Negative Modulation of TRPM8 Channel Function by Protein Kinase C in Trigeminal Cold Thermoreceptor Neurons
Abstract
:1. Introduction
2. Results
2.1. PKC Activation Reduces the Responses of TRPM8 Channels Expressed in HEK-293 Cells to Cold and Menthol
2.2. PMA Treatment Reduces the Number of Active TRPM8 Channels at the Plasma Membrane
2.3. PKC-Dependent Modulation of TRPM8 in CTNs from Trigeminal Ganglia
2.4. PKC Activation Reduces the TRPM8-Dependent Ongoing Activity and Cold-Evoked Responses of Corneal CTNs
2.5. Mathematical Model of NTI Activity Predicts that the PKC-Mediated Effect on Corneal Nerve Firing Can Be Explained by TRPM8 Downregulation
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Cell Culture
4.3. Recombinant Expression of TRPM8
4.4. Ca2+-Imaging
4.5. Patch-Clamp Recordings
4.6. Temperature Stimulation
4.7. Variance Analysis
4.8. Extracellular Recordings of Corneal CTNs
4.9. Mathematical Model
4.10. Reagents and Drugs
4.11. Data Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CTN | Cold Thermoreceptor Neuron |
PKC | Protein Kinase C |
PMA | Phorbol 12-Myristate 13-Acetate |
TG | Trigeminal ganglia |
DRG | Dorsal Root Ganglia |
TRPM8 | Transient Receptor Potential Melastatin 8 |
TRPV1 | Transient Receptor Potential Vanilloid 1 |
BR2 | Bradykinin Receptor 2 |
PIP2 | Phosphatidylinositol 4,5-bisphosphate |
InsP3 | Inositol 1,4,5-trisphosphate |
PDBu | Phorbol 12,13-Dibutyrate |
NTI | Nerve Terminal Impulse |
References
- Vriens, J.; Nilius, B.; Voets, T. Peripheral thermosensation in mammals. Nat. Rev. Neurosci. 2014, 15, 573–589. [Google Scholar] [CrossRef]
- González, A.; Ugarte, G.; Piña, R.; Pertusa, M.; Madrid, R. TRP channels in cold transduction. In TRP Channels in Sensory Transduction; Springer International Publishing: Cham, Switzerland, 2015; pp. 185–207. ISBN 9783319187051. [Google Scholar]
- McKemy, D.D. Molecular basis of peripheral innocuous cold sensitivity. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 156, pp. 57–67. [Google Scholar]
- McKemy, D.D. The molecular and cellular basis of cold sensation. ACS Chem. Neurosci. 2013, 4, 238–247. [Google Scholar] [CrossRef]
- Parra, A.; Madrid, R.; Echevarria, D.; del Olmo, S.; Morenilla-Palao, C.; Acosta, M.C.; Gallar, J.; Dhaka, A.; Viana, F.; Belmonte, C. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat. Med. 2010, 16, 1396–1399. [Google Scholar] [CrossRef] [PubMed]
- Quallo, T.; Vastani, N.; Horridge, E.; Gentry, C.; Parra, A.; Moss, S.; Viana, F.; Belmonte, C.; Andersson, D.A.; Bevan, S. TRPM8 is a neuronal osmosensor that regulates eye blinking in mice. Nat. Commun. 2015, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, H.; Meng, I.D. Cold-sensitive corneal afferents respond to a variety of ocular stimuli central to tear production: Implications for dry eye disease. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3969–3976. [Google Scholar] [CrossRef]
- Belmonte, C.; Gallar, J. Cold thermoreceptors, unexpected players in tear production and ocular dryness sensations. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3888–3892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belmonte, C.; Nichols, J.J.; Cox, S.M.; Brock, J.A.; Begley, C.G.; Bereiter, D.A.; Dartt, D.A.; Galor, A.; Hamrah, P.; Ivanusic, J.J.; et al. TFOS DEWS II pain and sensation report. Ocul. Surf. 2017, 15, 404–437. [Google Scholar] [CrossRef] [Green Version]
