Natural Metallic Nanoparticles for Application in Nano-Oncology
Abstract
:1. Introduction
2. Advantages of Natural Chemical Synthesis of Metallic Nanoparticles
3. The Different Types of Bio-Synthesized Metallic Nanoparticles
4. The Various Bio-Synthesis Methods of Metallic Nanoparticles
5. In Vitro Anti-Tumor Activities of Bio-Synthesized Metallic Nanoparticles
6. Preparation and In Vivo Anti-Tumor Assessment of Magnetosomes
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMF | Alternating magnetic field |
EPR effect | Enhanced permeability and retention effect |
LPS | Lipopolysaccharide |
MHT | Magnetic hyperthermia |
MTB | Magnetotactic bacteria |
MS | Magnetic session, time during which an AMF is applied on NP |
NP | Nanoparticles |
M-PLL | Iron oxide magnetosome minerals coated with poly-L-lysine |
NP | Nanoparticles |
NP backbone | Nanoparticle without any drug attached to it |
GBM | Glioblastoma multiform |
PNN | Poly nuclear neutrophils |
References
- Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 2011, 103, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yih, T.C.; Al-Fandi, M. Engineered Nanoparticles as Precise Drug Delivery Systems. J. Cell. Biochem. 2006, 97, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Hainfeld, J.F.; Smilowitz, H.M.; O’Connor, M.J.; Dilmanian, F.A.; Slatkin, D.N. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine 2013, 10, 1601–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alphandéry, E. A discussion on existing nanomedicine regulation: Progress and pitfalls. Appl. Mater. Today 2019, 17, 193–205. [Google Scholar] [CrossRef]
- Alphandéry, E. Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Nanotoxicology 2019, 13, 573–596. [Google Scholar] [CrossRef] [PubMed]
- Mülhopt, S.; Diabaté, S.; Dilger, M.; Adelhelm, C.; Anderlohr, C.; Bergfeldt, T.; Gómez de la Torre, J.; Jiang, Y.; Valsami-Jones, E.; Langevin, D.; et al. Characterization of Nanoparticle Batch-To-Batch Variability. Nanomaterials 2018, 8, 311. [Google Scholar] [CrossRef] [Green Version]
- Berny, C.; Le Fèvre, R.; Guyot, F.; Blondeau, K.; Guizonne, C.; Rousseau, E.; Bayan, N.; Alphandéry, E. A Method for Producing Highly Pure Magnetosomes in Large Quantity for Medical Applications Using Magnetospirillum gryphiswaldense MSR-1 Magnetotactic Bacteria Amplified in Minimal Growth Media. Front. Bioeng. Biotechnol. 2020, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, P.; Gopalan, R.; Chandrasekaran, V. Synthesis and Characterisation of Nanomaterials. Def. Sci. J. 2008, 58, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, K.; Ashokkumar, T. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J. Environ. Chem. Eng. 2017, 5, 4866–4883. [Google Scholar]
- Khan, T.; Ullah, N.; Khan, M.A.; Mashwani, Z.R.; Nadhman, A. Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv. Colloid Interface Sci. 2019, 272, 102017. [Google Scholar] [CrossRef]
- Faramarzi, M.A.; Sadighi, A. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv. Colloid Interface Sci. 2013, 189, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.V.; Muller, R.N. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef]
- Charbgoo, F.; Ahmad, M.B.; Darroudi, M. Cerium oxide nanoparticles: Green synthesis and biological applications. Int. J. Nanomed. 2017, 12, 1401–1413. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.Y.; He, K.M.; Chen, J.L.; Xu, Y.M.; Lau, A.T.Y. Phytofabrication of Nanoparticles as Novel Drugs for Anticancer Applications. Molecules 2019, 24, 4246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peralta-Videa, J.R.; Huang, Y.; Parsons, J.G.; Zhao, L.; Lopez-Moreno, L.; Hernandez-Viezcas, J.A.; Gardea-Torresdey, J.L. Plant-based green synthesis of metallic nanoparticles: Scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol. Environ. Eng. 2016, 1, 4. [Google Scholar] [CrossRef]
