LC–ESI–FT–MSn Metabolite Profiling of Symphytum officinale L. Roots Leads to Isolation of Comfreyn A, an Unusual Arylnaphthalene Lignan
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Procedures
3.2. Reagents and Solvents
3.3. Sample Extraction
3.4. LC–ESI/LTQOrbitrap/MS Analysis
3.5. Isolation Procedure
3.6. Spectroscopic Data of Compound 15
3.7. Cell Culture
3.8. Real-Time PCR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Staiger, C. Comfrey: A Clinical Overview. Phytother. Res. 2012, 26, 1441–1448. [Google Scholar] [CrossRef] [Green Version]
- Trifan, A.; Opitz, S.E.; Josuran, R.; Grubelnik, A.; Esslinger, N.; Peter, S.; Bräm, S.; Meier, N.; Wolfram, E. Is comfrey root more than toxic pyrrolizidine alkaloids? Salvianolic acids among antioxidant polyphenols in comfrey (Symphytum officinale L.) roots. Food Chem. Toxicol. 2018, 112, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Sowa, I.; Paduch, R.; Strzemski, M.; Zielińska, S.; Rydzik-Strzemska, E.; Sawicki, J.; Kocjan, R.; Polkowski, J.; Matkowski, A.; Latalski, M.; et al. Proliferative and antioxidant activity of Symphytum officinale root extract. Nat. Prod. Res. 2017, 32, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Seigner, J.; Junker-Samek, M.; Plaza, A.; D’Urso, G.; Masullo, M.; Piacente, S.; Holper-Schichl, Y.M.; de Martin, R. A Symphytum officinale Root Extract Exerts Anti-inflammatory Properties by Affecting Two Distinct Steps of NF-κB Signaling Front. Pharmacology 2019, 10, 289. [Google Scholar]
- Coulombe, R.A. Pyrrolizidine alkaloids in foods. Adv. Food Nutr. Res. 2003, 45, 61–99. [Google Scholar] [CrossRef]
- Liu, F.; Wan, S.Y.; Jiang, Z.; Li, S.F.Y.; Ong, E.S.; Castaño-Osorio, J.C. Determination of pyrrolizidine alkaloids in comfrey by liquid chromatography–electrospray ionization mass spectrometry. Talanta 2009, 80, 916–923. [Google Scholar] [CrossRef]
- European Medicines Agency. Assessment Report on Symphytum Officinale L., Radix; EMA/HMPC: London, UK, 2009; 572844/2009. [Google Scholar]
- Grube, B.; Grünwald, J.; Krug, L.; Staiger, C. Efficacy of a comfrey root (Symphyti offic. radix) extract ointment in the treatment of patients with painful osteoarthritis of the knee: Results of a double-blind, randomised, bicenter, placebo-controlled trial. Phytomedicine 2007, 14, 2–10. [Google Scholar] [CrossRef]
- Koll, R.; Buhr, M.; Dieter, R.; Pabst, H.; Predel, H.-G.; Petrowicz, O.; Giannetti, B.; Klingenburg, S.; Staiger, C. Efficacy and tolerance of a comfrey root extract (Extr. Rad. Symphyti) in the treatment of ankle distorsions: Results of a multicenter, randomized, placebo-controlled, double-blind study. Phytomedicine 2004, 11, 470–477. [Google Scholar] [CrossRef]
- Predel, H.-G.; Giannetti, B.; Koll, R.; Bulitta, M.; Staiger, C. Efficacy of a Comfrey root extract ointment in comparison to a Diclo-fenac gel in the treatment of ankle distortions: Results of an observer-blind, randomized, multicenter study. Phytomedicine 2005, 12, 707–714. [Google Scholar] [CrossRef]