- Dhaka, A.; Murray, A.N.; Mathur, J.; Earley, T.J.; Petrus, M.J.; Patapoutian, A. TRPM8 is required for cold sensation in mice. Neuron 2007, 54, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Colburn, R.W.; Lubin, M.L.; Stone, D.J.; Wang, Y.; Lawrence, D.; D’Andrea, M.R.; Brandt, M.R.; Liu, Y.; Flores, C.M.; Qin, N. Attenuated cold sensitivity in TRPM8 null mice. Neuron 2007, 54, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bautista, D.M.; Siemens, J.; Glazer, J.M.; Tsuruda, P.R.; Basbaum, A.I.; Stucky, C.L.; Jordt, S.-E.; Julius, D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007, 448, 204–208. [Google Scholar] [CrossRef] [PubMed]
- McKemy, D.D.; Neuhausser, W.M.; Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002, 416, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Peier, A.M.; Moqrich, A.; Hergarden, A.C.; Reeve, A.J.; Andersson, D.A.; Story, G.M.; Earley, T.J.; Dragoni, I.; McIntyre, P.; Bevan, S.; et al. A TRP channel that senses cold stimuli and menthol. Cell 2002, 108, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Brauchi, S.; Orio, P.; Latorre, R. Clues to understanding cold sensation: Thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc. Natl. Acad. Sci. USA 2004, 101, 15494–15499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voets, T.; Droogmans, G.; Wissenbach, U.; Janssens, A.; Flockerzi, V.; Nilius, B. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 2004, 430, 748–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez de Vega, M.J.; Gómez-Monterrey, I.; Ferrer-Montiel, A.; González-Muñiz, R. Transient receptor potential melastatin 8 channel (TRPM8) modulation: Cool entryway for treating pain and cancer. J. Med. Chem. 2016, 59, 10006–10029. [Google Scholar] [CrossRef] [Green Version]
- Madrid, R.; Pertusa, M. Intimacies and physiological role of the polymodal cold-sensitive ion channel TRPM8. Curr. Top. Membr. 2014, 74, 293–324. [Google Scholar] [CrossRef]
- McCoy, D.D.; Knowlton, W.M.; McKemy, D.D. Scraping through the ice: Uncovering the role of TRPM8 in cold transduction. Am. J. Physiol. Integr. Comp. Physiol. 2011, 300, R1278–R1287. [Google Scholar] [CrossRef] [Green Version]
- Lolignier, S.; Gkika, D.; Andersson, D.; Leipold, E.; Vetter, I.; Viana, F.; Noël, J.; Busserolles, J. New insight in cold pain: Role of ion channels, modulation, and clinical perspectives. J. Neurosci. 2016, 36, 11435–11439. [Google Scholar] [CrossRef] [Green Version]
- Viana, F. Nociceptors: Thermal allodynia and thermal pain. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 156, pp. 103–119. [Google Scholar]
- Yin, K.; Zimmermann, K.; Vetter, I.; Lewis, R.J. Therapeutic opportunities for targeting cold pain pathways. Biochem. Pharmacol. 2015, 93, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Viana, F.; Voets, T. Heat pain and cold pain. Oxf. Handb. Neurobiol. Pain 2019, 1–25. [Google Scholar] [CrossRef]