- Chen, T.; Wonga, Y.S.; Zhengb, W.; Baib, Y.; Huang, L. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf. B 2008, 67, 26–31. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, A.R.; Bhavesh, R.; Park, J.; Ganbold, B.; Nam, J.S.; Lee, S.S. Biomolecule-Mediated Synthesis of Selenium Nanoparticles using Dried Vitis vinifera (Raisin) Extract. Molecules 2014, 19, 2761–2770. [Google Scholar] [CrossRef]
- Ramamurthy, C.H.; Sampath, K.S.; Arunkumar, P.; Kumar, M.S.; Sujatha, V.; Premkumar, K.; Thirunavukkarasu, C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess. Biosyst. Eng. 2013, 36, 1131–1139. [Google Scholar] [CrossRef]
- Din, M.I.; Rani, A. Recent Advances in the Synthesis and Stabilization of Nickel and Nickel Oxide Nanoparticles: A Green Adeptness. Int. J. Anal. Chem. 2016, 2016, 3512145. [Google Scholar]
- Gahlawat, G.; Choudhury, A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. Rsc Adv. 2019, 9, 12944–12967. [Google Scholar] [CrossRef] [Green Version]
- Apte, M.; Sambre, D.; Gaikawad, S.; Joshi, S.; Bankar, A.; Kumar, A.R.; Zinjarde, S. Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. Amb Express 2013, 3, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhargava, A.; Jain, N.; Khan, M.A.; Pareek, V.; Dilip, R.V.; Panwar, J. Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B. J. Environ. Manag. 2016, 183, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Waghmare, S.R.; Mulla, M.N.; Marathe, S.R.; Sonawane, K.D. Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech 2015, 5, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fawcett, D.; Verduin, J.J.; Shah, M.; Sharma, S.B.; Poinern, G.E.J. A Review of Current Research into the Biogenic Synthesis of Metal and Metal Oxide Nanoparticles via Marine Algae and Seagrasses. J. Nanosci. 2017, 2017, 8013850. [Google Scholar] [CrossRef]
- Yang, F.; Li, Y.; Liu, T.; Xu, K.; Zhang, L.; Xu, C.; Gao, J. Plasma synthesis of Pd nanoparticles decorated-carbon nanotubes and its application in Suzuki reaction. Chem. Eng. J. 2013, 226, 52–58. [Google Scholar] [CrossRef]
- Mao, C.; Flynn, C.E.; Hayhurst, A.; Sweeney, R.; Qi, J.; Georgiou, G.; Iverson, B.; Belcher, A.M. Viral assembly of oriented quantum dot nanowires. Proc. Natl. Acad. Sci. USA 2003, 100, 6946–6951. [Google Scholar] [CrossRef] [Green Version]
- Bharde, A.A.; Parikh, R.Y.; Baidakova, M.; Jouen, S.; Hannoyer, B.; Enoki, T.; Prasad, B.L.V.; Shouche, Y.S.; Ogale, S.; Sastry, M. Bacteria-Mediated Precursor-Dependent Biosynthesis of Superparamagnetic Iron Oxide and Iron Sulfide Nanoparticles. Langmuir 2008, 24, 5787–5794. [Google Scholar] [CrossRef]
- Ashraf, N.; Ahmad, F.; Da-Wei, L.; Zhou, R.B.; Feng-Li, H.; Yin, D.C. Iron/iron oxide nanoparticles: Advances in microbial fabrication, mechanism study, biomedical, and environmental applications. Crit. Rev. Microbiol. 2019, 45, 278–300. [Google Scholar] [CrossRef]
- Forootanfara, H.; Zare, B.; Fasihi-Bam, H.; Amirpour-Rostami, S.; Ameri, A.; Shakibaie, M.; Torabi Nami, M. Biosynthesis and characterization of selenium nanoparticles produced by terrestrial actinomycete Streptomyces microflavus strain FSHJ31. Res. Rev. J. Microbiol. Biotechnol. 2014, 3, 47–53. [Google Scholar]
- Butler, C.; Debieux, C.; Dridge, E.; Splatt, P.; Wright, M. Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochem. Soc. Trans. 2012, 40, 1239–1243. [Google Scholar] [CrossRef] [Green Version]
