Epigenetic Regulation of Gfi1 in Endocrine-Related Cancers: A Role Regulating Tumor Growth
Abstract
:1. Introduction
2. Results
2.1. Gfi1 Is Hypermethylated in Prostate and Breast Cancer Cell Lines
2.2. Gfi1 Re-Expression Genes Decreases Cell and Tumor Growth and Reduces the Expression of Target
2.3. Gfi1 Methylation and Expression in Primary Tumors
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Tumor Samples
4.2. DNA Extraction
4.3. DNA Methylation Analysis
4.4. mRNA and Protein Analysis
4.5. Gfi1 Transfection
4.6. Cell Viability, Cell Proliferation, Colony Formation Assay and Mouse Xenograft Model
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Maximov, P.Y.; Abderrahman, B.; Curpan, R.F.; Hawsawi, Y.M.; Fan, P.; Jordan, V.C. A unifying biology of sex steroid-induced apoptosis in prostate and breast cancers. Endocr. Relat. Cancer 2018, 25, R83–R113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ZweidlerMcKay, P.A.; Grimes, H.L.; Flubacher, M.M.; Tsichlis, P.N. Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. Mol. Cell Biol. 1996, 16, 4024–4034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yucel, R.; Karsunky, H.; Klein-Hitpass, L.; Moroy, T. The transcriptional repressor Gfi1 affects development of early, uncommitted c-Kit+ T cell progenitors and CD4/CD8 lineage decision in the thymus. J. Exp. Med. 2003, 197, 831–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Person, R.E.; Li, F.Q.; Duan, Z.; Benson, K.F.; Wechsler, J.; Papadaki, H.A.; Eliopoulos, G.; Kaufman, C.; Bertolone, S.J.; Nakamoto, B.; et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat. Genet. 2003, 34, 308–312. [Google Scholar] [CrossRef] [Green Version]
- Hock, H.; Hamblen, M.J.; Rooke, H.M.; Schindler, J.W.; Saleque, S.; Fujiwara, Y.; Orkin, S.H. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 2004, 431, 1002–1007. [Google Scholar] [CrossRef]
- Zeng, H.; Yucel, R.; Kosan, C.; Klein-Hitpass, L.; Moroy, T. Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J. 2004, 23, 4116–4125. [Google Scholar] [CrossRef]
- Wallis, D.; Hamblen, M.; Zhou, Y.; Venken, K.J.T.; Schumacher, A.; Grimes, H.L.; Zoghbi, H.Y.; Orkin, S.H.; Bellen, H.J. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 2003, 130, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, H.; Jafar-Nejad, H.; Patel, A.J.; Sun, Y.; Chen, H.K.; Rose, M.F.; Venken, K.J.T.; Botas, J.; Orr, H.T.; Bellen, H.J.; et al. The AXH domain of Ataxin-1 mediates neurodegeneration through its interaction with Gfi-1/senseless proteins. Cell 2005, 122, 633–644. [Google Scholar] [CrossRef] [Green Version]
- Kazanjian, A.; Wallis, D.; Au, N.; Nigam, R.; Venken, K.J.T.; Cagle, P.T.; Dickey, B.F.; Bellen, H.J.; Gilks, C.B.; Grimes, H.L. Growth factor independence-1 is expressed in primary human neuroendocrine lung carcinomas and mediates the differentiation of murine pulmonary neuroendocrine cells. Cancer Res. 2004, 64, 6874–6882. [Google Scholar] [CrossRef] [Green Version]
- Shroyer, N.F.; Wallis, D.; Venken, K.J.; Bellen, H.J.; Zoghbi, H.Y. Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev. 2005, 19, 2412–2417. [Google Scholar] [CrossRef] [Green Version]
