Detection of Genomic Regions Associated with Resistance to Stem Rust in Russian Spring Wheat Varieties and Breeding Germplasm
Abstract
:1. Introduction
2. Results
2.1. Phenotyping
2.2. Genetic Population Structure
2.3. Marker-Trait Association Study
3. Discussion
4. Materials and Methods
4.1. Plant Material and Phenotyping
4.2. Genotyping and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
GWAS | Genome-wide association study |
ILs | Introgression lines |
MAS | Marker assisted selection |
MLM | Mixed linear model |
MTA | Marker trait association |
Pgt | Puccinia graminis f. sp. tritici |
QTL | Quantitative trait locus |
SR | severity rating |
SNP | Single-nucleotide polymorphism |
Sr gene | Stem rust resistance gene |
References
- Roelfs, A.P.; Singh, R.P.; Saari, E.E. Rust Diseases of Wheat: Concepts and Methods of Disease Management; CIMMYT: Mexico city, Mexico, 1992. [Google Scholar]
- Park, R.L. Stem rust of wheat in Australia. Aust. J. Agric. Res. 2007, 58, 558–566. [Google Scholar] [CrossRef]
- Kolmer, J. Genetics of resistance to wheat leaf rust. Annu. Rev. Phytopathol. 1996, 34, 435–455. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.L.; Long, D.L. The campaign to eradicate the common barberry in the United States. In Stem Rust of Wheat: From Ancient Enemy to Modern Foe; Peterson, P.D., Ed.; APS Press: St. Paul, MN, USA, 2001; pp. 16–50. ISBN 0890542716. [Google Scholar]
- Saunders, D.G.O.; Pretorius, Z.A.; Hovmøller, M.S. Tackling the re-emergence of wheat stem rust in Western Europe. Commun. Biol. 2019, 2, 51. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Jin, Y.; Njau, P.; Wanyera, R.; Herrera-Foessel, S.A.; Ward, R.W. Will stem rust destroy the world’s wheat crop. Adv. Agron. 2008, 98, 272–309. [Google Scholar] [CrossRef]
- Wanyera, R.; Kinyua, M.G.; Jin, Y.; Singh, R. The spread of stem rust caused by Puccinia graminis f. sp. tritici with virulence on Sr31 in wheat in Eastern Africa. Plant Dis. 2006, 90, 113. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Jin, Y.; Bhavani, S.; Njau, P.; Herrera-Foessel, S.; Singh, P.K.; Singh, S.; Govindan, V. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 2011, 49, 465–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.P.; Hodson, D.P.; Jin, Y.; Lagudah, E.S.; Ayliffe, M.A.; Bhavani, S.; Rouse, M.N.; Pretorius, Z.A.; Szabo, L.J.; Huerta-Espino, J.; et al. Emergence and spread of new races of wheat stem rust fungus: Continued threat to food security and prospects of genetic control. Phytopathology 2015, 105, 872–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skolotneva, E.S.; Lekomtseva, S.N.; Kosman, E. The wheat stem rust pathogen in the central region of the Russian Federation. Plant Pathol. 2013, 62, 1003–1010. [Google Scholar] [CrossRef]
- Volkova, G.V.; Kudinova, O.A.; Miroshnichenko, O.O. Spread of stem rust in the North Caucasus and immunological characteristic of some winter wheat varieties with respect to the pathogen. Achiev. Sci. Technol. AIC 2018, 32, 43–45. [Google Scholar] [CrossRef]