- Tang, Z.; Kim, A.; Masuch, T.; Park, K.; Weng, H.J.; Wetzel, C.; Dong, X. Pirt functions as an endogenous regulator of TRPM8. Nat. Commun. 2013, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gkika, D.; Lemonnier, L.; Shapovalov, G.; Gordienko, D.; Poux, C.; Bernardini, M.; Bokhobza, A.; Bidaux, G.; Degerny, C.; Verreman, K.; et al. TRP channel-associated factors are a novel protein family that regulates TRPM8 trafficking and activity. J. Cell Biol. 2015, 208, 89–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanquart, S.; Borowiec, A.; Delcourt, P.; Figeac, M.; Emerling, C.A.; Meseguer, A.S.; Roudbaraki, M.; Prevarskaya, N.; Bidaux, G. Evolution of the human cold/menthol receptor, TRPM8. Mol. Phylogenet. Evol. 2019, 136, 104–118. [Google Scholar] [CrossRef]
- Dragoni, I.; Guida, E.; McIntyre, P. The cold and menthol receptor TRPM8 contains a functionally important double cysteine motif. J. Biol. Chem. 2006, 281, 37353–37360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erler, I.; Al-Ansary, D.M.M.; Wissenbach, U.; Wagner, T.F.J.; Flockerzi, V.; Niemeyer, B.A. Trafficking and assembly of the cold-sensitive TRPM8 channel. J. Biol. Chem. 2006, 281, 38396–38404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertusa, M.; Madrid, R.; Morenilla-Palao, C.; Belmonte, C.; Viana, F. N-glycosylation of TRPM8 ion channels modulates temperature sensitivity of cold thermoreceptor neurons. J. Biol. Chem. 2012, 287, 18218–18229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manolache, A.; Selescu, T.; Maier, G.L.; Mentel, M.; Ionescu, A.E.; Neacsu, C.; Babes, A.; Szedlacsek, S.E. Regulation of TRPM8 channel activity by Src-mediated tyrosine phosphorylation. J. Cell. Physiol. 2020, 235, 5192–5203. [Google Scholar] [CrossRef]
- Cao, C.; Yudin, Y.; Bikard, Y.; Chen, W.; Liu, T.; Li, H.; Jendrossek, D.; Cohen, A.; Pavlov, E.; Rohacs, T.; et al. Polyester modification of the mammalian trpm8 channel protein: Implications for structure and function. Cell Rep. 2013, 4, 302–315. [Google Scholar] [CrossRef] [Green Version]
- Pertusa, M.; González, A.; Hardy, P.; Madrid, R.; Viana, F. Bidirectional modulation of thermal and chemical sensitivity of TRPM8 channels by the initial region of the N-terminal domain. J. Biol. Chem. 2014, 289, 21828–21843. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Yudin, Y.; Nagwekar, J.; Kang, C.; Shirokova, N.; Rohacs, T. Gαq sensitizes TRPM8 to inhibition by PI(4,5)P2 depletion upon receptor activation. J. Neurosci. 2019, 2304–2318. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Mak, S.; Li, L.; Parra, A.; Denlinger, B.; Belmonte, C.; McNaughton, P.A. Direct inhibition of the cold-activated TRPM8 ion channel by Gαq. Nat. Cell Biol. 2012, 14, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Linte, R.M.; Ciobanu, C.; Reid, G.; Babes, A. Desensitization of cold- and menthol-sensitive rat dorsal root ganglion neurones by inflammatory mediators. Exp. Brain Res. 2007, 178, 89–98. [Google Scholar] [CrossRef]
- Bavencoffe, A.; Gkika, D.; Kondratskyi, A.; Beck, B.; Borowiec, A.-S.; Bidaux, G.; Busserolles, J.; Eschalier, A.; Shuba, Y.; Skryma, R.; et al. The transient receptor potential channel TRPM8 is inhibited via the α2A adrenoreceptor signaling pathway. J. Biol. Chem. 2010, 285, 9410–9419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Premkumar, L.S.; Raisinghani, M.; Pingle, S.C.; Long, C.; Pimentel, F. Downregulation of transient receptor potential melastatin 8 by protein kinase C-Mediated dephosphorylation. J. Neurosci. 2005, 25, 11322–11329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Direct Gαq gating is the sole mechanism for TRPM8 inhibition caused by bradykinin receptor activation. Cell Rep. 2019, 27, 3672–3683.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tominaga, M.; Wada, M.; Masu, M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc. Natl. Acad. Sci. USA 2001, 98, 6951–6956. [Google Scholar] [CrossRef] [Green Version]