- Kessi, J. Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus. Microbiology 2006, 152, 731–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridley, H.; Watts, C.; Richardson, D.; Butler, C. Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenite oxyanions. Appl. Environ. Microbiol. 2006, 73, 5173–5180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schröder, I.; Rech, S.; Krafft, T.; Macy, J. Purification and characterization of the selenate reductase from Thauera selenatis. J. Biol Chem. 1997, 272, 23765–23768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yee, N.; Ma, J.; Dalia, A.; Boonfueng, T.; Kobayashi, B. Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl. Environ. Microbiol. 2007, 73, 1914–1920. [Google Scholar] [CrossRef] [Green Version]
- Wadhwani, S.A.; Shedbalkar, U.U.; Singh, R.; Chopade, B.A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol. 2016, 100, 2555–2566. [Google Scholar] [CrossRef]
- Beveridge, T.J.; Murray, R.G.E. Sites of Metal Deposition in the Cell Wall of Bacillus subtilis. J. Bacteriol. 1980, 141, 876–887. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.K.; Constanti, M. Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J. Nanopart Res. 2012, 14, 831. [Google Scholar] [CrossRef]
- Zonooz, N.F.; Salouti, M. Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3. Sci. Iran. 2011, 18, 1631–1635. [Google Scholar] [CrossRef] [Green Version]
- Mehta, A.; Sidhu, C.; Pinnaka, A.K.; Choudhury, A.R. Extracellular Polysaccharide Production by a Novel Osmotolerant Marine Strain of Alteromonas macleodii and Its Application towards Biomineralization of Silver. PLoS ONE 2014, 9, e98798. [Google Scholar] [CrossRef] [Green Version]
- Zonaro, E.; Piacenza, E.; Presentato, A.; Monti, F.; Dell’Anna, R.; Lampis, S.; Vallini, G. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Microb. Cell Fact. 2017, 16, 215. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, B.A.; Iqbal, J.; Mahmood, T.; Ahmad, R.; Kanwal, S.; Afridi, S. Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: Characterization and different biological applications. Mater. Res. Express 2019, 6, 0850a7. [Google Scholar] [CrossRef]
- Al-Radadi, N.S. Green synthesis of platinum nanoparticles using Saudi’s Dates extract and their usage on the cancer cell treatment. Arab. J. Chem. 2019, 12, 330–349. [Google Scholar] [CrossRef]
- Anand, K.; Tiloke, C.; Phulukdaree, A.; Ranjanc, B.; Chuturgoona, A.; Singh, S.; Gengan, R.M. Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties. J. Photochem. Photobiol. B Biol. 2016, 165, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Shahri, M.M.; Rahman, H.S.; Rahim, R.A.; Rasedee, A.; Mohamad, R. Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line. Int. J. Nanomed. 2017, 12, 8841–8853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baharara, J.; Ramezani, T.; Divsalar, A.; Mousavi, M.; Seyedarabi, A. Induction of Apoptosis by Green Synthesized Gold Nanoparticles Through Activation of Caspase-3 and 9 in Human Cervical Cancer Cells. Avi. J. Med. Biotech. 2016, 8, 75–83. [Google Scholar]
- Chung, I.-M.; Rahuman, A.A.; Marimuthu, S.; Kirthi, A.V.; Anbarasan, K.; Rajakumar, G. An Investigation of the Cytotoxicity and Caspase-Mediated Apoptotic Effect of Green Synthesized Zinc Oxide Nanoparticles Using Eclipta prostrata on Human Liver Carcinoma Cells. Nanomaterials 2015, 5, 1317–1330. [Google Scholar] [CrossRef]