- Shamanin, V.P.; Pototskaya, I.V.; Shepelev, S.S.; Pozherukova, V.E.; Salina, Е.А.; Skolotneva, Е.S.; Hodson, D.; Hovmøller, M.; Patpour, M.; Morgounov, A.I. Stem rust in Western Siberia—race composition and effective resistance genes. Vavilov J. Genet. Breed. 2020, 24, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Lekomtseva, S.N.; Volkova, V.T.; Zaitseva, L.G.; Skolotneva, E.S.; Chaika, M.N. Analysis of virulence Puccinia graminis f. sp. tritici collected from different plant-host. Mikol. Fitopatol. 2007, 41, 554–563. [Google Scholar]
- Vasilova, N.Z.; Askhadullin, D.-L.F.; Ashadullin, D.-R.F.; Bagavieva, E.Z.; Tazutdinova, M.R. Achieving the breeding of spring soft wheat in Tatarstan. Legumes Groat Crops. 2019, 2, 124–131. [Google Scholar] [CrossRef]
- Lapochkina, I.F.; Baranova, O.A.; Shamanin, V.P.; Volkova, G.V.; Gainullin, N.R.; Anisimova, A.V.; Galinger, D.N.; Lazareva, E.N.; Gladkova, E.V.; Vaganova, O.F. The development of initial material of spring common wheat for breeding for resistance to stem rust (Puccinia graminis Pers. f. sp. tritici) including race Ug99, in Russia. Vavilov J. Genet. Breed. 2016, 20, 320–328. [Google Scholar] [CrossRef]
- Maltseva, L.T.; Filippova, Е.A.; Bannikova, N.Y.; Berdyugin, V.A. The role of the initial material in breeding of the spring soft wheat varieties resistant to rust in Zauralye. Grain Econ. Russ. 2018, 5, 67–72. [Google Scholar] [CrossRef]
- Rsaliyev, A.S.; Rsaliyev, S.S. Principal approaches and achievements in studying race composition of wheat stem rust. Vavilov J. Genet. Breed. 2018, 22, 967–977. [Google Scholar] [CrossRef]
- Skolotneva, Е.S.; Kelbin, V.N.; Morgunov, А.I.; Boiko, N.I.; Shamanin, V.P.; Salina, E.A. Races composition of the Novosibirsk population of Puccinia graminis f. sp. tritici. Mikol. Fitopatol. 2020, 54, 49–58. [Google Scholar] [CrossRef]
- McIntosh, R.A.; Yamazaki, Y.; Dubcovsky, J.; Rogers, W.J.; Morris, C.; Appel, S.; Xia, X.C. Catalogue of Gene Symbols for Wheat. 2013. Supplements 2014–2017. Available online: http://shigen.nig.ac.jp/wheat/komugi/genes/ (accessed on 16 June 2020).
- Rouse, M.N.; Wanyera, R.; Njau, P.; Jin, Y. Sources of resistance to stem rust race Ug99 in spring wheat germplasm. Plant Dis. 2011, 95, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Kimani, N.C.; Onguso, J.; Njau, P. Screening of Kenyan bread wheat varieties for resistance to the emerging strains of stem rust fungi (Puccinia graminis f. sp. tritici) race Ug99. World J. Agricult. Res. 2015, 3, 5–10. [Google Scholar] [CrossRef]
- Baranova, O.A.; Sibikeev, S.N.; Druzhin, A.E. Molecular identification of the stem rust resistance genes in the introgression lines of spring bread wheat. Vavilov J. Genet. Breed. 2019, 23, 296–303. [Google Scholar] [CrossRef]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [Green Version]
- The Triticeae Tollbox. Available online: https://triticeaetoolbox.org/ (accessed on 3 June 2020).
