Codon Directional Asymmetry Suggests Swapped Prebiotic 1st and 2nd Codon Positions
Abstract
:1. Introduction
1.1. Defining Codon Directional Asymmetry
1.2. CDA Considering the Purine/Pyrimidine Divide
1.3. CDA and Complementarity
1.4. CDA and Properties of the Translational Apparatus, the Genetic Code and Protein Translation
1.5. Physicochemical Nucleotide Properties and Reference Codon Position
2. Results
2.1. Purine-Pyrimidine-Based CDA Completed by Other Nucleotide Properties
2.2. CDA Based Solely on Interaction Strengths between Complementary Nucleotides
2.3. CDA Derived Solely from Tautomeric Groups
2.4. CDA with Reference Nucleotide at 1st Instead of 2nd Codon Position
3. Discussion
3.1. Improving CDA for Regular Codons
3.2. CDA for N2N1N3-Swapped Codons
3.3. Ruhmer’s Transformation and Genetic Code Symmetry
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CDA | codon directional asymmetry |
References
- Cronin, J.R.; Pizzarello, S. Enantiomeric excesses in meteoritic amino acids. Science 1997, 275, 951–955. [Google Scholar] [CrossRef]
- Addadi, L.; Weiner, S. Crystals, asymmetry and life. Nature 2001, 411, 753–755. [Google Scholar] [CrossRef]
- Van Valen, L. A study of fluctuating asymmetry. Evolution 1962, 16, 125–142. [Google Scholar] [CrossRef]
- Palmer, A.R. Fluctuating asymmetry analyses: A primer. In Developmental Instability: Its Origins and Evolutionary Implications; Markow, T.A., Ed.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 1994; pp. 335–364. [Google Scholar]
- Werner, Y.L.; Rothenstein, D.; Sivan, N. Directional asymmetry in reptiles (Sauria, Gekkonidae—Ptyodactylus) and its possible evolutionarty role, with implications for biometrical methods. J. Zool. 1991, 225, 647–658. [Google Scholar] [CrossRef]
- Seligmann, H. Evidence that minor directional asymmetry is functional in lizard hindlimbs. J. Zool. 1998, 248, 205–208. [Google Scholar] [CrossRef]
- Seligmann, H. Evolution and ecology of developmental processes and of the resulting morphology: Directional asymmetry in hindlimbs of Agamidae and Lacertidae (Reptilia: Lacertilia). Biol. J. Linn. Soc. 2000, 69, 461–481. [Google Scholar] [CrossRef]
- Seligmann, H. Behavioural and morphological asymmetries in hindlimbs of Hoplodactylus duvaucelii (Lacertilia: Gekkonomorpha: Gekkota: Diplodactylinae). Laterality 2002, 7, 277–283. [Google Scholar] [CrossRef]
- Seligmann, H. Left-handed Sphenodons grow more slowly. In Advances in Medicine and Biology; Berhardt, L.V., Ed.; Nova Science Pub Inc: Hauppauge, NY, USA, 2011; Volume 24, pp. 185–206. [Google Scholar]
- Seligmann, H.; Beiles, A.; Werner, Y.L. More injuries in left-footed lizards. J. Zool. 2003, 260, 129–144. [Google Scholar] [CrossRef]
- Seligmann, H.; Moravec, J.; Werner, Y.L. Morphological, functional and evolutionary aspects of tail autotomy and regeneration in the “living fossil” Sphenodon (Reptilia: Rhynchocephalia). Biol. J. Linn. Soc. 2008, 93, 721–743. [Google Scholar] [CrossRef] [Green Version]
- Shu, J.J. A new integrated symmetrical table of genetic codes. Biosystems 2017, 151, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Seligmann, H.; Warthi, G. Genetic code optimization for cotranslational protein folding: Codon directional asymmetry correlates with antiparallel betasheets, tRNA synthetase classes. Comput. Struct. Biotechnol. J. 2017, 15, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, E.N. Consensus temporal order of amino acids and evolution of the triplet code. Gene 2000, 261, 139–151. [Google Scholar] [CrossRef]
- Eriani, G.; Delarue, M.; Poch, O.; Gangloff, J.; Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 1990, 347, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Hartman, H. Speculations on the origin of the genetic code. J. Mol. Evol. 1995, 40, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, C.R. Self-referential encoding on modules of anticodon pairs-roots of the biological flow system. Life 2017, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westhof, E. Isostericity and tautomerism of base pairs in nucleic acids. FEBS Lett. 2014, 588, 2464–2469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.; Fedeles, B.I.; Essigmann, J.M. Role of tautomerism in RNA biochemistry. RNA 2015, 21, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Lippen, B.; Gupta, D. Promotion of rare nucleobase tautomers by metal binding. Dalton Trans. 2009, 24, 4619–4634. [Google Scholar]
- Alvarez-Castro, J.M.; Carlborg, O. A unified model for functional and statistical epistasis and its application in quantitative trait Loci analysis. Genetics 2007, 176, 1151–1167. [Google Scholar] [CrossRef] [Green Version]
