Does Neuraxial Anesthesia as General Anesthesia Damage DNA? A Pilot Study in Patients Undergoing Orthopedic Traumatological Surgery
Abstract
:1. Introduction
2. Results
2.1. Preoperative Data
2.2. DNA Damage
2.3. The Influence of Length of Anesthesia
3. Discussion
4. Materials and Methods
4.1. Selection of Patients
4.2. Anesthetic Management
4.3. Comet Assay
4.3.1. The Lymphocyte Isolation
4.3.2. Alkaline Version of Comet Assay
4.3.3. Cell Lysis
4.3.4. Enzymatic Digestion
4.3.5. Unwinding, Electrophoresis, and Staining
4.3.6. DNA Damage Evaluation
4.3.7. Statistical Evaluation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GA | General anesthesia |
NA | Neuraxial anesthesia |
GABA | Gamma aminobutyric acid |
NMDA | N-methyl-D-aspartic acid |
ROS | Reactive oxygen species |
ISF | Isoflurane |
SVF | Sevoflurane |
LSM | Lymphocyte separated medium |
PBS | Phosphate buffered saline |
EDTA | Ethylenediaminetetraacetic acid |
Tris-HCl | Tris hydrochloride |
Triton-X | Polyoxyethylene glycol t-octyl-phenyl ether |
DMSO | Dimethylsulfoxide |
References
- Tavare, A.N.; Perry, A.J.S.; Benzonana, L.L.; Takata, M.; Ma, D. Cancer recurrence after surgery: Direct and indirect effecs of anesthetic agents. Int. J. Cancer 2012, 130, 1237–1250. [Google Scholar] [CrossRef]
- Braz, M.G.; Karahalil, B. Genotoxicity of anesthetics evaluated in vitro (Animals). Biomed. Res. Int. 2015, 2015, 280802. [Google Scholar] [CrossRef] [Green Version]
- Kaymak, C.; Kadioglu, E.; Coskun, E.; Basar, H.; Basar, M. Determination of DNA damage after exposure to inhalation anesthetics in human peripheral lymphocytes and sperm cells in vitro by comet assay. Hum. Exp. Toxicol. 2012, 31, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Braz, M.G.; Braz, L.G.; Barbosa, B.S.; Giacobino, J. DNA damage in patients who underwent minimally invasive surgery under inhalation or intravenous anesthesia. Mutat. Res. Toxicol. Environ. Mutagenesis 2011, 726, 251–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardaş, S.; Karabiyik, L.; Aygün, N.; Karakaya, A.E. DNA damage evaluated by the alkaline comet assay in lymphocytes of humans anaesthetized with isoflurane. Mutat. Res. 1998, 418, 1–6. [Google Scholar] [CrossRef]
- Da Costa Paes, E.R.; Braz, M.G.; de Lima, J.T.; da Silva, M.R.G.; de Sousa, L.B.; Lima, E.S.; de Vasconcellos, M.C.; Braz, J.R.C. DNA damage and antioxidant status in medical residents occupationally exposed to waste anesthetic gases. Acta Cir. Bras. 2014, 29, 280–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoerauf, K.H.; Wiesner, G.; Schroegendorfer, K.F.; Jobst, B.P.; Spacek, A.; Hardt, M.; Sator-Katzenschalger, S.; Rüdiger, W. Waste anaesthetic gases induce sister chromatid exchanges in lymphocytes of operating room personnel. Br. J. Anaesth. 1999, 82, 764–766. [Google Scholar] [CrossRef] [Green Version]
- Bienengraeber, M.W.; Weihrauch, D.; Kersten, J.R.; Pagel, P.S.; Warltier, D.C. Cardioprotection by volatile anesthetics. Vasc. Pharmacol. 2005, 42, 243–252. [Google Scholar] [CrossRef]
- Corbett, T.H. Cancer and congenital anomalies associated with anesthetic. Ann. N. Y. Acad. Sci. 1976, 271, 58–66. [Google Scholar] [CrossRef]
- Eger, E.I., 2nd; White, A.E.; Bown, C.L.; Biava, C.G.; Corbett, T.H.; Stevens, W.C. A test of the carcinogenicity of enflurane. isoflurane. halothane. methoxyflurane and nitrous oxide in mice. Anesth. Analg. 1978, 57, 678–694. [Google Scholar] [CrossRef]
