Stage-Specific Effects of Ionizing Radiation during Early Development
Abstract
:1. Introduction
2. Overview of the Effects of Radiation in Early Development
2.1. Mammals
2.2. Xenopus
2.3. Fish
3. Cellular and Molecular Mechanisms Underlying Stage-Specific Effects
3.1. Mammals
3.1.1. Cell Cycle Checkpoints
3.1.2. DNA Repair Capacity
3.1.3. Apoptosis
3.1.4. Genome Integrity
3.2. Xenopus
3.2.1. Cell Cycle Checkpoints
3.2.2. DNA Repair Capacity
3.2.3. Apoptosis
3.2.4. Genome Integrity
3.3. Fish
3.3.1. Cell Cycle Checkpoints
3.3.2. DNA Repair Capacity
3.3.3. Apoptosis
3.3.4. Genome Integrity
4. Perspectives
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
hpf | Hour post fertilization |
MBT | Midblastula transition |
References
- Hall, J.E.; Giaccia, J.A. Radiation Biology for Radiation Biologist; Lippincott Williams & Wilkins: Philadelphia, PA, USA; ISBN 1-4963-3541-4.
- Georgakilas, A.G.; O’Neill, P.; Stewart, R.D. Induction and Repair of Clustered DNA Lesions: What Do We Know So Far? Rare 2013, 180, 100–109. [Google Scholar] [CrossRef]
- Ward, J.F. Some Biochemical Consequences of the Spatial Distribution of Ionizing Radiation-Produced Free Radicals. Radiat. Res. 1981, 86, 185. [Google Scholar] [CrossRef]
- Goodhead, D.T.; Thacker, J.; Cox, R. Effects of Radiations of Different Qualities on Cells: Molecular Mechanisms of Damage and Repair. Int. J. Radiat. Biol. 1993, 63, 543–556. [Google Scholar] [CrossRef]
- Valentin, J. Biological effects after prenatal irradiation (embryo and fetus) ICRP Publication 90 Approved by the Commission in October 2002. Ann. ICRP 2003, 33, 1–206. [Google Scholar] [CrossRef]
- Heyer, B.S.; MacAuley, A.; Behrendtsen, O.; Werb, Z. Hypersensitivity to DNA damage leads to increased apoptosis during early mouse development. Genes Dev. 2000, 14, 2072–2084. [Google Scholar] [CrossRef]
- Russell, L.B.; Russell, W.L. An analysis of the changing radiation response of the developing mouse embryo. J. Cell. Physiol. 1954, 43, 103–149. [Google Scholar] [CrossRef]
- Honjo, Y.; Ichinohe, T. Cellular responses to ionizing radiation change quickly over time during early development in zebrafish. Cell Biol. Int. 2019, 43, 516–527. [Google Scholar] [CrossRef] [Green Version]
- Suvorova, I.I.; Grigorash, B.B.; Chuykin, I.A.; Pospelova, T.V.; Pospelov, V.A. G1 checkpoint is compromised in mouse ESCs due to functional uncoupling of p53-p21Waf1 signaling. Cell Cycle 2015, 15, 52–63. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Wang, C.; Dai, Q.; Li, F.; Bergholz, J.; Li, Z.; Li, Q.; Xiao, Z.-X. p53 and p73 Regulate Apoptosis but Not Cell-Cycle Progression in Mouse Embryonic Stem Cells upon DNA Damage and Differentiation. Stem Cell Rep. 2016, 7, 1087–1098. [Google Scholar] [CrossRef] [Green Version]
- Lindeman, L.C.; Kamstra, J.H.; Ballangby, J.; Hurem, S.; Martín, L.M.; Brede, D.A.; Teien, H.C.; Oughton, D.H.; Salbu, B.; Lyche, J.L.; et al. Gamma radiation induces locus specific changes to histone modification enrichment in zebrafish and Atlantic salmon. PLoS ONE 2019, 14, e0212123. [Google Scholar] [CrossRef] [Green Version]
- De Santis, M.; Cesari, E.; Nobili, E.; Straface, G.; Cavaliere, A.F.; Caruso, A. Radiation effects on development. Birth Defects Res. C Embryo Today 2007, 81, 177–182. [Google Scholar] [CrossRef]
- Hulse, E.V. The effects of ionising radiation on the embryo and foetus: A review of experimental data. Clin. Radiol. 1964, 15, 312–319. [Google Scholar] [CrossRef]
