.5 ± 0.5 |
b | < 4.0 | 3.3 ± 0.7 | a | 1.0 ± 0.5 | |
a | < 4.0 | 6.4 ± 0.7 | |||
JH8H9R [Hz] | c | n.d. | 7.1 ± 0.1 | b | 5.9 ± 0.5 |
b | n.d. | 6.0 ± 0.1 | a | 5.9 ± 0.5 | |
a | n.d. | 6.6 ± 0.1 | |||
JH8H9S [Hz] | c | n.d. | 2.8 ± 0.2 | b | 1.8 ± 0.5 |
b | n.d. | 1.2 ± 0.1 | a | 1.4 ± 0.5 | |
a | n.d. | 0.9 ± 0.1 |
J | tetramerH | ||
---|---|---|---|
Residue | NMR a | LEUS | |
JH6H7 | d | 2.0 ± 0.1 | 0.9 ± 0.1 |
c | < 1.0 | 0.8 ± 0.1 | |
b | < 1.0 | 0.6 ± 0.1 | |
a | < 1.0 | 0.6 ± 0.1 | |
JH7H8 | d | 8.9 ± 0.1 | 9.8 ± 0.0 |
c | 4.5 ± 0.1 | 1.7 ± 0.1 | |
b | 2.7 ± 0.1 | 1.5 ± 0.4 | |
a | 6.3 ± 0.1 | 2.7 ± 0.6 | |
JH8H9R | d | 6.1 ± 0.1 | 6.9 ± 0.1 |
c | 5.9 ± 0.1 | 0.3 ± 0.6 | |
b | 6.1 ± 0.1 | 5.1 ± 0.1 | |
a | 4.3 ± 0.1 | 6.1 ± 0.1 | |
JH8H9S | d | 2.5 ± 0.1 | 0.7 ± 0.3 |
c | 4.1 ± 0.1 | 10.6 ± 0.0 | |
b | 5.4 ± 0.1 | 1.6 ± 0.1 | |
a | 2.8 ± 0.1 | 1.2 ± 0.4 |
H-bond | System | ||||
---|---|---|---|---|---|
Type | dimer1H | dimer2H | dimer3C | trimer1C | |
Intra-residue | bHO8-bO1A/B | - | 5.9% | 5.3% | - |
aHO2-aO1A/B | - | 25.2% | - | - | |
Inter-residue | aHO9-bO1A/B | 38.4% | 3.2% | 19.4% | 1.7% |
aHO7-bO1A/B | - | 46.7 % | 8.5% | 14.9% | |
aHO7-bO6 | 4.3% | - | - | 14.7% | |
aHO9-bO6 | - | 16.7% | 8.2% | - | |
aHN5-bO1A/B | - | - | 3.1% | - | |
aHO4-bO1A/B | - | 7.7% | - | - | |
bHO9-aO1A/B | - | 40.0% | - | - | |
bHO7-aO1A/B | - | 2.4% | - | - | |
cHO9-bO1A/B | n.a | n.a. | n.a. | 3.8% | |
cHO7-bO6 | n.a. | n.a. | n.a. | 6.3% | |
Water-bridge | aO6-bO8 | - | 11.5% | - | - |
bO6-bO2 | - | 56.5% | 14.9% | - | |
bHN5-bO2 | - | 17.9% | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turupcu, A.; Blaukopf, M.; Kosma, P.; Oostenbrink, C. Molecular Conformations of Di-, Tri-, and Tetra-α-(2→8)-Linked Sialic Acid from NMR Spectroscopy and MD Simulations. Int. J. Mol. Sci. 2020, 21, 30. https://doi.org/10.3390/ijms21010030
Turupcu A, Blaukopf M, Kosma P, Oostenbrink C. Molecular Conformations of Di-, Tri-, and Tetra-α-(2→8)-Linked Sialic Acid from NMR Spectroscopy and MD Simulations. International Journal of Molecular Sciences. 2020; 21(1):30. https://doi.org/10.3390/ijms21010030
Chicago/Turabian StyleTurupcu, Aysegül, Markus Blaukopf, Paul Kosma, and Chris Oostenbrink. 2020. "Molecular Conformations of Di-, Tri-, and Tetra-α-(2→8)-Linked Sialic Acid from NMR Spectroscopy and MD Simulations" International Journal of Molecular Sciences 21, no. 1: 30. https://doi.org/10.3390/ijms21010030
APA StyleTurupcu, A., Blaukopf, M., Kosma, P., & Oostenbrink, C. (2020). Molecular Conformations of Di-, Tri-, and Tetra-α-(2→8)-Linked Sialic Acid from NMR Spectroscopy and MD Simulations. International Journal of Molecular Sciences, 21(1), 30. https://doi.org/10.3390/ijms21010030