- Chung, I.-M.; Rahuman, A.A.; Marimuthu, S.; Kirthi, A.V.; Anbarasan, K.; Padmini, P.; Rajakumar, G. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp. Ther. Med. 2017, 14, 18–24. [Google Scholar]
- Crua, A.V.; Medina, D.; Zhang, B.; González, M.U.; Huttel, Y.; García-Martín, J.M.; Cholula-Díaz, J.L.; Webster, T.J. Comparison of cytocompatibility and anticancer properties of traditional and green chemistry synthesized tellurium nanowires. Int. J. Nanomed. 2019, 14, 3155–3176. [Google Scholar] [CrossRef] [Green Version]
- Cui, D.; Liang, T.; Sun, L.; Meng, L.; Yang, C.; Wang, L.; Liang, T.; Lia, Q. Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharm. Biol. 2018, 56, 528–534. [Google Scholar] [CrossRef] [Green Version]
- Erdogan, O.; Abbak, M.; Demirbolat, G.M.; Birtekocak, F.; Aksel, M.; Pasa, S.; Cevik, O. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS ONE 2019, 14, e0216496. [Google Scholar] [CrossRef] [Green Version]
- Kargar, H.; Ghazavi, H.; Darroudi, M. Size-controlled and bio-directed synthesis of ceria nanopowder sand their in vitro cytotoxicity effects. Ceram. Int. 2015, 41, 4123–4128. [Google Scholar] [CrossRef]
- Farshchi, H.K.; Azizi, M.; Jaafari, M.R.; Nemati, S.H.; Fotovat, A. Green synthesis of iron nanoparticles by Rosemary extract and cytotoxicity effect evaluation on cancer cell lines. Biocatal. Agric. Biotechnol. 2018, 16, 54–62. [Google Scholar] [CrossRef]
- Alphandéry, E.; Idbaih, A.; Adam, C.; Delattre, J.Y.; Schmitt, C.; Guyot, F.; Chebbi, I. Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field. J. Control. Release 2017, 262, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Hamdous, Y.; Chebbi, I.; Mandawala, C.; Le Fèvre, R.; Guyot, F.; Seksek, O.; Alphandéry, E. Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field. J. Nanobiotechnol. 2017, 15, 74. [Google Scholar] [CrossRef]
- Fazal, S.; Jayasree, A.; Sasidharan, S.; Koyakutty, M.; Nair, S.V.; Menon, D. Green Synthesis of Anisotropic Gold Nanoparticles for Photothermal Therapy of Cancer. Acs Appl. Mater. Interfaces 2014, 6, 8080–8089. [Google Scholar] [CrossRef]
- Iram, S.; Khan, S.; Ansary, A.A.; Arshad, M.; Siddiqui, S.; Ahmad, E.; Khan, R.H.; Khan, M.S. Biogenic terbium oxide nanoparticles as the vanguard against osteosarcoma. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 168, 123–131. [Google Scholar] [CrossRef]
- Majeed, S.; Danish, M.; Muhadi, N.F.B.B. Genotoxicity and apoptotic activity of biologically synthesized magnesium oxide nanoparticles against human lung cancer A-549 cell line. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 025011. [Google Scholar] [CrossRef]
- Nagajyothi, P.C.; Pandurangan, M.; Sreekanth, T.V.M.; Shim, J. In vitro anticancer potential of BaCO3 nanoparticles synthesized via green route. J. Photochem. Photobiol. B: Biol. 2016, 156, 29–34. [Google Scholar] [CrossRef]
- Nosrati, H.; Abhari, F.; Charmi, J.; Rahmati, M.; Johari, B.; Azizi, S.; Rezaeejam, H.; Danafar, H. Facile green synthesis of bismuth sulfide radiosensitizer via biomineralization of albumin natural molecule for chemoradiation therapy aim. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3832–3838. [Google Scholar] [CrossRef] [Green Version]
- Pol, R.S.; Yadawe, M.S. Biosynthesis, Characterization and Anti-Cancer Activities of Thorium Nanoparticles Using Ananas Comosus (Pineapple) Extract. Iosr J. Appl. Chem. 2018, 11, 13–19. [Google Scholar]
- Shivaji, K.; Mani, S.; Ponmurugan, P.; De Castro, C.S.; Davies, M.L.; Balasubramanian, M.G.; Pitchaimuthu, S. Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells. Acs Appl. Nano Mater. 2018, 1, 1683–1693. [Google Scholar] [CrossRef]