- Yang, B.; Ren, B.X.; Tang, F.R. Prenatal irradiation–induced brain neuropathology and cognitive impairment. Brain Dev. 2017, 39, 10–22. [Google Scholar] [CrossRef]
- Russell, L.B.; Montgomery, C.S. Radiation-sensitivity Differences within Cell-division Cycles during Mouse Cleavage. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1966, 10, 151–164. [Google Scholar] [CrossRef]
- Domon, M. Cell Cycle-Dependent Radiosensitivity in Two-Cell Mouse Embryos in Culture. Radiat. Res. 1980, 81, 236. [Google Scholar] [CrossRef]
- Domon, M. Radiosensitivity variation during the cell cycle in pronuclear mouse embryos in vitro. Cell Prolif. 1982, 15, 89–98. [Google Scholar] [CrossRef]
- Rugh, R.; Duhamel, L.; Somogyi, C.; Chandler, A.; Cooper, W.R.; Smith, R.; Stanford, G. Sequelae Of The Ld/50 X-Ray Exposure of the Pre-Implantation Mouse Embryo: Days 0.0 To 5.0. Biol. bull. 1966, 131, 145–154. [Google Scholar] [CrossRef]
- Müller, W.-U.; Streffer, C. Lethal and teratogenic effects after exposure to X-rays at various times of early murine gestation. Teratology 1990, 42, 643–650. [Google Scholar] [CrossRef]
- Gu, Y.; Kai, M.; Kusama, T. The Embryonic and Fatal Effects in ICR Mice Irradiated in the Various Stages of the Preimplantation Period. Radiat. Res. 1997, 147, 735–740. [Google Scholar] [CrossRef]
- Jacquet, P.; de Saint-Georges, L.; Vankerkom, J.; Baugnet-Mahieu, L. Embryonic death, dwarfism and fetal malformations after irradiation of embryos at the zygote stage: Studies on two mouse strains. Mutat. Res. 1995, 332, 73–87. [Google Scholar] [CrossRef]
- Streffer, C.; Muller, W.U. Malformations after radiation exposure of preimplantation stages. Int. J. Dev. Biol. 2003, 40, 355–360. [Google Scholar] [CrossRef]
- Hamilton, L. A Comparison of the X-Ray Sensitivity of Haploid and Diploid Zygotes of Xenopus Iaevis. Radiat. Res. 1967, 30, 248. [Google Scholar] [CrossRef]
- Ijiri, K.-I. X-Ray Effect on the Development of Xenopus laevis Embryos—With Special Reference to Primordial Germ Cells. J. Radiat. Res. 1979, 20, 133–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAleer, M.F.; Davidson, C.; Davidson, W.R.; Yentzer, B.; Farber, S.A.; Rodeck, U.; Dicker, A.P. Novel use of zebrafish as a vertebrate model to screen radiation protectors and sensitizers. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 10–13. [Google Scholar] [CrossRef]
- Miyachi, Y.; Kanao, T.; Okamoto, T. Marked depression of time interval between fertilization period and hatching period following exposure to low-dose X-rays in zebrafish. Environ. Res. 2003, 93, 216–219. [Google Scholar] [CrossRef]
- Hyodo-Taguchi, Y.; Etoh, H.; Egami, N. RBE of Fast Neutrons for Inhibition of Hatchability in Fish Embryos Irradiated at Different Developmental Stages. Radiat. Res. 1973, 53, 385. [Google Scholar] [CrossRef]
- Shimada, Y.; Egami, N.; Shima, A. Effect of Heat on Radiosensitivity at Different Developmental Stages of Embryos of the Fish Oryzias Latipes. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1985, 48, 505–512. [Google Scholar] [CrossRef]
- Hyodo-Taguchi, Y.; Egami, N. Change in Dose-survival Time Relationship after X-irradiation during Embryonic Development in the Fish, Oryzias Iatipes. J. Radiat. Res. 1969, 10, 121–125. [Google Scholar] [CrossRef]
- Hirao, A.; Kong, Y.-Y.; Matsuoka, S.; Wakeham, A.; Ruland, J.; Yoshida, H.; Liu, D.; Elledge, S.J.; Mak, T.W. DNA Damage-Induced Activation of p53 by the Checkpoint Kinase Chk2. Science 2000, 287, 1824–1827. [Google Scholar] [CrossRef]