- Gerard, G.S.; Börner, A.; Lohwasser, U.; Simón, M.R. Genome-wide association mapping of genetic factors controlling Septoria tritici blotch resistance and their association with plant height and heading date in wheat. Euphytica 2017, 213, 27–41. [Google Scholar] [CrossRef]
- Kankwatsa, P.; Singh, D.; Thomson, P.C.; Bonman, J.M.; Newcomb, M.; Park, R.K. Characterization and genome-wide association mapping of resistance to leaf rust, stem rust and stripe rust in a geographically diverse collection of spring wheat landraces. Mol. Breed. 2017, 37, 113–136. [Google Scholar] [CrossRef]
- Winfield, M.O.; Allen, A.M.; Wilkinson, P.A.; Burridge, A.J.; Barker, G.L.A.; Coghill, J.; Waterfall, C.; Wingen, L.U.; Griffiths, S.; Edwards, K.J. High-density genotyping of the A.E. Watkins Collection of hexaploid landraces identifies a large molecular diversity compared to elite bread wheat. Plant. Biotechnol. J. 2018, 16, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Wen, W.; Liu, J.; Zhang, Y.; Cao, S.; He, Z.; Rasheed, A.; Jin, H.; Zhang, C.; Yan, J.; et al. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biol. 2019, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Turner, M.K.; Chao, S.; Kolmer, J.; Anderson, J.A. Genome wide association study of seedling and adult plant leaf rust resistance in elite spring wheat breeding lines. PLoS ONE 2016, 11, e0148671. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.K.; Kolmer, J.A.; Pumphrey, M.O.; Bulli, P.; Chao, S.; Anderson, J.A. Association mapping of leaf rust resistance loci in a spring wheat core collection. Theor. Appl. Genet. 2017, 130, 345–361. [Google Scholar] [CrossRef]
- Bajgain, P.; Rouse, M.N.; Bulli, P.; Bhavani, S.; Gordon, T.; Wanyera, R.; Njau, P.N.; Legesse, W.; Anderson, J.A.; Pumphrey, M.O. Association mapping of North American spring wheat breeding germplasm reveals loci conferring resistance to Ug99 and other African stem rust races. BMC Plant Biol. 2015, 15, 249. [Google Scholar] [CrossRef]
- Pasam, R.K.; Bansal, U.; Daetwyler, H.D.; Forrest, K.L.; Wong, D.; Petkowski, J.; Willey, N.; Randhawa, M.; Chhetri, M.; Miah, H.; et al. Detection and validation of genomic regions associated with resistance to rust diseases in a worldwide hexaploid wheat landrace collection using BayesR and mixed linear model approaches. Theor. Appl. Genet. 2017, 130, 777–793. [Google Scholar] [CrossRef]
- Edae, E.A.; Pumphrey, M.O.; Rouse, M.N. A genome-wide association study of field and seedling response to individual stem rust pathogen races reveals combinations of race-specific genes in North American spring wheat. Front. Plant Sci. 2018, 9, 52. [Google Scholar] [CrossRef]
- Salina, E.A.; Adonina, I.G.; Badaeva, E.D.; Kroupin, P.Y.; Stasuyk, A.I.; Leonova, I.N.; Shishkina, A.A.; Divashuk, M.G.; Starikova, E.V.; Khuat, T.M.L.; et al. Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica 2015, 204, 91–101. [Google Scholar] [CrossRef]
- Leonova, I.N. Genome-wide association study of powdery mildew resistance in Russian spring wheat (T. aestivum L.) varieties. Rus. J. Genet. 2019, 55, 1360–1374. [Google Scholar] [CrossRef]