- Jukes, T.H. Possibilities for the evolution of the genetic code from a preceding form. Nature 1973, 246, 22–26. [Google Scholar] [CrossRef]
- Dillon, L.S. The Genetic Mechanism and the Origin of Life; Plenum Press: New York, NY, USA, 1978. [Google Scholar]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef] [Green Version]
- Lifson, S.; Sander, C. Antiparallel and parallel β-strands differ in amino acid residue preferences. Nature 1979, 282, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Demongeot, J.; Seligmann, H. Bias for 3’-dominant codon directional asymmetry in theoretical minimal RNA rings. J. Comput. Biol. 2019. [Google Scholar] [CrossRef]
- Demongeot, J. Sur la possibilité de considérer le code génétique comme un code à enchaînement. Rev. Biomaths 1978, 62, 61–66. [Google Scholar]
- Demongeot, J.; Besson, J. Genetic-code and cyclic codes. C. R. Acad. Sci. III Life Sci. 1983, 296, 807–810. [Google Scholar]
- Demongeot, J.; Moreira, A. A possible circular RNA at the origin of life. J. Theor. Biol. 2007, 249, 314–324. [Google Scholar] [CrossRef]
- Demongeot, J.; Seligmann, H. The Uroboros theory of life’s origin: 22-nucleotide theoretical minimal RNA rings reflect evolution of genetic code and tRNA-rRNA translation machineries. Acta Biotheor. 2019. [Google Scholar] [CrossRef]
- Demongeot, J.; Seligmann, H. Evolution of tRNA into rRNA secondary structures. Gene Rep. 2019, 17, 100483. [Google Scholar] [CrossRef]
- Demongeot, J.; Seligmann, H. Theoretical minimal RNA rings designed according to coding constraints mimick deamination gradients. Naturwissenschaften 2019, 106, 44. [Google Scholar] [CrossRef]
- Demongeot, J.; Seligmann, H. Spontaneous evolution of circular codes in theoretical minimal RNA rings. Gene 2019, 705, 95–102. [Google Scholar] [CrossRef]
- Demongeot, J.; Seligmann, H. Theoretical minimal RNA rings recapitulate the order of the genetic code’s codon-amino acid assignments. J. Theor. Biol. 2019, 471, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Demongeot, J.; Seligmann, H. More pieces of ancient than recent theoretical minimal proto-tRNA-like RNA rings in genes coding for tRNA synthetases. J. Mol. Evol. 2019, 87, 152–174. [Google Scholar] [CrossRef] [PubMed]
- Ruhmer, Y. About the codon’y systematization in the genetic code. Proc. Acad. Sci. USSR 1966, 167, 1393–1394. [Google Scholar]
- Gonzalez, D.L.; Giannerini, S.; Rosa, R. On the origin of degeneracy in the genetic code. R. Soc. Interface Focus R. Soc. 2019, 9, 20190038. [Google Scholar] [CrossRef]
- Gonzalez, D.L.; Giannerini, S.; Rosa, R. Rumer’s transformation: A symmetry puzzle standing for half a century. Biosystems 2019, 4, 187. [Google Scholar] [CrossRef]
TTT | F | 0 | CTT | S | 1 | ATT | Y | 1 | GTT | C | 0 |
TTC | F | −1 | CTC | S | 0 | ATC | Y | 0 | GTC | C | −1 |
TTA | L | −1 | CTA | S | 0 | ATA | * | 0 | GTA | * | −1 |
TTG | L | 0 | CTG | S | 1 | ATG | * | 1 | GTG | W | 0 |
TCT | L | 0 | CCT | P | 1 | ACT | H | 1 | GCT | R | 0 |
TCC | L | −1 | CCC | P | 0 | ACC | H | 0 | GCC | R | −1 |
TCA | L | −1 | CCA | P | 0 | ACA | Q | 0 | GCA | R | −1 |
TCG | L | 0 | CCG | P | 1 | ACG | Q | 1 | GCG | R | 0 |
TAT | I | 0 | CAT | T | 1 | AAT | N | 1 | GAT | S | 0 |
TAC | I | −1 | CAC | T | 0 | AAC | N | 0 | GAC | S | −1 |
TAA | I | −1 | CAA | T | 0 | AAA | K | 0 | GAA | R | 0 |
TAG | M | 0 | CAG | T | 1 | AAG | K | 1 | GAG | R | 0 |
TGT | V | 0 | CGT | A | 1 | AGT | D | 1 | GGT | G | 0 |
TGC | V | −1 | CGC | A | 0 | AGC | D | 0 | GGC | G | −1 |
TGA | V | −1 | CGA | A | 0 | AGA | E | 0 | GGA | G | 0 |
TGG | V | 0 | CGG | A | 1 | AGG | E | 1 | GGG | G | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seligmann, H.; Demongeot, J. Codon Directional Asymmetry Suggests Swapped Prebiotic 1st and 2nd Codon Positions. Int. J. Mol. Sci. 2020, 21, 347. https://doi.org/10.3390/ijms21010347
Seligmann H, Demongeot J. Codon Directional Asymmetry Suggests Swapped Prebiotic 1st and 2nd Codon Positions. International Journal of Molecular Sciences. 2020; 21(1):347. https://doi.org/10.3390/ijms21010347
Chicago/Turabian StyleSeligmann, Hervé, and Jacques Demongeot. 2020. "Codon Directional Asymmetry Suggests Swapped Prebiotic 1st and 2nd Codon Positions" International Journal of Molecular Sciences 21, no. 1: 347. https://doi.org/10.3390/ijms21010347
APA StyleSeligmann, H., & Demongeot, J. (2020). Codon Directional Asymmetry Suggests Swapped Prebiotic 1st and 2nd Codon Positions. International Journal of Molecular Sciences, 21(1), 347. https://doi.org/10.3390/ijms21010347