- Lossaint, G.; Besnard, E.; Fisher, D.; Piette, J.; Dulić, V. Chk1 is dispensable for G2 arrest in response to sustained DNA damage when the ATM/p53/p21 pathway is functional. Oncogene 2011, 30, 4261–4274. [Google Scholar] [CrossRef] [Green Version]
- Bartek, J.; Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003, 3, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.A.; Elson, A.; Leder, P. Loss of p21 increases sensitivity to ionizing radiation and delays the onset of lymphoma in atm-deficient mice. Proc. Natl. Acad. Sci. USA 1997, 94, 14590–14595. [Google Scholar] [CrossRef] [Green Version]
- Gartel, A.L.; Serfas, M.S.; Tyner, A.L. p21--negative regulator of the cell cycle. Proc. Soc. Exp. Biol. Med. 1996, 213, 138–149. [Google Scholar] [CrossRef]
- Brugarolas, J.; Moberg, K.; Boyd, S.D.; Taya, Y.; Jacks, T.; Lees, J.A. Inhibition of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein-mediated G1 arrest after gamma-irradiation. Proc. Natl. Acad. Sci. USA 1999, 96, 1002–1007. [Google Scholar] [CrossRef] [Green Version]
- Roque, T.; Haton, C.; Etienne, O.; Chicheportiche, A.; Rousseau, L.; Martin, L.; Mouthon, M.-A.; Boussin, F.D. Lack of a p21 waf1/cip -Dependent G1/S Checkpoint in Neural Stem and Progenitor Cells After DNA Damage In Vivo. Stem Cells 2012, 30, 537–547. [Google Scholar] [CrossRef] [Green Version]
- Pawlik, T.M.; Keyomarsi, K. Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 928–942. [Google Scholar] [CrossRef]
- Sinclair, W.K.; Morton, R.A. X-Ray Sensitivity during the Cell Generation Cycle of Cultured Chinese Hamster Cells. Radiat. Res. 1966, 29, 450–474. [Google Scholar] [CrossRef]
- Aladjem, M.I.; Spike, B.T.; Rodewald, L.W.; Hope, T.J.; Klemm, M.; Jaenisch, R.; Wahl, G.M. ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr. Biol. 1998, 8, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Orford, K.W.; Scadden, D.T. Deconstructing stem cell self-renewal: Genetic insights into cell-cycle regulation. Nat. Rev. Genet. 2008, 9, 115–128. [Google Scholar] [CrossRef]
- Singh, A.M.; Dalton, S. The Cell Cycle and Myc Intersect with Mechanisms that Regulate Pluripotency and Reprogramming. Cell Stem Cell 2009, 5, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Lange, C.; Calegari, F. Cdks and cyclins link G1 length and differentiation of embryonic, neural and hematopoietic stem cells. Cell Cycle 2010, 9, 1893–1900. [Google Scholar] [CrossRef] [Green Version]
- Yukawa, M.; Oda, S.; Mitani, H.; Nagata, M.; Aoki, F. Deficiency in the response to DNA double-strand breaks in mouse early preimplantation embryos. Biochem. Biophys. Res. Commun. 2007, 358, 578–584. [Google Scholar] [CrossRef]
- Solozobova, V.; Rolletschek, A.; Blattner, C. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage. BMC Cell Biol. 2009, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Stambrook, P.J. Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc. Natl. Acad. Sci. USA 2004, 101, 14443–14448. [Google Scholar] [CrossRef] [Green Version]
- Filion, T.M.; Qiao, M.; Ghule, P.N.; Mandeville, M.; van Wijnen, A.J.; Stein, J.L.; Lian, J.B.; Altieri, D.C.; Stein, G.S. Survival responses of human embryonic stem cells to DNA damage. J. Cell. Physiol. 2009, 220, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Momcilovic, O.; Knobloch, L.; Fornsaglio, J.; Varum, S.; Easley, C.; Schatten, G. DNA Damage Responses in Human Induced Pluripotent Stem Cells and Embryonic Stem Cells. PLoS ONE 2010, 5, e13410. [Google Scholar] [CrossRef] [Green Version]