- Grabias, B.; Swiatek, L. Phenolic acids in Symphytum officinale. Pharm. Pharmacol. Lett. 1998, 8, 81–83. [Google Scholar]
- Ahmad, V.U.; Noorwala, M.; Mohammad, F.V.; Şener, B.; Gilani, A.H.; Aftab, K. Symphytoxide A, A triterpenoid saponin from the roots of Symphytum officinale. Phytochemistry 1993, 32, 1003–1006. [Google Scholar] [CrossRef]
- Mohammad, F.V.; Noorwala, M.; Ahmad, V.U.; Şener, B. A bidesmosidic hederagenin hexasaccharide from the roots of Symphytum officinale. Phytochemistry 1995, 40, 213–218. [Google Scholar] [CrossRef]
- Nastić, N.; Borrás-Linares, I.; Lozano-Sánchez, J.; Švarc-Gajić, J.; Segura-Carretero, A. Comparative Assessment of Phytochemical Profiles of Comfrey (Symphytum officinale L.) Root Extracts Obtained by Different Extraction Techniques. Molecules 2020, 25, 837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heide, L.; Floss, H.G.; Tabata, M. Incorporation of shikimic acid into p-hydroxybenzoic acid in Lithospermum erythrorhizon cell cultures. Phytochemistry 1989, 28, 2643–2645. [Google Scholar] [CrossRef]
- Chen, P.X.; Tang, Y.; Zhang, B.; Liu, R.; Marcone, M.; Li, X.; Tsao, R. 5-Hydroxymethyl-2-furfural and Derivatives Formed during Acid Hydrolysis of Conjugated and Bound Phenolics in Plant Foods and the Effects on Phenolic Content and Antioxidant Capacity. J. Agric. Food Chem. 2014, 62, 4754–4761. [Google Scholar] [CrossRef]
- Pérez-Maqueda, J.; Arenas-Ligioiz, I.; López, Ó.; Fernandez-Bolaños, J.G. Eco-friendly preparation of 5-hydroxymethylfurfural from sucrose using ion-exchange resins. Chem. Eng. Sci. 2014, 109, 244–250. [Google Scholar] [CrossRef]
- Bottone, A.; Masullo, M.; Montoro, P.; Pizza, C.; Piacente, S. HR-LC-ESI-Orbitrap-MS based metabolite profiling of Prunus dulcis Mill. (Italian cultivars Toritto and Avola) husks and evaluation of antioxidant activity. Phytochem. Anal. 2019, 30, 415–423. [Google Scholar] [CrossRef]
- Ovenden, S.P.B.; Yu, J.; Wan, S.S.; Sberna, G.; Tait, R.M.; Rhodes, D.; Cox, S.; Coates, J.; Walsh, N.G.; Meurer-Grimes, B.M. Globoidnan A: A Lignan from Eucalyptus globoidea Inhibits HIV Integrase. Phytochemistry 2005, 36, 3255–3259. [Google Scholar] [CrossRef]
- Basli, A.; Delaunay, J.-C.; Pedrot, E.; Bernillon, S.; Madani, K.; Monti, J.-P.; Mérillon, J.-M.; Chibane, M.; Richard, T. New Cyclolignans from Origanum glandulosum Active Against β-amyloid Aggregation. Rec. Nat. Prod. 2014, 8, 208–216. [Google Scholar]
- Zhang, J.-L.; Yan, R.-J.; Yu, N.; Zhang, X.; Chen, D.-J.; Wu, T.; Xin, J.-G. A new caffeic acid tetramer from the Dracocephalum moldavica L. Nat. Prod. Res. 2017, 32, 370–373. [Google Scholar] [CrossRef]
- Wagner, H.; Hörhammer, L.; Frank, U. [Lithospermic acid, the antihormonally active principle of Lycopus europaeus L. and Symphytum officinale. Ingredients of medicinal plants with hormonal and antihormonal-like effect]. Arzneimittelforschung 1970, 20, 705–713. [Google Scholar] [PubMed]