- Song, W.-R.; Yu, S.-X.; Jin, G.X.; Wang, X.; Chen, J.; Li, J.; Liu, G.; Yang, H.-H. Plant Polyphenol-Assisted Green Synthesis of Hollow CoPt Alloy Nanoparticles for Dual-Modality Imaging Guided Photothermal Therapy. Small 2016, 12, 1506–1513. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Feng, L.; Liu, J.; Zhu, W.; Dong, Z.; Wu, Y.; Liu, Z. Intelligent Albumin–MnO2 Nanoparticles as pH-/H2O2-Responsive Dissociable Nanocarriers to Modulate Tumor Hypoxia for Effective Combination Therapy. Adv. Mater. 2016, 28, 7129–7136. [Google Scholar] [CrossRef] [PubMed]
- Mariam, A.A.; Kashif, M.; Arokiyaraj, S. Bio-synthesis of NiO and Ni nanoparticles and their characterization. Dig. J. Nanomater. Biostruct. 2014, 9, 1007–1019. [Google Scholar]
- Chen, M.; Zhang, Y.; Huang, B. Evaluationof the antitumor activity by Ni nanoparticles with verbascoside. J. Nanomater. 2013, 2013, 623497. [Google Scholar] [CrossRef]
- Sanaeimehr, Z.; Javadi, I.; Namvar, F. Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol. 2018, 9, 3. [Google Scholar] [CrossRef]
- Kulkarni, R.; Shaiwale, N.S.; Deobagkar, D.N.; Deobagkar, D.D. Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity. Int. J. Nanomed. 2015, 10, 963–974. [Google Scholar]
- Elbialy, N.S.; Abdelfatah, E.A.; Khalil, W.A. Antitumor activity of curcumin-green synthesized gold nanoparticles: In vitro study. Bionanoscience 2019, 9, 813–820. [Google Scholar] [CrossRef]
- Vemuri, S.K.; Banala, R.R.; Mukherjee, S.; Uppula, P.; Gpv, S.; Gurava Reddy, A.V.; Malarvilli, T. Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: Synthesis, biological evaluation, molecular modelling studies. Mater. Sci. Eng. C 2019, 99, 417–429. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Kudgus, R.A.; Bhattacharya, R.; Mukherjee, P. Inorganic nanoparticles in cancer therapy. Pharm. Res. 2011, 28, 237–259. [Google Scholar] [CrossRef] [Green Version]
- Manatunga, D.C.; de Silva, R.M.; de Silva, K.M.N.; de Silva, N.; Bhandari, S.; Yap, Y.K.; Costha, N.P. pH responsive controlled release of anti-cancer hydrophobic drugs from sodium alginate and hydroxyapatite bi-coated iron oxide nanoparticles. Eur. J. Pharm. Biopharm. 2017, 117, 29–38. [Google Scholar] [CrossRef]
- Hanan, N.A.; Chiu, H.I.; Ramachandran, M.R.; Tung, W.H. Cytotoxicity of Plant-Mediated Synthesis of Metallic Nanoparticles: A Systematic Review. Int. J. Mol. Sci. 2018, 19, 1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selim, M.E.; Hendi, A.A. Gold Nanoparticles Induce Apoptosis in MCF-7 Human Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2012, 13, 1617–1620. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xu, S.; Wang, Y.; Yu, Y.; Li, F.; Zhu, H.; Shen, Y.; Huang, S.; Guo, S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci. 2018, 509, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Rogers, N.J.; Franklin, N.M.; Apte, S.C.; Batley, G.E.; Angel, B.M.; Lead, J.R.; Baalousha, M. Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ. Chem. 2010, 7, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Rodea-Palomares, I.; Boltes, K.; Fernández-Piñas, F.; Leganés, F.; García-Calvo, E.; Santiago, J.; Rosal, R. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol. Sci. 2011, 119, 135–145. [Google Scholar] [CrossRef]