- Giachino, C.; Orlando, L.; Turinetto, V. Maintenance of Genomic Stability in Mouse Embryonic Stem Cells: Relevance in Aging and Disease. Int. J. Mol. Sci. 2013, 14, 2617–2636. [Google Scholar] [CrossRef] [Green Version]
- Nagaria, P.; Robert, C.; Rassool, F.V. DNA double-strand break response in stem cells: Mechanisms to maintain genomic integrity. Biochim. Biophys. Acta, Gen. Subj. 2013, 1830, 2345–2353. [Google Scholar] [CrossRef]
- Tichy, E.D.; Pillai, R.; Deng, L.; Liang, L.; Tischfield, J.; Schwemberger, S.J.; Babcock, G.F.; Stambrook, P.J. Mouse Embryonic Stem Cells, but Not Somatic Cells, Predominantly Use Homologous Recombination to Repair Double-Strand DNA Breaks. Stem Cells Dev. 2010, 19, 1699–1711. [Google Scholar] [CrossRef] [Green Version]
- Serrano, L.; Liang, L.; Chang, Y.; Deng, L.; Maulion, C.; Nguyen, S.; Tischfield, J.A. Homologous Recombination Conserves DNA Sequence Integrity Throughout the Cell Cycle in Embryonic Stem Cells. Stem Cells Dev. 2011, 20, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Saretzki, G.; Armstrong, L.; Leake, A.; Lako, M.; Zglinicki, T. von Stress Defense in Murine Embryonic Stem Cells Is Superior to That of Various Differentiated Murine Cells. Stem Cells 2004, 22, 962–971. [Google Scholar] [CrossRef]
- Adams, B.R.; Golding, S.E.; Rao, R.R.; Valerie, K. Dynamic Dependence on ATR and ATM for Double-Strand Break Repair in Human Embryonic Stem Cells and Neural Descendants. PLoS ONE 2010, 5, e10001. [Google Scholar] [CrossRef]
- Fung, H.; Weinstock, D.M. Repair at Single Targeted DNA Double-Strand Breaks in Pluripotent and Differentiated Human Cells. PLoS ONE 2011, 6, e20514. [Google Scholar] [CrossRef]
- Adiga, S.K.; Toyoshima, M.; Shimura, T.; Takeda, J.; Uematsu, N.; Niwa, O. Delayed and stage specific phosphorylation of H2AX during preimplantation development of γ-irradiated mouse embryos. Reproduction 2007, 133, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Tichy, E.D. Mechanisms maintaining genomic integrity in embryonic stem cells and induced pluripotent stem cells. Exp. Biol. Med. 2011, 236, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Van Sloun, P.P.H.; Jansen, J.G.; Weeda, G.; Mullenders, L.H.F.; van Zeeland, A.A.; Lohman, P.H.M.; Vrieling, H. The role of nucleotide excision repair in protecting embryonic stem cells from genotoxic effects of UV-induced DNA damage. Nucleic Acids Res. 1999, 27, 3276–3282. [Google Scholar] [CrossRef] [Green Version]
- Roos, W.P.; Christmann, M.; Fraser, S.T.; Kaina, B. Mouse embryonic stem cells are hypersensitive to apoptosis triggered by the DNA damage O6-methylguanine due to high E2F1 regulated mismatch repair. Cell Death Differ. 2007, 14, 1422–1432. [Google Scholar] [CrossRef]
- Momčilović, O.; Choi, S.; Varum, S.; Bakkenist, C.; Schatten, G.; Navara, C. Ionizing Radiation Induces Ataxia Telangiectasia Mutated-Dependent Checkpoint Signaling and G2 But Not G1 Cell Cycle Arrest in Pluripotent Human Embryonic Stem Cells. Stem Cells 2009, 27, 1822–1835. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, Y.; Yamada, T.; Tobari, I.; Ohkawa, A. Preliminary study on chromosomal aberrations in eggs of mice fertilized in vitro after X-irradiation. Mut. Res. Let. 1983, 121, 125–130. [Google Scholar] [CrossRef]
- Weissenborn, U.; Streffer, C. The One-cell Mouse Embryo: Cell Cycle-dependent Radiosensitivity and Development of Chromosomal Anomalies in Postradiation Cell Cycles. Int. J. Radiat. Biol. 1988, 54, 659–674. [Google Scholar] [CrossRef]