- Wang, X.; Li, W.; Ma, X.-H.; Yan, K.; Chu, Y.; Han, M.; Li, S.; Zhang, H.; Zhou, S.; Zhu, Y.; et al. Identification of a major metabolite of danshensu in rat urine and simultaneous determination of danshensu and its metabolite in plasma: Application to a pharmacokinetic study in rats. Drug Test. Anal. 2014, 7, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, K.; Chen, H.; He, R.; Cai, R.; Li, J.; Zhou, D.; Liu, W.; Huang, X.; Yang, R.; et al. Anti-inflammatory lignans and phenylethanoid glycosides from the root of Isodon ternifolius (D.Don) Kudô. Phytochemistry 2018, 153, 36–47. [Google Scholar] [CrossRef]
- Daquino, C.; Rescifina, A.; Spatafora, C.; Tringali, C. Biomimetic Synthesis of Natural and “Unnatural” Lignans by Oxidative Coupling of Caffeic Esters. Eur. J. Org. Chem. 2009, 6289–6300. [Google Scholar] [CrossRef]
- Balestrieri, C.; Felice, F.; Piacente, S.; Pizza, C.; Montoro, P.; Oleszek, W.; Visciano, V.; Balestrieri, M.L. Relative effects of phenolic constituents from Yucca schidigera Roezl. bark on Kaposi’s sarcoma cell proliferation, migration, and PAF synthesis. Biochem. Pharmacol. 2006, 71, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.-M.; Lo, C.-P.; Chen, Y.-P.; Wang, S.-Y.; Yang, N.-S.; Kuo, Y.-H.; Shyur, L.-F. Ethyl caffeate suppresses NF-kappaB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br. J. Pharmacol. 2005, 146, 352–363. [Google Scholar] [CrossRef] [Green Version]
- Bedane, K.G.; Zuhlke, S.; Spiteller, M. Bioactive constituents of Lobostemon fruticosus: Anti-inflammatory properties and quantitative analysis of samples from different places in South Africa. S. Afr. J. Bot. 2020, 131, 174–180. [Google Scholar] [CrossRef]
- Hoeth, M.; Niederleithner, H.; Hofer-Warbinek, R.; Bilban, M.; Mayer, H.; Resch, U.; Lemberger, C.; Wagner, O.; Hofer, E.; Petzelbauer, P.; et al. The Transcription Factor SOX18 Regulates the Expression of Matrix Metalloproteinase 7 and Guidance Molecules in Human Endothelial Cells. PLoS ONE 2012, 7, e30982. [Google Scholar] [CrossRef]
N° | Rt | [M-H]− | [M+H]+ | Molecular Formula | Δ ppm | MS/MS | Identity |
---|---|---|---|---|---|---|---|
1 | 1.54 | 157.0362 | C4H6O3N4 | 3.8 | 140.01/114.03/97.00 | allantoin | |
2 | 2.42 | 299.0764 | C13H16O8 | 0.9 | 137.02 | p-hydroxybenzoic acid glucoside | |
3 | 3.17 | - | 127.0388 | C6H6O3 | 1 | - | 5-hydroxymethyl-2-furfural |
4 | 5.25 | 153.0196 | C7H6O4 | 0.5 | - | protocatechuic acid | |
5 | 6.79 | 137.0247 | C7H6O3 | 0.8 | - | protocatechuic aldehyde | |
6 | 8.07 | 137.0245 | C7H6O3 | 0.8 | 93.03 | p-hydroxybenzoic acid | |
7 | 10.88 | 179.0343 | C9H8O4 | 2.3 | - | caffeic acid | |
8 | 13.41 | 537.1033 | C27H22O12 | 1.08 | 339.05/493.10 | globoidnan B | |
9 | 13.60 | 367.1384 | C18H24O8 | 2.6 | 205.09 | malaxinic acid | |
10 | 14.21 | 311.0547 | C17H12O6 | −0.85 | 267.06/108.90 | 3-carboxy-6,7-dihydroxy-1-(3′,4′-dihydroxyphenyl)-naphthalene | |
11 | 15.06 | 717.1449 | C36H30O16 | −0.15 | 519.09/475.10/339.05 | (+)-rabdosiin | |