- Cesare, P.; Mcnaughton, P. A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc. Natl. Acad. Sci. USA 1996, 93, 15435–15439. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Qin, F. Functional Control of Cold- and Menthol-Sensitive TRPM8 Ion Channels by Phosphatidylinositol 4,5-Bisphosphate. J. Neurosci. 2005, 25. [Google Scholar] [CrossRef]
- Rohacs, T.; Lopes, C.M.B.; Michailidis, I.; Logothetis, D.E. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci. 2005, 8, 626–634. [Google Scholar] [CrossRef]
- Daniels, R.L.; Takashima, Y.; McKemy, D.D. Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J. Biol. Chem. 2009, 284, 1570–1582. [Google Scholar] [CrossRef] [Green Version]
- Zakharian, E.; Cao, C.; Rohacs, T. Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J. Neurosci. 2010, 30, 12526–12534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarria, I.; Gu, J. Menthol response and adaptation in nociceptive-like and nonnociceptive-like neurons: Role of protein kinases. Mol. Pain 2010, 6, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, J.; Hosokawa, H.; Sawada, Y.; Matsumura, K.; Kobayashi, S. Ca2+-dependent PKC activation mediates menthol-induced desensitization of transient receptor potential M8. Neurosci. Lett. 2006, 397, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, C.; Acosta, M.C.; Merayo-Lloves, J.; Gallar, J. What causes eye pain? Curr. Ophthalmol. Rep. 2015, 3, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piña, R.; Ugarte, G.; Campos, M.; Íñigo-Portugués, A.; Olivares, E.; Orio, P.; Belmonte, C.; Bacigalupo, J.; Madrid, R. Role of TRPM8 channels in altered cold sensitivity of corneal primary sensory neurons induced by axonal damage. J. Neurosci. 2019, 39, 8177–8192. [Google Scholar] [CrossRef] [Green Version]
- Kovács, I.; Luna, C.; Quirce, S.; Mizerska, K.; Callejo, G.; Riestra, A.; Fernández-Sánchez, L.; Meseguer, V.M.; Cuenca, N.; Merayo-Lloves, J.; et al. Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease. Pain 2016, 157, 399–417. [Google Scholar] [CrossRef]
- Yang, J.M.; Wei, E.T.; Kim, S.J.; Yoon, K.C. TRPM8 channels and dry eye. Pharmaceuticals 2018, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Velázquez, K.T.; Mohammad, H.; Sweitzer, S.M. Protein kinase C in pain: Involvement of multiple isoforms. Pharmacol. Res. 2007, 55, 578–589. [Google Scholar] [CrossRef] [Green Version]
- Cornejo, V.H.; González, C.; Campos, M.; Vargas-Saturno, L.; de los Ángeles Juricic, M.; Miserey-Lenkei, S.; Pertusa, M.; Madrid, R.; Couve, A. Non-conventional axonal organelles control TRPM8 ion channel trafficking and peripheral cold sensing. Cell Rep. 2020, 30, 4505–4517. [Google Scholar] [CrossRef]
- Mälkiä, A.; Madrid, R.; Meseguer, V.; De La Peña, E.; Valero, M.; Belmonte, C.; Viana, F. Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. J. Physiol. 2007, 581, 155–174. [Google Scholar] [CrossRef]