- Bjerknes, M.; Cheng, H. Cell Lineage metastability in Gfi1-deficient mouse intestinal epithelium. Dev. Biol. 2010, 345, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Khandanpour, C.; Thiede, C.; Valk, P.J.M.; Sharif-Askari, E.; Nuckel, H.; Lohmann, D.; Horsthemke, B.; Siffert, W.; Neubauer, A.; Grzeschik, K.H.; et al. A variant allele of Growth Factor Independence 1 (GFI1) is associated with acute myeloid leukemia. Blood 2010, 115, 2462–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassen, L.; Khandanpour, C.; Ebeling, P.; van der Reijden, B.A.; Jansen, J.H.; Mahlmann, S.; Duhrsen, U.; Moroy, T. Growth factor independent 1b (Gfi1b) and a new splice variant of Gfi1b are highly expressed in patients with acute and chronic leukemia. Int. J. Hematol. 2009, 89, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Doan, L.L.; Kitay, M.K.; Yu, Q.; Singer, A.; Herblot, S.; Hoang, T.; Bear, S.E.; Morse, H.C., 3rd; Tsichlis, P.N.; Grimes, H.L. Growth factor independence-1B expression leads to defects in T cell activation, IL-7 receptor alpha expression, and T cell lineage commitment. J. Immunol. 2003, 170, 2356–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, T.; Karsunky, H.; Gau, E.; Zevnik, B.; Elsasser, H.P.; Moroy, T. Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis. Oncogene 1998, 17, 2661–2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazanjian, A.; Gross, E.A.; Grimes, H.L. The growth factor independence-1 transcription factor: New functions and new insights. Crit. Rev. Oncol. Hematol. 2006, 59, 85–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, W.; Xiao, Y.; Lu, X.; Zhu, H.; He, X.; Huang, W.; Lopez, E.S.; Wong, J.; Ju, H.; Tian, L.; et al. GFI1 downregulation promotes inflammation-linked metastasis of colorectal cancer. Cell Death Differ. 2017, 24, 929–943. [Google Scholar] [CrossRef] [Green Version]
- Ashour, N.; Angulo, J.C.; Andres, G.; Alelu, R.; Gonzalez-Corpas, A.; Toledo, M.V.; Rodriguez-Barbero, J.M.; Lopez, J.I.; Sanchez-Chapado, M.; Ropero, S. A DNA hypermethylation profile reveals new potential biomarkers for prostate cancer diagnosis and prognosis. Prostate 2014, 74, 1171–1182. [Google Scholar] [CrossRef]
- Rau, K.M.; Kang, H.Y.; Cha, T.L.; Miller, S.A.; Hung, M.C. The mechanisms and managements of hormone-therapy resistance in breast and prostate cancers. Endocr. Relat. Cancer 2005, 12, 511–532. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.S.; Lo, Y.H.; Chen, X.; Williams, C.S.; Donnelly, J.M.; Criss, Z.K., 2nd; Patel, S.; Butkus, J.M.; Dubrulle, J.; Finegold, M.J.; et al. Growth Factor-Independent 1 Is a Tumor Suppressor Gene in Colorectal Cancer. Mol. Cancer Res. 2019, 17, 697–708. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Horwitz, M. Targets of the transcriptional repressor oncoprotein Gfi-1. Proc. Natl. Acad. Sci. USA 2003, 100, 5932–5937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilks, C.B.; Bear, S.E.; Grimes, H.L.; Tsichlis, P.N. Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein. Mol. Cell Biol. 1993, 13, 1759–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boztug, K.; Klein, C. Novel genetic etiologies of severe congenital neutropenia. Curr. Opin. Immunol. 2009, 21, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Soliera, A.R.; Mariani, S.A.; Audia, A.; Lidonnici, M.R.; Addya, S.; Ferrari-Amorotti, G.; Cattelani, S.; Manzotti, G.; Fragliasso, V.; Peterson, L.; et al. Gfi-1 inhibits proliferation and colony formation of p210BCR/ABL-expressing cells via transcriptional repression of STAT 5 and Mcl-1. Leukemia 2012, 26, 1555–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Z.; Person, R.E.; Lee, H.H.; Huang, S.; Donadieu, J.; Badolato, R.; Grimes, H.L.; Papayannopoulou, T.; Horwitz, M.S. Epigenetic regulation of protein-coding and microRNA genes by the Gfi1-interacting tumor suppressor PRDM5. Mol. Cell Biol. 2007, 27, 6889–6902. [Google Scholar]
