CAR-T Cell Therapy
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CAR-T | Chimeric Antigen Receptor-T |
CIK | Cytokine-induced Killer |
CSPG4 | Chondroitin Sulfate Proteoglycan 4 |
HBV | Hepatitis B Virus |
MLL | Mixed-Lineage Leukemia |
NK | Natural Killer |
NKT | Natural Killer T |
ROS | Reactive Oxygen Species |
Th2 | T helper type 2 |
References
- Ahmad, A.; Uddin, S.; Steinhoff, M. Car-t cell therapies: An overview of clinical studies supporting their approved use against acute lymphoblastic leukemia and large b-cell lymphomas. Int. J. Mol. Sci. 2020, 21, 3906. [Google Scholar] [CrossRef] [PubMed]
- Sacchetti, B.; Botticelli, A.; Pierelli, L.; Nuti, M.; Alimandi, M. Car-t with license to kill solid tumors in search of a winning strategy. Int. J. Mol. Sci. 2019, 20, 1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Jeong, Y.; Ashraf, M.U.; Bae, Y.S. Dendritic cell-mediated th2 immunity and immune disorders. Int. J. Mol. Sci. 2019, 20, 2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, H.; Gustafsson, W.; Stromberg, U.O.; Savoldo, B.; Dotti, G.; Loskog, A. Car t cells express cd40l and activates human dendritic cells. Mol. Ther. 2014, 22, S61. [Google Scholar]
- Reinhard, K.; Rengstl, B.; Oehm, P.; Michel, K.; Billmeier, A.; Hayduk, N.; Klein, O.; Kuna, K.; Ouchan, Y.; Woll, S.; et al. An RNA vaccine drives expansion and efficacy of claudin-car-t cells against solid tumors. Science 2020, 367, 446–453. [Google Scholar] [CrossRef]
- Harrer, D.C.; Dorrie, J.; Schaft, N. Cspg4 as target for car-t-cell therapy of various tumor entities-merits and challenges. Int. J. Mol. Sci. 2019, 20, 5942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotolo, R.; Leuci, V.; Donini, C.; Cykowska, A.; Gammaitoni, L.; Medico, G.; Valabrega, G.; Aglietta, M.; Sangiolo, D. Car-based strategies beyond t lymphocytes: Integrative opportunities for cancer adoptive immunotherapy. Int. J. Mol. Sci. 2019, 20, 2839. [Google Scholar] [CrossRef] [Green Version]
- Boni, C.; Barili, V.; Acerbi, G.; Rossi, M.; Vecchi, A.; Laccabue, D.; Penna, A.; Missale, G.; Ferrari, C.; Fisicaro, P. Hbv immune-therapy: From molecular mechanisms to clinical applications. Int. J. Mol. Sci. 2019, 20, 2754. [Google Scholar] [CrossRef] [Green Version]
- Sitaram, P.; Uyemura, B.; Malarkannan, S.; Riese, M.J. Beyond the cell surface: Targeting intracellular negative regulators to enhance T cell anti-tumor activity. Int. J. Mol. Sci. 2019, 20, 5821. [Google Scholar] [CrossRef] [Green Version]
- Yoo, H.J.; Liu, Y.; Wang, L.; Schubert, M.L.; Hoffmann, J.M.; Wang, S.; Neuber, B.; Huckelhoven-Krauss, A.; Gern, U.; Schmitt, A.; et al. Tumor-specific reactive oxygen species accelerators improve chimeric antigen receptor t cell therapy in b cell malignancies. Int. J. Mol. Sci. 2019, 20, 2469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrer, D.C.; Schuler, G.; Dorrie, J.; Schaft, N. Cspg4-specific car t cells for high-risk childhood b cell precursor leukemia. Int. J. Mol. Sci. 2019, 20, 2764. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R.C.; Cross, R.S.; Jenkins, M.R. Finding the keys to the car: Identifying novel target antigens for t cell redirection immunotherapies. Int. J. Mol. Sci. 2020, 21, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leong, L.; Tan, H.L.; Cua, S.; Yong, K.S.M.; Chen, Q.; Choo, A. Preclinical activity of embryonic annexin a2-specific chimeric antigen receptor t cells against ovarian cancer. Int. J. Mol. Sci. 2020, 21, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stock, S.; Schmitt, M.; Sellner, L. Optimizing manufacturing protocols of chimeric antigen receptor t cells for improved anticancer immunotherapy. Int. J. Mol. Sci. 2019, 20, 6223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes-Parry, H.E.; Cross, R.S.; Jenkins, M.R. The evolving protein engineering in the design of chimeric antigen receptor t cells. Int. J. Mol. Sci. 2019, 21, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Munter, S.; Van Parys, A.; Bral, L.; Ingels, J.; Goetgeluk, G.; Bonte, S.; Pille, M.; Billiet, L.; Weening, K.; Verhee, A.; et al. Rapid and effective generation of nanobody based cars using pcr and gibson assembly. Int. J. Mol. Sci. 2020, 21, 883. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.R.; Petersen, C.T.; Jagirdar, N.; Ravindranathan, S.; Jaye, D.L.; Flowers, C.R.; Langston, A.; Waller, E.K. Oligoclonal t cells transiently expand and express tim-3 and pd-1 following anti-cd19 car t cell therapy: A case report. Int. J. Mol. Sci. 2018, 19, 4118. [Google Scholar] [CrossRef] [Green Version]
- Fiorenza, S.; Ritchie, D.S.; Ramsey, S.D.; Turtle, C.J.; Roth, J.A. Value and affordability of car t-cell therapy in the united states. Bone Marrow Transpl. 2020, 19, 4118. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A. CAR-T Cell Therapy. Int. J. Mol. Sci. 2020, 21, 4303. https://doi.org/10.3390/ijms21124303
Ahmad A. CAR-T Cell Therapy. International Journal of Molecular Sciences. 2020; 21(12):4303. https://doi.org/10.3390/ijms21124303
Chicago/Turabian StyleAhmad, Aamir. 2020. "CAR-T Cell Therapy" International Journal of Molecular Sciences 21, no. 12: 4303. https://doi.org/10.3390/ijms21124303
APA StyleAhmad, A. (2020). CAR-T Cell Therapy. International Journal of Molecular Sciences, 21(12), 4303. https://doi.org/10.3390/ijms21124303