- Braz, M.G.; Mazoti, M.Á.; Giacobino, J.; Braz, L.G.; Golim Mde, A.; Ferrasi, A.C.; de Cavalho, L.R.; Braz, J.R.; Salvador, D.M. Genotoxicity cytotoxicity and gene expression in patients undergoing elective surgery under isoflurane anaesthesia. Mutagenesis 2011, 26, 415–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaki, M.; Zhao, H.; Jaffer, T.; Unwith, S.; Benzonana, L.; Lian, Q.; Sakamoto, A.; Ma, D. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget 2016, 7, 26042–26056. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Cai, J.; Zabkiewicz, C.; Zhang, H.; Ruge, F.; Jiang, W.G. The effects of anesthetics on recurrence and metastasis of cancer and clinical implications. World J. Oncol. 2017, 8, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wigmore, T.J.; Mohammed, K.; Jhanji, S. Long-term survival for patients undergoing volatile versus IV anesthesia for cancer surgery. Anesthesiology 2016, 124, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, M.; Zhou, Y.; Dangelmajer, S.; Kahlert, U.D.; Xie, R.; Xi, Q.; Shahveranov, A.; Ye, D.; Lei, T. Isoflurane enhances the malignant potential of glioblastoma stem cells by promoting their viability. mobility in vitro and migratory capacity in vivo. Br. J. Anaesth. 2016, 116, 873–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzonana, L.L.; Perry, N.J.; Watts, H.R.; Yang, B.; Perry, I.A.; Coombes, C.; Takata, M.; Ma, D. Isoflurane. a commonly used volatile anesthetic enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro. Anesthesiology 2013, 119, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.S.; Gooch, J.L.; Garsía, P.S. Postoperative cognitive dysfunction. Alzheimer’s disease and anesthesia. Int. J. Neurosci. 2014, 124, 236–242. [Google Scholar] [CrossRef]
- Inan, G.; Özköse Satirlar, Z. Alzheimer disease and anesthesia. Turk. J. Med. Sci. 2015, 45, 1026–1033. [Google Scholar] [CrossRef]
- Bourne, E.; Wright, C.; Royse, C. A review of local anesthetic cardiotoxicity and treatment with lipid emulsion. Local Reg. Anesth. 2010, 3, 11–19. [Google Scholar]
- Momoh, A.O.; Hilliard, P.E.; Chung, K.C. Regional and neuraxial analgesia for plastic surgery: Surgeon’s and anesthesiologist’s perspectives. Plast. Reconstr. Surg. 2014, 134, 58S–68S. [Google Scholar] [CrossRef]
- Larsen, R. Anestezie, 7th ed.; Grada: Prague, Czech Republic, 2004. [Google Scholar]
- Izdes, S.; Sardas, S.; Kadioglu, E.; Kaymak, C.; Ozcaglie, E. Assessment of genotoxic damage in nurses occupationally exposed to anaesthetic gases or antineoplastic drugs by the comet assay. J. Occup. Health 2009, 51, 283–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karabiyik, L.; Sardas, S.; Polat, U.; Kocabas, N.A.; Karakaya, A.E. Comparison of genotoxicity of sevoflurane and isoflurane in human lymphocytes studied in vivo using the comet assay. Mutat. Res. 2001, 492, 99–107. [Google Scholar] [CrossRef]
- Eroglu, F.; Yavuz, L.; Ceylan, B.G.; Yilmaz, F.; Eroglu, E.; Delibas, N.; Naziroģlu, M. New volatile anesthetic. desflurane. reduces vitamin E level in blood of operative patients via oxidative stress. Cell Biochem. Funct. 2010, 28, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Alleva, R.; Tomasetti, M.; Solenghi, M.D.; Stagni, F.; Gamberini, F.; Bassi, A.; Fornasari, P.M.; Fanelli, G.; Borghi, B. Lymphocyte DNA damage precedes DNA repair or cell death after orthopaedic surgery under general anaesthesia. Mutagenesis 2003, 18, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Park, C.J.; Park, S.A.; Yoon, T.G.; Lee, S.J.; Yum, K.W.; Kim, H.J. Bupivacaine induces apoptosis via ROS in the Schwann cell line. J. Dent. Res. 2005, 84, 852–857. [Google Scholar] [CrossRef]
- Lu, J.; Xu, S.Y.; Zhang, Q.G.; Le, H.Y. Bupivacaine induces reactive oxygen species production via activation of the AMP-activated protein kinase-dependent pathway. Pharmacology 2011, 87, 121–129. [Google Scholar] [CrossRef]