- Liu, F.; Mahmood, M.; Xu, Y.; Watanabe, F.; Biris, A.S.; Hansen, D.K.; Inselman, A.; Casciano, D.; Patterson, T.A.; Paule, M.G.; et al. Effects of silver nanoparticles on human and rat embryonic neural stem cells. Front. Neurosci. 2015, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.F.; Shen, W.; Gurunathan, S. Silver nanoparticle-mediated cellular responses in various cell lines: An in vitro model. Int. J. Mol. Sci. 2016, 17, 1603. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.S.; Yasser, M.M.; Sholkamy, E.N.; Ali, A.M.; Mehanni, M.M. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int. J. Nanomed. 2015, 10, 3389–3401. [Google Scholar]
- Yang, F.; Tang, Q.; Zhong, X.; Bai, Y.; Chen, T.; Zhang, Y.; Li, Y.; Zhang, X. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int. J. Nanomed. 2012, 7, 835–844. [Google Scholar]
- Zhang, D.; Zhang, J.; Zeng, J.; Li, Z.; Zuo, H.; Huang, C.; Zhao, X. Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo. J. Biomed. Nanotechnol. 2019, 15, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Bazylinski, D.A.; Frankel, R.B. Magnetosome Formation in Prokaryotes. Nat. Rev. Microbiol. 2004, 2, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, I.; Peng, C.; Khan, Z.M.; Naz, I. Yield cultivation of magnetotactic bacteria and magnetosomes: A review. J. Basic Microbiol. 2017, 57, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Alphandéry, E.; Idbaih, A.; Adam, C.; Delattre, J.Y.; Schmitt, C.; Guyot, F.; Chebbi, I. Development of non-pyrogenic magnetosome minerals coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia. Biomaterials 2017, 141, 210–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandawala, C.; Chebbi, I.; Durand-Dubief, M.; Le Fèvre, R.; Hamdous, Y.; Guyot, F.; Alphandéry, E. Biocompatible and stable magnetosome minerals coated with poly-L-lysine, citric acid, oleic acid, and carboxy-methyl-dextran for application in the magnetic hyperthermia treatment of tumors. J. Mater. Chem. B 2017, 5, 7644–7660. [Google Scholar] [CrossRef] [Green Version]
Metal. Comp. (NP, NW) | Organic Part (Capping/Stabilizing Agent) | Size (nm) Shape Crystallinity Zeta Potential (ZP in mV) | Surface Plasmon Resonance | Impurities | Synthesis | References |
NiO NP | Plant extract | 21 nm Sphere Crystalline ZP = −10 mV | NA | NA | Plant extract of Geranium wallichianum acting as reducing and capping agent | [41], Abbasi 2019 |
Pt NP | Extract of dates | 1–3 nm Sphere Crystalline | 321 nm, 329 nm. | K, Na, Mg, Ca, P, Fe, Cu, Zn, Cd, Mn | Purified date extract mixed with H2PtCl6 at different pH and temperatures | [42], Al-Radadi 2019 |
Pd NP | Bis-phthalate or plant metabiltes | 10–50 nm Sphere Crystalline ZP = −23 mV | 460 nm | NA | Extract of Moringa oleifera flower react with Pd(II) Species | [43], Anand 2016 |
Pd NP | phenols and flavonoids | 6–18 nm Sphere Crystalline | NA | NA | PdCl2 solution was mixed with aqueous white tea extract at 40 °C. | [44], Azizi 2017 |
Au NP | Alkanoids/flavonoids | 10–42 nm Pentagone + triangular ZP = 42 m V | 500–600 nm | NA | extracts of Zataria multiflora leaves mixed with chloroauric acid (HAuCl4) aqueous solution | [45], Baharara 2016 |
ZnO NP | leaf extract | 29 nm triangle, radial, hexagonal, rod, and rectangle Crystalline | NA | NA | zinc nitrate mixed with leaf extract of Eclipta prostrata dueing 48 h | [46], Chung 2015 |
Cu NP | Biomolecules of leaf extract | 23–57 nm spherical, hexagonal and cubical Polycrystalline | 565 nm | NA | copper acetate Cu(OAc)2 mixed with aqueous extract of E. prostrata for 24 h. | [47], Chung 2017 |
Te NW | NA | Length (a few µm), diameter = 26 nm, Wire | NA | NA | Telluric acid mixed with starch and heated at 160 °C for 15 h. | [48], Crua 2019 |
Se NP | hawthorn fruit extract | 113 nm | NA | NA | Sodium selenite was mixed with extracts of hawthorn fruit under stirring for 12 h. | [49], Cui 2018 |