- Shu, X.S.; Geng, H.; Li, L.L.; Ying, J.M.; Ma, C.H.; Wang, Y.J.; Poon, F.F.; Wang, X.; Ying, Y.; Yeo, W.; et al. The Epigenetic Modifier PRDM5 Functions as a Tumor Suppressor through Modulating WNT/beta-Catenin Signaling and Is Frequently Silenced in Multiple Tumors. PLoS ONE 2011, 6, e27346. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Manning, J.; Spendlove, H.E.; Kremmidiotis, G.; McKirdy, R.; Lee, J.; Millband, D.N.; Cheney, K.M.; Stampfer, M.R.; Dwivedi, P.P.; et al. ZNF652, a novel zinc finger protein, interacts with the putative breast tumor suppressor CBFA2T3 to repress transcription. Mol. Cancer Res. 2006, 4, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Chawla, R.K.; Lawson, D.H.; Sarma, P.R.; Nixon, D.W.; Travis, J. Serum alpha-1 proteinase inhibitor in advanced cancer: Mass variants and functionally inert forms. Cancer Res. 1987, 47, 1179–1184. [Google Scholar]
- Tountas, Y.; Sparos, L.; Theodoropoulos, C.; Trichopoulos, D. Alpha 1-antitrypsin and cancer of the pancreas. Digestion 1985, 31, 37–40. [Google Scholar] [CrossRef]
- El-Akawi, Z.J.; Al-Hindawi, F.K.; Bashir, N.A. Alpha-1 antitrypsin (alpha1-AT) plasma levels in lung, prostate and breast cancer patients. Neuro Endocrinol. Lett. 2008, 29, 482–484. [Google Scholar]
- El-Akawi, Z.J.; Abu-Awad, A.M.; Sharara, A.M.; Khader, Y. The importance of alpha-1 antitrypsin (alpha1-AT) and neopterin serum levels in the evaluation of non-small cell lung and prostate cancer patients. Neuro Endocrinol. Lett. 2010, 31, 113–116. [Google Scholar]
- Zelvyte, I.; Lindgren, S.; Janciauskiene, S. Multiple effects of alpha1-antitrypsin on breast carcinoma MDA-MB 468 cell growth and invasiveness. Eur. J. Cancer Prev. 2003, 12, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Finlay, T.H.; Tamir, S.; Kadner, S.S.; Cruz, M.R.; Yavelow, J.; Levitz, M. alpha 1-Antitrypsin- and anchorage-independent growth of MCF-7 breast cancer cells. Endocrinology 1993, 133, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Brawer, M.K.; Ferreri, L.F.; Bankson, D.D. Long-term stability of alpha-1-antichymotrypsin complexed form of prostate specific antigen. Prostate Cancer Prostatic Dis. 2000, 3, 191–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A.; Grading Committee. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Sur. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- Angulo, J.C.; Andrés, G.; Ashour, N.; Sánchez-Chapado, M.; López, J.I.; Ropero, S. Development of Castration Resistant Prostate Cancer can be Predicted by a DNA Hypermethylation Profile. J. Urol. 2016, 195, 619–626. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashour, N.; Angulo, J.C.; González-Corpas, A.; Orea, M.J.; Lobo, M.V.T.; Colomer, R.; Colás, B.; Esteller, M.; Ropero, S. Epigenetic Regulation of Gfi1 in Endocrine-Related Cancers: A Role Regulating Tumor Growth. Int. J. Mol. Sci. 2020, 21, 4687. https://doi.org/10.3390/ijms21134687
Ashour N, Angulo JC, González-Corpas A, Orea MJ, Lobo MVT, Colomer R, Colás B, Esteller M, Ropero S. Epigenetic Regulation of Gfi1 in Endocrine-Related Cancers: A Role Regulating Tumor Growth. International Journal of Molecular Sciences. 2020; 21(13):4687. https://doi.org/10.3390/ijms21134687
Chicago/Turabian StyleAshour, Nadia, Javier C. Angulo, Ana González-Corpas, María J. Orea, María V. T. Lobo, Ramón Colomer, Begoña Colás, Manel Esteller, and Santiago Ropero. 2020. "Epigenetic Regulation of Gfi1 in Endocrine-Related Cancers: A Role Regulating Tumor Growth" International Journal of Molecular Sciences 21, no. 13: 4687. https://doi.org/10.3390/ijms21134687
APA StyleAshour, N., Angulo, J. C., González-Corpas, A., Orea, M. J., Lobo, M. V. T., Colomer, R., Colás, B., Esteller, M., & Ropero, S. (2020). Epigenetic Regulation of Gfi1 in Endocrine-Related Cancers: A Role Regulating Tumor Growth. International Journal of Molecular Sciences, 21(13), 4687. https://doi.org/10.3390/ijms21134687