- Yudin, Y.; Lukacs, V.; Cao, C.; Rohacs, T. Decrease in phosphatidylinositol 4,5-bisphosphate levels mediates desensitization of the cold sensor TRPM8 channels. J. Physiol. 2011, 589, 6007–6027. [Google Scholar] [CrossRef] [PubMed]
- Pertusa, M.; Rivera, B.; González, A.; Ugarte, G.; Madrid, R. Critical role of the pore domain in the cold response of TRPM8 channels identified by ortholog functional comparison. J. Biol. Chem. 2018, 293, 12454–12471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megat, S.; Ray, P.R.; Tavares-Ferreira, D.; Moy, J.K.; Sankaranarayanan, I.; Wanghzou, A.; Fang Lou, T.; Barragan-Iglesias, P.; Campbell, Z.T.; Dussor, G.; et al. Differences between dorsal root and trigeminal ganglion nociceptors in mice revealed by translational profiling. J. Neurosci. 2019, 39, 6829–6847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrid, R.; Donovan-Rodriguez, T.; Meseguer, V.; Acosta, M.C.; Belmonte, C.; Viana, F. Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals. J. Neurosci. 2006, 26, 12512–12525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivares, E.; Orio, P. Mathematical modeling of TRPM8 and the cold thermoreceptors. In TRP Channels in Sensory Transduction; Springer International Publishing: Cham, Switzerland, 2015; pp. 209–223. ISBN 9783319187051. [Google Scholar]
- Olivares, E.; Salgado, S.; Maidana, J.P.; Herrera, G.; Campos, M.; Madrid, R.; Orio, P. TRPM8-dependent dynamic response in a mathematical model of cold thermoreceptor. PLoS ONE 2015, 10, e0139314. [Google Scholar] [CrossRef] [Green Version]
- Pabbidi, M.R.; Premkumar, L.S. Role of transient receptor potential channels TRPV1 and TRPM8 in diabetic peripheral neuropathy. J. Diabetes Treat. 2017, 2017. [Google Scholar]
- Mandadi, S.; Armati, P.J.; Roufogalis, B.D. Protein kinase C modulation of thermo-sensitive transient receptor potential channels: Implications for pain signaling. J. Nat. Sci. Biol. Med. 2011, 2, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Iftinca, M.; Basso, L.; Flynn, R.; Kwok, C.; Roland, C.; Hassan, A.; Defaye, M.; Ramachandran, R.; Trang, T.; Altier, C. Chronic morphine regulates TRPM8 channels via MOR-PKCβ signaling. Mol. Brain 2020, 13, 61. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, D.; Pinto, S.; Danglot, L.; Vandewauw, I.; Segal, A.; Van Ranst, N.; Benoit, M.; Janssens, A.; Vennekens, R.; Vanden Berghe, P.; et al. VAMP7 regulates constitutive membrane incorporation of the cold-activated channel TRPM8. Nat. Commun. 2016, 7, 10489. [Google Scholar] [CrossRef] [Green Version]
- Manna, P.T.; Smith, A.J.; Taneja, T.K.; Howell, G.J.; Lippiat, J.D.; Sivaprasadarao, A. Constitutive endocytic recycling and protein kinase C-mediated lysosomal degradation control KATP channel surface density. J. Biol. Chem. 2010, 285, 5963–5973. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Mármol, R.; Styrczewska, K.; Pérez-Verdaguer, M.; Vallejo-Gracia, A.; Comes, N.; Sorkin, A.; Felipe, A. Ubiquitination mediates Kv1.3 endocytosis as a mechanism for protein kinase C-dependent modulation. Sci. Rep. 2017, 7, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morenilla-Palao, C.; Planells-Cases, R.; García-Sanz, N.; Ferrer-Montiel, A. Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J. Biol. Chem. 2004, 279, 25665–25672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, R.W.; Pianova, S.; Fernandez, J.; Fallon, J.B.; Belmonte, C.; Brock, J.A. Effects of heating and cooling on nerve terminal impulses recorded from cold-sensitive receptors in the guinea-pig cornea. J. Gen. Physiol. 2003, 121, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Brock, J.A.; McLachlan, E.M.; Belmonte, C. Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in guinea-pig cornea. J. Physiol. 1998, 512, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Brock, J.A.; Pianova, S.; Belmonte, C. Differences between nerve terminal impulses of polymodal nociceptors and cold sensory receptors of the guinea-pig cornea. J. Physiol. 2001, 533, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Bech, F.; González-González, O.; Artime, E.; Serrano, J.; Alcalde, I.; Gallar, J.; Merayo-Lloves, J.; Belmonte, C. Functional and morphologic alterations in mechanical, polymodal, and cold sensory nerve fibers of the cornea following photorefractive keratectomy. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2281–2292. [Google Scholar] [CrossRef]
- Hirata, H.; Fried, N.; Oshinsky, M.L. Quantitative characterization reveals three types of dry-sensitive corneal afferents: Pattern of discharge, receptive field, and thermal and chemical sensitivity. J. Neurophysiol. 2012, 108, 2481–2493. [Google Scholar] [CrossRef] [Green Version]
- Paricio-Montesinos, R.; Schwaller, F.; Udhayachandran, A.; Rau, F.; Walcher, J.; Evangelista, R.; Vriens, J.; Voets, T.; Poulet, J.F.A.; Lewin, G.R. The sensory coding of warm perception. Neuron 2020, 106, 830–841. [Google Scholar] [CrossRef] [Green Version]
- Numazaki, M.; Tominaga, T.; Toyooka, H.; Tominaga, M. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cε and identification of two target serine residues. J. Biol. Chem. 2002, 277, 13375–13378. [Google Scholar] [CrossRef] [Green Version]
- Bhave, G.; Hu, H.J.; Glauner, K.S.; Zhu, W.; Wang, H.; Brasier, D.J.; Oxford, G.S.; Gereau, R.W., IV. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. USA 2003, 100, 12480–12485. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, L.; McNaughton, P.A. Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron 2008, 59, 450–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proudfoot, C.J.; Garry, E.M.; Cottrell, D.F.; Rosie, R.; Anderson, H.; Robertson, D.C.; Fleetwood-Walker, S.M.; Mitchell, R. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol. 2006, 16, 1591–1605. [Google Scholar] [CrossRef] [Green Version]
- Madrid, R.; de la Pena, E.; Donovan-Rodriguez, T.; Belmonte, C.; Viana, F. Variable threshold of trigeminal cold-thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels. J. Neurosci. 2009, 29, 3120–3131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilius, B.; Mahieu, F.; Prenen, J.; Janssens, A.; Owsianik, G.; Vennekens, R.; Voets, T. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J. 2006, 25, 467–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, O.; Gonzalez, C.; Latorre, R. Counting channels: A tutorial guide on ion channel fluctuation analysis. Adv. Physiol. Educ. 2002, 26, 327–341. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Ugarte, G.; Restrepo, C.; Herrera, G.; Piña, R.; Gómez-Sánchez, J.A.; Pertusa, M.; Orio, P.; Madrid, R. Role of the excitability brake potassium current I KD in cold allodynia induced by chronic peripheral nerve injury. J. Neurosci. 2017, 3109–3126. [Google Scholar] [CrossRef] [Green Version]