- Weissenborn, U.; Streffer, C. Analysis of Structural and Numerical Chromosomal Anomalies at the First, Second, and Third Mitosis after Irradiation of One-cell Mouse Embryos with X-rays or Neutrons. Int. J. Radiat. Biol. 1988, 54, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Elson, A.; Wang, Y.; Daugherty, C.J.; Morton, C.C.; Zhou, F.; Campos-Torres, J.; Leder, P. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc. Natl. Acad. Sci. USA 1996, 93, 13084–13089. [Google Scholar] [CrossRef] [Green Version]
- Takai, H.; Naka, K.; Okada, Y.; Watanabe, M.; Harada, N.; Saito, S.; Anderson, C.W.; Appella, E.; Nakanishi, M.; Suzuki, H.; et al. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J. 2002, 21, 5195–5205. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.J.; Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 2000, 14, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Guntuku, S.; Cui, X.-S.; Matsuoka, S.; Cortez, D.; Tamai, K.; Luo, G.; Carattini-Rivera, S.; DeMayo, F.; Bradley, A.; et al. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev. 2000, 14, 1448–1459. [Google Scholar] [CrossRef]
- Takai, H.; Tominaga, K.; Motoyama, N.; Minamishima, Y.A.; Nagahama, H.; Tsukiyama, T.; Ikeda, K.; Nakayama, K.; Nakanishi, M.; Nakayama, K. Aberrant cell cycle checkpoint function and early embryonic death in Chk1−/− mice. Genes Dev. 2000, 14, 1439–1447. [Google Scholar] [CrossRef]
- Artus, J.; Cohen-Tannoudji, M. Cell cycle regulation during early mouse embryogenesis. Mol. Cell. Endocrinol. 2008, 282, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.; Yao, M.S.; Bender, C.F.; Mills, M.; Bladl, A.R.; Bradley, A.; Petrini, J.H.J. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc. Natl. Acad. Sci. USA 1999, 96, 7376–7381. [Google Scholar] [CrossRef] [Green Version]
- Dumon-Jones, V.; Frappart, P.-O.; Tong, W.-M.; Sajithlal, G.; Hulla, W.; Schmid, G.; Herceg, Z.; Digweed, M.; Wang, Z.-Q. Nbn Heterozygosity Renders Mice Susceptible to Tumor Formation and Ionizing Radiation-Induced Tumorigenesis. Cancer Res. 2003, 63, 7263–7269. [Google Scholar]
- Anderson, J.A.; Lewellyn, A.L.; Maller, J.L. Ionizing radiation induces apoptosis and elevates cyclin A1-Cdk2 activity before but not after the midblastula transition in Xenopus. Mol. Biol. Cell 1997, 8, 1195–1206. [Google Scholar] [CrossRef] [Green Version]
- Conn, C.W.; Lewellyn, A.L.; Maller, J.L. The DNA Damage Checkpoint in Embryonic Cell Cycles Is Dependent on the DNA-to-Cytoplasmic Ratio. Dev. Cell 2004, 7, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Peng, A.; Lewellyn, A.L.; Maller, J.L. Undamaged DNA Transmits and Enhances DNA Damage Checkpoint Signals in Early Embryos. Mol. Cell. Biol. 2007, 27, 6852–6862. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.-Y.; Graves, P.R.; Thoma, R.S.; Wu, Z.; Shaw, A.S.; Piwnica-Worms, H. Mitotic and G2 Checkpoint Control: Regulation of 14-3-3 Protein Binding by Phosphorylation of Cdc25C on Serine-216. Science 1997, 277, 1501–1505. [Google Scholar] [CrossRef]
- Kumagai, A.; Guo, Z.; Emami, K.H.; Wang, S.X.; Dunphy, W.G. The Xenopus Chk1 Protein Kinase Mediates a Caffeine-sensitive Pathway of Checkpoint Control in Cell-free Extracts. J. Cell Biol. 1998, 142, 1559–1569. [Google Scholar] [CrossRef]
- Amodeo, A.A.; Jukam, D.; Straight, A.F.; Skotheim, J.M. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition. Proc. Natl. Acad. Sci. USA 2015, 112, E1086–E1095. [Google Scholar] [CrossRef] [Green Version]
- Peng, A.; Lewellyn, A.L.; Maller, J.L. DNA damage signaling in early Xenopus embryos. Cell Cycle 2008, 7, 3–6. [Google Scholar] [CrossRef]