- McIntosh, R.A.; Dyck, P.L.; Green, G.J. Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Aust. J. Agric. Res. 1977, 28, 37–45. [Google Scholar] [CrossRef]
- Morgounov, A.; Ablova, I.; Babayants, O.; Babayants, L.; Bespalova, L.; Khudokormov, Z.; Litvinenko, N.; Shamanin, V.; Syukov, V. Genetic protection of wheat from rusts and development of resistant varieties in Russia and Ukraine. Euphytica 2011, 179, 297–311. [Google Scholar] [CrossRef]
- Tsilo, T.J.; Jin, Y.; Anderson, J.A. Diagnostic microsatellite markers for the detection of stem rust resistance gene Sr36 in diverse genetic backgrounds of wheat. Crop. Sci. 2008, 48, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Szabo, L.J.; Rouse, M.N.; Fetch, T., Jr.; Pretorius, Z.A.; Wanyera, R.; Njau, P. Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Dis. 2009, 93, 367–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purnhauser, L.; Bóna, L.; Láng, L. Identification of Sr31 and Sr36 stem rust resistance genes in wheat cultivars registered in Hungary. Cereal Res. Commun. 2011, 39, 53–66. [Google Scholar] [CrossRef]
- Bansal, U.; Bariana, H.; Wong, D.; Randhawa, M.; Wicker, T.; Hayden, M.; Keller, B. Molecular mapping of an adult plant stem rust resistance gene Sr56 in winter wheat cultivar Arina. Theor. Appl. Genet. 2014, 127, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Bansal, U.K.; Muhammad, S.; Forrest, K.L.; Hayden, M.J.; Bariana, H.S. Mapping of a new stem rust resistance gene Sr49 in chromosome 5B of wheat. Theor. Appl. Genet. 2015, 28, 2113–2119. [Google Scholar] [CrossRef]
- Leonova, I.N.; Budashkina, E.B.; Flath, K.; Weidner, A.; Börner, A.; Röder, M.S. Microsatellite mapping of a leaf rust resistance gene transferred to common wheat from Triticum timopheevii. Cereal Res. Commun. 2010, 38, 211–219. [Google Scholar] [CrossRef]
- Yu, L.X.; Lorenz, A.; Rutkoski, J.; Singh, R.P.; Bhavani, S.; Huerta-Espino, J.; Sorrells, M.E. Association mapping and gene-gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theor. Appl. Genet. 2011, 123, 1257–1268. [Google Scholar] [CrossRef]
- Letta, T.; Maccaferri, M.; Badebo, A.; Ammar, K.; Ricci, A.; Crossa, J.; Tuberosa, R. Searching for novel sources of field resistance to Ug99 and Ethiopian stem rust races in durum wheat via association mapping. Theor. Appl. Genet. 2013, 126, 1237–1256. [Google Scholar] [CrossRef]
- Bansal, U.K.; Bossolini, E.; Miah, H.; Keller, B.; Park, R.F.; Bariana, H.S. Genetic mapping of seedling and adult plant stem rust resistance in two European winter wheat cultivars. Euphytica 2008, 164, 821–828. [Google Scholar] [CrossRef]
- Yu, L.X.; Chao, S.; Singh, R.P.; Sorrells, M.E. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat. PLoS ONE 2017, 12, e0171963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spielmeyer, W.; Sharp, P.J.; Lagudah, E.S. Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop. Sci. 2003, 43, 333–336. [Google Scholar] [CrossRef]