- Hines, M.L.; Carnevale, N.T. The NEURON simulation environment. Neural Comput. 1997, 9, 1179–1209. [Google Scholar] [CrossRef]
- Hines, M. NEURON and python. Front. Neuroinform. 2009, 3, 1. [Google Scholar] [CrossRef] [Green Version]
Set # | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.65 | 0.27 | 0.29 | 0.20 | 3.7 | 5.0 | 1.8 | 39,000 | 2167 | −160 | 215 |
2 | 1.61 | 0.24 | 0.28 | 0.22 | 3.5 | 4.9 | 2.5 | 45,833 | 2083 | −220 | 170 |
3 | 1.03 | 0.21 | 0.35 | 0.31 | 3.0 | 4.4 | 1.3 | 40,000 | 5167 | −230 | 250 |
4 | 0.46 | 0.17 | 0.21 | 0.28 | 4.0 | 4.9 | 4.7 | 23,333 | 13,667 | −250 | 110 |
5 | 0.58 | 0.16 | 0.20 | 0.28 | 3.9 | 4.7 | 5.2 | 23,333 | 16,000 | −225 | 150 |
6 | 4.02 | 0.24 | 0.30 | 0.25 | 4.0 | 5.0 | 3.5 | 33,333 | 2167 | −230 | 185 |
7 | 4.95 | 0.22 | 0.25 | 0.21 | 3.9 | 5.0 | 3.2 | 66,667 | 5833 | −150 | 170 |
8 | 1.50 | 0.21 | 0.28 | 0.26 | 3.8 | 4.7 | 3.6 | 43,333 | 6667 | −250 | 150 |
9 | 4.03 | 0.27 | 0.32 | 0.20 | 2.8 | 4.9 | 3.4 | 39,167 | 8333 | −190 | 235 |
10 | 3.80 | 0.26 | 0.33 | 0.21 | 3.0 | 4.7 | 3.3 | 65,000 | 15,333 | −220 | 250 |
11 | 3.69 | 0.18 | 0.21 | 0.23 | 2.5 | 3.4 | 4.6 | 40,833 | 11,667 | −230 | 240 |
12 | 2.30 | 0.19 | 0.21 | 0.22 | 2.7 | 3.0 | 4.7 | 31,667 | 25,000 | −230 | 250 |
13 | 3.11 | 0.20 | 0.21 | 0.20 | 2.4 | 2.3 | 5.5 | 40,000 | 13,833 | −250 | 230 |
14 | 1.50 | 0.28 | 0.34 | 0.20 | 3.3 | 4.7 | 1.4 | 63,333 | 6833 | −140 | 240 |
15 | 2.30 | 0.29 | 0.34 | 0.20 | 3.0 | 4.2 | 4.8 | 35,833 | 2333 | −210 | 170 |
16 | 1.61 | 0.28 | 0.34 | 0.20 | 3.1 | 5.0 | 3.8 | 30,000 | 9000 | −150 | 190 |
17 | 2.99 | 0.27 | 0.33 | 0.21 | 2.8 | 3.7 | 5.4 | 26,667 | 15,167 | −140 | 170 |
18 | 1.84 | 0.23 | 0.25 | 0.20 | 4.0 | 5.0 | 5.8 | 31,667 | 10,417 | −220 | 170 |
19 | 3.45 | 0.23 | 0.25 | 0.20 | 4.0 | 5.0 | 5.8 | 31,667 | 10,333 | −250 | 250 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera, B.; Campos, M.; Orio, P.; Madrid, R.; Pertusa, M. Negative Modulation of TRPM8 Channel Function by Protein Kinase C in Trigeminal Cold Thermoreceptor Neurons. Int. J. Mol. Sci. 2020, 21, 4420. https://doi.org/10.3390/ijms21124420
Rivera B, Campos M, Orio P, Madrid R, Pertusa M. Negative Modulation of TRPM8 Channel Function by Protein Kinase C in Trigeminal Cold Thermoreceptor Neurons. International Journal of Molecular Sciences. 2020; 21(12):4420. https://doi.org/10.3390/ijms21124420
Chicago/Turabian StyleRivera, Bastián, Matías Campos, Patricio Orio, Rodolfo Madrid, and María Pertusa. 2020. "Negative Modulation of TRPM8 Channel Function by Protein Kinase C in Trigeminal Cold Thermoreceptor Neurons" International Journal of Molecular Sciences 21, no. 12: 4420. https://doi.org/10.3390/ijms21124420
APA StyleRivera, B., Campos, M., Orio, P., Madrid, R., & Pertusa, M. (2020). Negative Modulation of TRPM8 Channel Function by Protein Kinase C in Trigeminal Cold Thermoreceptor Neurons. International Journal of Molecular Sciences, 21(12), 4420. https://doi.org/10.3390/ijms21124420