- Hensey, C.; Gautier, J. A developmental timer that regulates apoptosis at the onset of gastrulation. Mech. Dev. 1997, 69, 183–195. [Google Scholar] [CrossRef]
- Kraeussling, M.; Wagner, T.U.; Schartl, M. Highly asynchronous and asymmetric cleavage divisions accompany early transcriptional activity in pre-blastula medaka embryos. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [Green Version]
- Aizawa, K.; Shimada, A.; Naruse, K.; Mitani, H.; Shima, A. The medaka midblastula transition as revealed by the expression of the paternal genome. Gene Expr. Patterns 2003, 3, 43–47. [Google Scholar] [CrossRef]
- Ikegami, R.; Rivera-Bennetts, A.K.; Brooker, D.L.; Yager, T.D. Effect of inhibitors of DNA replication on early zebrafish embryos: Evidence for coordinate activation of multiple intrinsic cell-cycle checkpoints at the mid-blastula transition. Zygote 1997, 5, 153–175. [Google Scholar] [CrossRef]
- Ikegami, R.; Hunter, P.; Yager, T.D. Developmental Activation of the Capability to Undergo Checkpoint-Induced Apoptosis in the Early Zebrafish Embryo. Dev. Biol. 1999, 209, 409–433. [Google Scholar] [CrossRef] [Green Version]
- Kienzler, A.; Bony, S.; Devaux, A. DNA repair activity in fish and interest in ecotoxicology: A review. Aquat. Toxicol. 2013, 134–135, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Hagmann, M.; Bruggmann, R.; Xue, L.; Georgiev, O.; Schaffner, W.; Rungger, D.; Spaniol, P.; Gerster, T. Homologous Recombination and DNA-End Joining Reactions in Zygotes and Early Embryos of Zebrafish (Danio rerio) and Drosophila melanogaster. Biol. Chem. 1998, 379, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Moon, J.; Crodian, J.; Collodi, P. Homologous Recombination in Zebrafish ES Cells. Transgenic Res. 2006, 15, 21–30. [Google Scholar] [CrossRef]
- Sussman, R. DNA repair capacity of zebrafish. Proc. Natl. Acad. Sci. USA 2007, 104, 13379–13383. [Google Scholar] [CrossRef] [Green Version]
- Aizawa, K.; Mitani, H.; Kogure, N.; Shimada, A.; Hirose, Y.; Sasado, T.; Morinaga, C.; Yasuoka, A.; Yoda, H.; Watanabe, T.; et al. Identification of radiation-sensitive mutants in the Medaka, Oryzias latipes. Mech. Dev. 2004, 121, 895–902. [Google Scholar] [CrossRef]
- Hidaka, M.; Oda, S.; Kuwahara, Y.; Fukumoto, M.; Mitani, H. Cell Lines Derived from a Medaka Radiation-Sensitive Mutant have Defects in DNA Double-Strand Break Responses. J. Radiat. Res. 2010, 51, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Negron, J.F.; Lockshin, R.A. Activation of apoptosis and caspase-3 in zebrafish early gastrulae. Dev. Dyn. 2004, 231, 161–170. [Google Scholar] [CrossRef]
- Honjo, Y.; Hiroshima University, Higashihiroshima, Japan. Personal communication, 2020.
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honjo, Y.; Ichinohe, T. Stage-Specific Effects of Ionizing Radiation during Early Development. Int. J. Mol. Sci. 2020, 21, 3975. https://doi.org/10.3390/ijms21113975
Honjo Y, Ichinohe T. Stage-Specific Effects of Ionizing Radiation during Early Development. International Journal of Molecular Sciences. 2020; 21(11):3975. https://doi.org/10.3390/ijms21113975
Chicago/Turabian StyleHonjo, Yasuko, and Tatsuo Ichinohe. 2020. "Stage-Specific Effects of Ionizing Radiation during Early Development" International Journal of Molecular Sciences 21, no. 11: 3975. https://doi.org/10.3390/ijms21113975
APA StyleHonjo, Y., & Ichinohe, T. (2020). Stage-Specific Effects of Ionizing Radiation during Early Development. International Journal of Molecular Sciences, 21(11), 3975. https://doi.org/10.3390/ijms21113975