12 | 15.28 | 359.0764 | C18H16O8 | 0.6 | 161.02 | rosmarinic acid | |
13 | 15.65 | 197.0448 | C9H10O5 | 1.7 | 179.03 | α-hydroxyhydrocaffeic acid | |
14 | 19.21 | 491.0974 | C26H20O10 | 0.2 | 311.05/267.06/197.85 | globoidnan A | |
15 | 20.27 | 381.0601 | C20H14O8 | −1.06 | 353.02/309.10/265.10 | comfreyn A | |
16 | 21.18 | 207.0654 | C11H12O4 | 0.1 | 179.03/135.04/161.02 | caffeic acid ethyl ester | |
17 | 22.31 | 339.0863 | C19H16O6 | 0.05 | 311.05/229.01 | ternifoliuslignan D | |
18 | 25.56 | 277.2159 | C18H30O2 | −1.28 | 233.22 | linolenic acid | |
19 | 26.08 | 279.2315 | C18H32O2 | −1.14 | 261.22 | linoleic acid | |
20 | 28.50 | 271.2263 | C16H32O3 | −1.5 | 225.22 | hydroxy-palmitic acid |
δC | δH (J in Hz) | HMBC (H→C) Correlations | |
---|---|---|---|
1 | 136.2 | - | |
2 | 113.8 | - | |
3 | 130.5 | - | |
4 | 126.6 | 7.67, s | C-1, C-2, C-4, C-4a, C-8a, C-9, C-10 |
4a | 133.6 | - | |
5 | 112.4 | 7.34, s | C-4, C-8a, C-6, C-7 |
6 | 151.3 | - | |
7 | 150.2 | - | |
8 | 111.5 | 8.30, s | C-1, C-4a, C-6, C-7 |
8a | 124.5 | - | |
9 | 172.1 | ||
10 | 162.4 | - | |
1′ | 111.5 | - | |
2′ | 144.0 | - | |
3′ | 104.5 | 6.91, s | C-1, C-1′, C-2′, C-4′, C-5′ |
4′ | 149.6 | - | |
5′ | 147.1 | - | |
6′ | 113.8 | 8.02, s | C-1, C-1, C-2′, C-4′, C-5′ |
1″ | 62.8 | 4.43, q (7.0) | C-9, C-2″ |
2″ | 14.2 | 1.41, t (7.0) | C-1″ |
Compound | EC [µM] | Max. Inhibition (%) |
---|---|---|
1 | >250 | ND |
5 | 120 | 59.1 ± 16.7 |
9 | 108 | 56.2 ± 12.1 |
12 | >250 | ND |
14 | 40 | 35.1 ± 10.1 |
15 | 50 | 51.5 ± 5.3 |
16 | 64 | 79.6 ± 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Urso, G.; Masullo, M.; Seigner, J.; Holper-Schichl, Y.M.; de Martin, R.; Plaza, A.; Piacente, S. LC–ESI–FT–MSn Metabolite Profiling of Symphytum officinale L. Roots Leads to Isolation of Comfreyn A, an Unusual Arylnaphthalene Lignan. Int. J. Mol. Sci. 2020, 21, 4671. https://doi.org/10.3390/ijms21134671
D’Urso G, Masullo M, Seigner J, Holper-Schichl YM, de Martin R, Plaza A, Piacente S. LC–ESI–FT–MSn Metabolite Profiling of Symphytum officinale L. Roots Leads to Isolation of Comfreyn A, an Unusual Arylnaphthalene Lignan. International Journal of Molecular Sciences. 2020; 21(13):4671. https://doi.org/10.3390/ijms21134671
Chicago/Turabian StyleD’Urso, Gilda, Milena Masullo, Jacqueline Seigner, Yvonne M. Holper-Schichl, Rainer de Martin, Alberto Plaza, and Sonia Piacente. 2020. "LC–ESI–FT–MSn Metabolite Profiling of Symphytum officinale L. Roots Leads to Isolation of Comfreyn A, an Unusual Arylnaphthalene Lignan" International Journal of Molecular Sciences 21, no. 13: 4671. https://doi.org/10.3390/ijms21134671
APA StyleD’Urso, G., Masullo, M., Seigner, J., Holper-Schichl, Y. M., de Martin, R., Plaza, A., & Piacente, S. (2020). LC–ESI–FT–MSn Metabolite Profiling of Symphytum officinale L. Roots Leads to Isolation of Comfreyn A, an Unusual Arylnaphthalene Lignan. International Journal of Molecular Sciences, 21(13), 4671. https://doi.org/10.3390/ijms21134671