- Werdehausen, R.; Braun, S.; Hermanns, H.; Kremer, D.; Küry, P.; Hollmann, M.W.; Bauer, I.; Stevens, M.F. The influence of adjuvants used in regional anesthesia on lidocaine-induced neurotoxicity in vitro. Reg. Anesth. Pain Med. 2011, 36, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Neri, M.; Milazzo, D.; Ugolini, D.; Milic, M.; Campolongo, A.; Pasqualetti, P.; Bonassi, S. Worldwide interest in the comet assay: A bibliometric study. Mutagenesis 2015, 30, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Kuchařová, M.; Hronek, M.; Rybáková, K.; Zadák, Z.; Štětina, R.; Josková, V.; Patková, A. Comet assay and its use for evaluating oxidative DNA damage in some pathological states. Physiol. Res. 2019, 68, 1–15. [Google Scholar] [CrossRef]
- Apostolou, P.; Toloudi, M.; Kourtidou, E.; Mimikakou, G.; Vlachou, I.; Chatziioannou, M.; Papasotiriou, I. Use of the comet assay technique for quick and reliable prediction of in vitro response to chemotherapeutics in breast and colon cancer. J. Biol. Res. 2014, 21, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Alapetite, C.; Thirion, P.; la Rochefordiére, A.; Cosset, J.M.; Moustacchi, E. Analysis of alkaline comet assay of cancer patients with severe reactions to radiotherapy: Defective rejoining of radioinduced DNA strand breaks in lymphocytes of breast cancer patients. Int. J. Cancer 1999, 83, 83–90. [Google Scholar] [CrossRef]
- Brozovic, G.; Orsolic, N.; Rozgaj, R.; Kasuba, V.; Knezevic, F.; Knezevic, A.H.; Benkovic, V.; Lisicic, D.; Borojevic, N.; Dikic, D. DNA damage and repair after exposure to sevoflurane in vivo evaluated in Swiss albino mice by the alkaline comet assay and micronucleus test. J. Appl. Genet. 2010, 51, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Kadioglu, E.; Sardas, S.; Erturk, S.; Ozatamer, O.; Karakaya, A.E. Determonation of DNA damage by alkaline halo and comet assay in patients under sevoflurane anesthesia. Toxicol. Ind. Health 2009, 25, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, F.R.; Braz, L.G.; de Andrade, L.R.; de Carvalho, A.L.R.; Vane, L.A.; Módolo, N.S.P.; Aun, A.G.; Souza, K.M.; Reinaldo, J.; Braz CBraz, M.G. Evaluation of genotoxicity of general anesthesia maintained with desflurane in patients under minor surgery. Environ. Mol. Mutagenesis 2016, 57, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Sardaş, S.; Cuhruk, H.; Karakaya, A.E.; Atakurt, Z. Sister-chromatid exchanges in operating room personnel. Mutat. Res. 1992, 279, 117–120. [Google Scholar] [CrossRef]
- Fikrova, P.; Stetina, R.; Hrciarik, M.; Hrnciarikova, D.; Hronek, M.; Zadak, Z. DNA crosslinks, DNA damage and repair in peripheral blood lymphocytes of non-small cell lung cancer patients treated with platinum derivatives. Oncol. Rep. 2014, 31, 391–396. [Google Scholar] [CrossRef]
- Sardas, S.; Izdes, S.; Ozcagli, E.; Kanbak, O.; Kadioglu, E. The role of antioxidant supplementation in occupational exposure to waste anaesthetic gases. Int. Arch. Occup. Environ. Health 2006, 80, 154–159. [Google Scholar] [CrossRef]
- Boyum, A. Separation of white blood cells. Nature 1964, 204, 793–794. [Google Scholar] [CrossRef]
- Collins, A.R.; Dobson, V.L.; Dusinska, M.; Kennedy, G.; Stetina, R. The comet assay: What can it really tell us? Mutat. Res. 1997, 375, 183–193. [Google Scholar] [CrossRef]
- Tice, R.; Vasques, M. Protocol for the Application of the pH˃13 Alkaline Single Cell Gel (SCG) Assay to the Detection of DNA Damage in Mammalian Cells. Available online: http://cometassay.com/Tice%20and%20Vasques.pdf (accessed on 30 October 2019).