Ag NP | bioactive molecules of plant extracts | 98 nm Sphere ZP = −32 mV | 434 nm | NA | Silver nitrate mixed with Cynara scolymus extract in ultrasonic bath for 30 min. | [50], Erdogan 2019 |
CeO2 NP | Protein of fresh egg white | 8-17 nm Sphere Crystalline | NA | NA | Ce(NO3)3.6H2O mixed with fresh eggs at 60 °C. | [51], Kargar 2015 |
Metal. Comp. (NP, NW, QD) | Organic Part (Capping/Stabilizing Agent) | Size (nm) Shape Crystallinity Zeta Potential (ZP, mV) | Surface Plasmon Resonance | Impurities | Synthesis | Ref |
Fe NP | Secondary metabolites | 100 nm Round | NA | NA | Rosemary plant extracts mixed with FeSO4. | [52], Farshchi 2018 |
Fe2O3NP Yield: 10 mg per liter of growth medium | Iron oxide mineral coated by bacterial lipids/proteins | 40 nm (average) Cubo-octahedric Chain arrangement Crystalline ZP = −18 mV (pH 6) | NA | Other metals than iron (% of iron relatively to other metals > 90%) | NP produced by MSR-1 Gryphiswaldense magnetotactic bacteria NP extracted as chains of magnetosomes from these bacteria. NP are pyrogenic | [53], Alphandéry 2017 |
Fe2O3 NP Yield: 10 mg per liter of growth medium | Iron oxide mineral part coated by synthetic coating (CA, CMD, OA, PEI, PLL, CHI, NER) | 40 nm (average) Cubo-octahedric Chain arrangement Crystalline Zeta potential depends of coating | NA | Other metals than iron (% of iron relatively to other metals > 90%) | NP produced by MSR-1 Gryphiswaldense magnetotactic bacteria NP extracted as chains of magnetosomes from these bacteria, purification of chains to remove all organic material surrounding magnetosome mineral core, Coating of magnetosome core with various coating agents (CA, CMD, OA, PEI, PLL), CHI, NERI. Magnetosomes are non-pyrogenic | [54], Chalani 2017, 63, Mandawala 2017 |
Au NP | cocoa extract | 150–200 nm Sphere Crystalline ZP = −50 mV | 535 nm | NA | cocoa extract powder solution (reducing agent) mixed with HAuCl4 | [55], Fazal 2014 |
Tb2O3 NP | NA | 10 nm Crystalline ZP = −17 mV | NA | NA | Incubation of fungus Fusarium oxysporumin with Tb4O7. | [56], Iram 2016 |
MgO NP | Biomolecules | 12–24 nm | 215 nm | NA | Mixture of magnesium nitrate (MgNO3) with the aqueous extract of Penicillium. | [57], Majeed 2018 |
BaCO3 NP | NA | 18 nm Crystalline Spherical + triangular | NA | NA | BaCl2 and Na2CO3 mixed with Mangifera seed extract at 120 °C for 6 h. | [58], Nagajyothi 2016 |
Bi2S3 NP | BSA | 60 nm Crystalline Sphere ZP = −33 mV | NA | NA | Bi(NO3)3 and HNO3 added into bovine serum albumin solution. | [59], Nosrati 2019 |
Th NP | NA | 100–1000 nm Crystalline | 5 KeV | Au, Pd | Pineapple juice added to thorium nitrate. | [60], Pol 2018 |
CdS QD | Organic material | 2–5 nm Crystalline | NA | NA | Two steps: 1/CdSO4 added to C. sinensis extracts for 3 days + 2/Na2S added for 4 days. | [61], Shivaji 2018 |
CoPt NP | Polyphenol | 10 nm | NA | NA | co-reduction of cobalt (II) chloride and potassium tetrachloroplatinate (II) in the presence of polyphenols by using NaBH4 as a reduction agent | [62], Song 2016 |
MnO2 NP | NA | 10–50 nm | 300–400 nm | NA | Human serum albumin mixed with with manganese chloride in the presence of drug + photosensitizer | [63], Chen 2016 |
Efficacy Results (In Vitro & In Vivo) of the Different Nanomaterials Presented in Table 1 | References |
---|---|
cytotoxicity of NiO NP against HepG2 cancer cells (IC50 = 38 μg/mL) | [41], Abbasi 2019 |
Cytoxicity of Pt NP against MCF-7, HCT-116, HepG-2 cells (90 < IC50 < 290 µg/mL) | [42], Al-Radad i2019 |
Cytotoxicity of Pd NP towards A549 lung cancer cells No cytoxicity towards healthy peripheral lymphocytes | [43], Anand 2016 |