- Chen, S.; Rouse, M.N.; Zhang, W.; Jin, Y.; Akhunov, E.; Wei, Y.; Dubcovsky, J. Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group. Theor. Appl. Genet. 2015, 128, 645–656. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.N. The inheritance and expression of leaf chlorosis associated with gene Sr2 for adult plant resistance to wheat stem rust. Euphytica 1997, 95, 67–71. [Google Scholar] [CrossRef]
- Orlovskaya, O.A.; Koren, L.V.; Khotyleva, L.V. Cytological characteristic of wheat hybrids produced by remote hybridization in the Triticeae tribe. Proc. Natl. Acad. Sci. Belarus 2010, 4, 50–54. [Google Scholar]
- Leonova, I.N.; Budashkina, E.B.; Kalinina, N.P.; Röder, M.S.; Börner, A.; Salina, E.A. Triticum aestivum x Triticum timopheevii introgression lines as a source of pathogen resistance genes. Czech J. Genet. Plant Breed. 2011, 47, S49–S55. [Google Scholar] [CrossRef] [Green Version]
- Peterson, R.F.; Campbell, A.B.; Hannah, A.E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res. 1948, 26, 496–500. [Google Scholar] [CrossRef]
- Kiseleva, A.A.; Shcherban, A.B.; Leonova, I.N.; Frenkel, Z.; Salina, E.A. Identification of new heading date determinants in wheat 5B chromosome. BMC Plant Biol. 2016, 16, 8. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [Green Version]
DF | SS | MS | F value | p | |
---|---|---|---|---|---|
Genotype | 159 | 491.447 | 3.110 | 2.846 | 0.000000 |
Environment | 2 | 23.258 | 11.629 | 10.639 | 0.000034 |
Error | 318 | 345.409 | 1.093 |
SNP Marker | Chr * | Allele | Distance * | p | R2 | Genotype |
---|---|---|---|---|---|---|
GENE-0262_431 | 1A | A/G | 104.145 | 3.67 × 10−4 | 0.192 | Ustya, Omskaya-20, Priirtyshskaya-86, Pitic-62, Rybinskaya-127, Katyusha, Tarskaya-6, Tertsiya |
RAC875_c6798_467 | G/A | 104.145 | 1.15 × 10−3 | 0.164 | ||
Tdurum_contig29484_628 | C/T | 43.27 | 2.37 × 10−3 | 0.129 | ||
wsnp_Ex_c31900_40635609 | 2A | C/A | 103.62 | 1.69 × 10−3 | 0.152 | ILs (821, 832, 837, 842, 157, 38, 67, 94, 140, 199, 676, 25-2, 34-1, 15-7), T. timopheevii, T. kiharae, T. dicoccoides |
GENE-2352_964 | G/A | 122.82 | 1.88 × 10−3 | 0.150 | ILs (206-2, 213-1, 226-7, 25-2, 34-1, 16-5), Pitic-62, T. kiharae | |
wsnp_Ex_c20169_29215401 | 2B | A/C | nd | 9.24 × 10−4 | 0.158 | ILs (T. aestivum/T. timopheevii, 25-2), T. timopheevii, T. kiharae |
tplb0034e07_1869 | C/T | 19.15 | 2.81 × 10−3 | 0.201 | ||
Excalibur_rep_c107769_116 | A/G | 20.16 | 1.63 × 10−3 | 0.168 | ||
Kukri_c46621_143 | T/C | 88.86 | 2.62 × 10−4 | 0.245 | ||
Excalibur_c3506_610 | T/C | 114.81 | 1.83 × 10−3 | 0.217 | ||
wsnp_Ex_c20169_29215401 | C/A | nd | 1.08 × 10−3 | 0.238 | ||
Excalibur_c47996_509 | A/G | 159.65 | 1.13 × 10−3 | 0.201 | ||
Tdurum_contig30201_63 | G/T | 157.21 | 3.43 × 10−3 | 0.159 | ||
Kukri_c900_1334 | T/C | 173.35 | 2.63 × 10−3 | 0.169 | ||
BobWhite_c7281_328 | 3B | C/T | 80.12 | 1.87 × 10−3 | 0.143 | Tulaikovskaya-1, Lutescens-85, Lutescens-148, Altaiskaya-530, Erythrospermum-72, Novosibirskaya-22, Lutescens-25, Obskaya-14, Krasa-2, Rybinskaya-127, Pitic-62, ILs (213-1, 221-1, 34-1, 16-5) |
IAAV3924 | C/T | 34.61 | 3.27 × 10−3 | 0.187 | ||