Parameter | GA Group | SA Group | p-Value |
---|---|---|---|
Number | 20 | 20 | |
Woman | 9 | 11 | 0.96 |
Man | 10 | 10 | 0.96 |
Age [years] | 37 (29; 51) | 65.5 (53.25; 74.75) | 0.0002 * |
Height [cm] | 175.5 (170; 183) | 170 (166; 175) | 0.01 * |
Weight [kg] | 90 (80; 99) | 81,2 (73.5; 85) | 0.12 |
BMI | 28 (24; 30) | 28.4 (26; 30) | 0.64 |
ASA I [%] | 13 | 21 | 0.55 |
ASA II [%] | 54 | 68 | 0.36 |
ASA III [%] | 27 | 11 | 0.22 |
ASA IV [%] | 6 | 0 | 0.25 |
Parameter | GA Group | SA Group | p-Value |
---|---|---|---|
MAP [mm Hg] | 130 (120; 143) | 132 (120; 140) | 0.47 |
Gly [mmol/l] | 5.55 (5.33; 5.78) | 5.7 (5.18; 6.08) | 0.29 |
Na [mmol/l] | 139 (137.8; 140.5) | 140 (139; 142) | 0.53 |
K [mmol/l] | 4.2 (4; 4.5) | 4.6 (4.58; 4.8) | 0.54 |
Cl [mmol/l] | 103 (100; 105) | 104 (102; 107) | 0.27 |
Anest. | 180 (120; 273) | 107.5 (91.3; 118.8) | 0.001 * |
Duration [min] |
GA | SA | |||
---|---|---|---|---|
Before | After | Before | After | |
SSB | 7.49 | 10.05 ** | 4.00 | 4.18 |
(5.09; 9.66) | (6.97; 11.63) | (1.71; 8.80) | (1.91; 7.39) | |
ENDO III | 8.65 | 11.85 ** | 5.83 | 6.60 |
(6.12; 10.20) | (8.27; 13.47) | (3.02; 12.78) | (3.42; 12.73) | |
FPG | 7.97 | 11.75 ** | 6.72 | 8.61 |
(5.72; 12.04) | (8.38; 15.32) | (3.34; 15.77) | (4.76; 15.60) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kucharova, M.; Astapenko, D.; Zubanova, V.; Koscakova, M.; Stetina, R.; Zadak, Z.; Hronek, M. Does Neuraxial Anesthesia as General Anesthesia Damage DNA? A Pilot Study in Patients Undergoing Orthopedic Traumatological Surgery. Int. J. Mol. Sci. 2020, 21, 84. https://doi.org/10.3390/ijms21010084
Kucharova M, Astapenko D, Zubanova V, Koscakova M, Stetina R, Zadak Z, Hronek M. Does Neuraxial Anesthesia as General Anesthesia Damage DNA? A Pilot Study in Patients Undergoing Orthopedic Traumatological Surgery. International Journal of Molecular Sciences. 2020; 21(1):84. https://doi.org/10.3390/ijms21010084
Chicago/Turabian StyleKucharova, Monika, David Astapenko, Veronika Zubanova, Maria Koscakova, Rudolf Stetina, Zdenek Zadak, and Miloslav Hronek. 2020. "Does Neuraxial Anesthesia as General Anesthesia Damage DNA? A Pilot Study in Patients Undergoing Orthopedic Traumatological Surgery" International Journal of Molecular Sciences 21, no. 1: 84. https://doi.org/10.3390/ijms21010084
APA StyleKucharova, M., Astapenko, D., Zubanova, V., Koscakova, M., Stetina, R., Zadak, Z., & Hronek, M. (2020). Does Neuraxial Anesthesia as General Anesthesia Damage DNA? A Pilot Study in Patients Undergoing Orthopedic Traumatological Surgery. International Journal of Molecular Sciences, 21(1), 84. https://doi.org/10.3390/ijms21010084