Pd NP have larger cytotoxicity toward human leukemia (MOLT-4) cells (IC50 = 0.006 μM) than tea extract (IC50 = 0.9 μM), doxorubicin (IC50 = 2 μM), or cisplatin (IC50 = 0.013 μM). NP relatively not cytotoxic towards healthy human fibroblast (HDF-a) cells. Cytotoxicity due to apoptosis/G2/M cell-cycle arrest NP have anti-oxydant activity | [44], Azizi 2017 |
Au NP anticancer activity against HeLa cells (through apoptosis) | [45], Baharara 2016 |
Cytotoxicity of ZnO NP towards Hep-G2 cells (ROS induce damage to DNA of the cells) | [46], Chung 2015 |
Cu NP are cytotoxic towards MCF-7 breast cancer cells | [47], Chung 2017 |
Te NW (concentration between 5 and 100 μg/mL) improves healthy cell proliferation/decreases cancer cell growth. Higher efficacy compared with chemical Te NW. | [48], Crua 2019 |
Se NP cytotoxic towards HepG2 cells (IC50 = 19 µg/mL) NP produce ROS Cellular death through apoptosis | [49], Cui 2018 |
Cytotoxicity towards MCF-7 breast cancer cells of Ag NP (10 μg/mL) and PDT (0.5 mJ/cm2) Due to mitochondrial damage and intracellular ROS production | [50], Erdogan 2019 |
No CeO2 NP cytotoxicitys on periodental fibroblast cells. | [51], Kargar 2015 |
Rosemary-FeNPs more cytotoxic towards 4T1 and C26 cancer cells than free Rosemary extract | [52], Farschchi 2018 |
Injection of magnetosomes in glioblastoma followed by several AMF applications leads to full tumor disappearance | [53], Alphandéry 2017 |
Magnetosome cytotoxicity towards GBM RG-2 and GL-261 cells under the application of an AMF of 200 kHz and 40 mT. | [54], Hamdous 2017, 63, Mandawala 2017 |
Au NP cytotoxic towards epidermoid carcinoma A431 cells upon laser irradiation laser at 800 nm (6 W/cm2). | [55], Fazal 2014 |
Tb2O3 NP cytotoxic towards MG-63 and Saos-2 osteosarcoma cancer cells (IC50 = 0.102 μg/mL) Tb203 NP not cytotoxic towards primary osteoblasts up to 0.373 μg/mL. | [56], Iram 2016 |
Cytotoxicity of MgO NP towards A-549 human lung cancer cells (IC50 = 100 μg ml−1 after 24 h incubation) Less cytotoxicity of MgO NP twoards healthy vero cells (IC50 = 140 µg/mL) | [57], Majeed 2018 |
BaCO3 NP cytotoxic towards cervical carcinoma cells | [58], Nagajyothi 2016 |
Possibility to add Curcumin at the surface of bismuth sulfide NP and to induce cytotoxicity towards HT-29 cells by release of CUR. | [59], Nosrati 2019 |
Th NP cytotoxic towards A 375 melanoma cells. | [60], Pol 2018 |
CdS QD cytotoxic towards A549 lung cancer cells. | [61], Shivaji 2018 |
CoPt have better biocompatibility/lower toxicity than previously reported Co NP, Co@Au NP, and CoPt NP. → due to good biocompatibility/anti-oxidation potential of polyphenols that prevent cobalt release. | [62], Song 2016 |
MnO2 NP cytotoxic towards 4T1 breast cancer cells | [63], Chen 2016 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alphandéry, E. Natural Metallic Nanoparticles for Application in Nano-Oncology. Int. J. Mol. Sci. 2020, 21, 4412. https://doi.org/10.3390/ijms21124412
Alphandéry E. Natural Metallic Nanoparticles for Application in Nano-Oncology. International Journal of Molecular Sciences. 2020; 21(12):4412. https://doi.org/10.3390/ijms21124412
Chicago/Turabian StyleAlphandéry, Edouard. 2020. "Natural Metallic Nanoparticles for Application in Nano-Oncology" International Journal of Molecular Sciences 21, no. 12: 4412. https://doi.org/10.3390/ijms21124412
APA StyleAlphandéry, E. (2020). Natural Metallic Nanoparticles for Application in Nano-Oncology. International Journal of Molecular Sciences, 21(12), 4412. https://doi.org/10.3390/ijms21124412