Ra_c14657_919 | 5A | A/G | nd | 1.12 × 10−3 | 0.201 | Rybinskaya-127, Pitic-62, ILs (221-1, 16-5), T. dicoccoides |
BS00059098_51 | C/A | 92.60 | 2.63 × 10−3 | 0.193 | ||
BS00100510_51 | G/T | 93.75 | 3.23 × 10−3 | 0.196 | ||
IAAV1650 | A/G | 89.56 | 4.61 × 10−3 | 0.149 | ||
CAP8_c2277_179 | 5B | T/C | 182.14 | 8.77 × 10−6 | 0.298 | ILs (Saratovskaya-29/T. timopheevi, Skala/T. timopheevii, Novosibirskaya-67/T. timopheevii, 34-1, 25-2), T. timopheevii, T. kiharae |
wsnp_Ex_c9362_15546626 | G/A | 189.51 | 2.24 × 10−5 | 0.245 | ||
Tdurum_contig10100_523 | G/A | 184.39 | 4.43 × 10−5 | 0.231 | ||
wsnp_Ra_c47696_53184502 | A/G | 117.85 | 6.49 × 10−4 | 0.200 | ||
BobWhite_c14409_206 | T/C | 196.08 | 7.11 × 10−4 | 0.209 | ||
wsnp_Ra_c5346_9501281 | 6A | T/C | 121.61 | 7.02 × 10−4 | 0.203 | Tulaikovskaya-zolotistaya, Tulaikovskaya-10, Lutescens-101 |
Tdurum_contig75595_586 | G/A | 41.46 | 1.01 × 10−3 | 0.174 | Tulaikovskaya-zolotistaya, Tulaikovskaya-10, Kinelskaya-60, Volgouralskaya, Lutescens-101 | |
Excalibur_rep_c99143_422 | 6D | C/A | 22.96 | 2.36 × 10−3 | 0.156 | |
Ra_c8394_1381 | 7A | A/G | 136.43 | 6.86 × 10−5 | 0.129 | Tulaikovskaya-belozernaya, Kinelskaya-60, Volgouralskaya, Erythrospermum-72, Albidum-73, Srada-Sibiri |
BS00070538_51 | T/C | 126.4 | 2.78 × 10−4 | 0.192 | ||
wsnp_Ex_rep_c71217_70021470 | C/A | 130.27 | 9.79 × 10−4 | 0.124 | ||
wsnp_Ex_c916_1767286 | C/T | 211.00 | 9.38 × 10−4 | 0.168 | ||
wsnp_RFL_Contig4236_4881643 | 7B | G/A | 90.36 | 2.69 × 10−3 | 0.191 | Altaiskii-prostor, Obskaya-14, Polushko, Baganskaya-93, Rybinskaya-127, Salimovka, Nostalgiya, Ustya, Zlatozara, Obskaya-2 |
wsnp_Ex_c758_1488368 | C/T | 91.02 | 2.85 × 10−3 | 0.189 | ||
Kukri_c12822_132 | G/A | 76.3 | 4.72 × 10−3 | 0.114 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonova, I.N.; Skolotneva, E.S.; Orlova, E.A.; Orlovskaya, O.A.; Salina, E.A. Detection of Genomic Regions Associated with Resistance to Stem Rust in Russian Spring Wheat Varieties and Breeding Germplasm. Int. J. Mol. Sci. 2020, 21, 4706. https://doi.org/10.3390/ijms21134706
Leonova IN, Skolotneva ES, Orlova EA, Orlovskaya OA, Salina EA. Detection of Genomic Regions Associated with Resistance to Stem Rust in Russian Spring Wheat Varieties and Breeding Germplasm. International Journal of Molecular Sciences. 2020; 21(13):4706. https://doi.org/10.3390/ijms21134706
Chicago/Turabian StyleLeonova, Irina N., Ekaterina S. Skolotneva, Elena A. Orlova, Olga A. Orlovskaya, and Elena A. Salina. 2020. "Detection of Genomic Regions Associated with Resistance to Stem Rust in Russian Spring Wheat Varieties and Breeding Germplasm" International Journal of Molecular Sciences 21, no. 13: 4706. https://doi.org/10.3390/ijms21134706
APA StyleLeonova, I. N., Skolotneva, E. S., Orlova, E. A., Orlovskaya, O. A., & Salina, E. A. (2020). Detection of Genomic Regions Associated with Resistance to Stem Rust in Russian Spring Wheat Varieties and Breeding Germplasm. International Journal of Molecular Sciences, 21(13), 4706. https://doi.org/10.3390/ijms21134706