Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion
Abstract
:1. Introduction
2. Plasmodium vivax and Its Main Receptor-Ligand Interaction
3. Plasmodium falciparum: A Thousand and One Invasion Routes
3.1. The Essential Interaction: PfRh5-Basigin
3.2. The Main Route: EBA-175-Glycophorin A
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
bnAb | broadly neutralizing antibody |
BSG | basigin |
CryoEM | cryogenic electron microscopy |
CyRPA | cysteine-rich protective antigen |
Cys | cysteine |
DARC | Duffy antigen receptor for chemokines |
DBL | Duffy binding-like |
DBP1 | Duffy binding protein 1 |
EBA175 | erythrocyte binding antigen 175 |
GPA | glycophorin A |
HABP | high activity binding peptide |
HARBP | high activity reticulocyte binding peptide |
IPP | protein-protein interaction |
ITC | isothermal titration calorimetry |
mAb | monoclonal antibody |
NMR | nuclear magnetic resonance |
PfRh5 | Plasmodium falciparum reticulocyte-binding protein homologue 5 |
PV | parasitophorous vacuole |
RBC | red blood cell |
RII-DBP | region II Duffy binding protein |
Ripr | Rh5-interacting protein |
SD1 | subdomain 1 |
SD2 | subdomain 2 |
SD3 | subdomain 3 |
TJ | tight junction |
TfR-1 | transferrin receptor 1 |
References
- Phillips, M.A.; Burrows, J.N.; Manyando, C.; van Huijsduijnen, R.H.; Van Voorhis, W.C.; Wells, T.N.C. Malaria. Nat. Rev. Dis. Primers 2017, 3, 17050. [Google Scholar] [CrossRef] [PubMed]
- Florens, L.; Washburn, M.P.; Raine, J.D.; Anthony, R.M.; Grainger, M.; Haynes, J.D.; Moch, J.K.; Muster, N.; Sacci, J.B.; Tabb, D.L.; et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 2002, 419, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Bozdech, Z.; Llinas, M.; Pulliam, B.L.; Wong, E.D.; Zhu, J.; DeRisi, J.L. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003, 1, E5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, L.H.; Baruch, D.I.; Marsh, K.; Doumbo, O.K. The pathogenic basis of malaria. Nature 2002, 415, 673–679. [Google Scholar] [CrossRef]
- White, N.J.; Pukrittayakamee, S.; Hien, T.T.; Faiz, M.A.; Mokuolu, O.A.; Dondorp, A.M. Malaria. Lancet 2014, 383, 723–735. [Google Scholar] [CrossRef]
- Tonkin, M.L.; Boulanger, M.J. The shear stress of host cell invasion: Exploring the role of biomolecular complexes. PLoS Pathog. 2015, 11, e1004539. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.E.; Crabb, B.S.; Gilson, P.R. Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends Parasitol. 2016, 32, 284–295. [Google Scholar] [CrossRef]
- Gaur, D.; Mayer, D.C.; Miller, L.H. Parasite ligand-host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int. J. Parasitol. 2004, 34, 1413–1429. [Google Scholar] [CrossRef]
- Rayner, J.C.; Galinski, M.R.; Ingravallo, P.; Barnwell, J.W. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc. Natl. Acad. Sci. USA 2000, 97, 9648–9653. [Google Scholar] [CrossRef] [Green Version]
- Gunalan, K.; Gao, X.; Yap, S.S.; Huang, X.; Preiser, P.R. The role of the reticulocyte-binding-like protein homologues of Plasmodium in erythrocyte sensing and invasion. Cell. Microbiol. 2013, 15, 35–44. [Google Scholar] [CrossRef]
- Gilson, P.R.; Crabb, B.S. Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int. J. Parasitol. 2009, 39, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Tham, W.H.; Healer, J.; Cowman, A.F. Erythrocyte and reticulocyte binding-like proteins of Plasmodium falciparum. Trends Parasitol. 2012, 28, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Riglar, D.T.; Richard, D.; Wilson, D.W.; Boyle, M.J.; Dekiwadia, C.; Turnbull, L.; Angrisano, F.; Marapana, D.S.; Rogers, K.L.; Whitchurch, C.B.; et al. Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 2011, 9, 9–20. [Google Scholar] [CrossRef]
- Dvorak, J.A.; Miller, L.H.; Whitehouse, W.C.; Shiroishi, T. Invasion of erythrocytes by malaria merozoites. Science 1975, 187, 748–750. [Google Scholar] [CrossRef]
- Boyle, M.J.; Richards, J.S.; Gilson, P.R.; Chai, W.; Beeson, J.G. Interactions with heparin-like molecules during erythrocyte invasion by Plasmodium falciparum merozoites. Blood 2010, 115, 4559–4568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, G.E.; Gilson, P.R.; Taechalertpaisarn, T.; Tham, W.H.; de Jong, N.W.; Harvey, K.L.; Fowkes, F.J.; Barlow, P.N.; Rayner, J.C.; Wright, G.J.; et al. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. PLoS Pathog. 2015, 11, e1004670. [Google Scholar] [CrossRef] [PubMed]
- Lopaticki, S.; Maier, A.G.; Thompson, J.; Wilson, D.W.; Tham, W.H.; Triglia, T.; Gout, A.; Speed, T.P.; Beeson, J.G.; Healer, J.; et al. Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect. Immun. 2011, 79, 1107–1117. [Google Scholar] [CrossRef] [Green Version]
- Stubbs, J.; Simpson, K.M.; Triglia, T.; Plouffe, D.; Tonkin, C.J.; Duraisingh, M.T.; Maier, A.G.; Winzeler, E.A.; Cowman, A.F. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science 2005, 309, 1384–1387. [Google Scholar] [CrossRef] [Green Version]
- Crosnier, C.; Bustamante, L.Y.; Bartholdson, S.J.; Bei, A.K.; Theron, M.; Uchikawa, M.; Mboup, S.; Ndir, O.; Kwiatkowski, D.P.; Duraisingh, M.T.; et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 2011, 480, 534–537. [Google Scholar] [CrossRef] [Green Version]
- Aikawa, M.; Miller, L.H.; Johnson, J.; Rabbege, J. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J. Cell Biol. 1978, 77, 72–82. [Google Scholar] [CrossRef]
- Besteiro, S.; Michelin, A.; Poncet, J.; Dubremetz, J.F.; Lebrun, M. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog. 2009, 5, e1000309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, P.; Beatty, W.L.; Diouf, A.; Herrera, R.; Ambroggio, X.; Moch, J.K.; Tyler, J.S.; Narum, D.L.; Pierce, S.K.; Boothroyd, J.C.; et al. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc. Natl. Acad. Sci. USA 2011, 108, 13275–13280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.S.; Uboldi, A.D.; Epp, C.; Bujard, H.; Tsuboi, T.; Czabotar, P.E.; Cowman, A.F. Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. J. Biol. Chem. 2016, 291, 7703–7715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjan, R.; Chugh, M.; Kumar, S.; Singh, S.; Kanodia, S.; Hossain, M.J.; Korde, R.; Grover, A.; Dhawan, S.; Chauhan, V.S.; et al. Proteome analysis reveals a large merozoite surface protein-1 associated complex on the Plasmodium falciparum merozoite surface. J. Proteome Res. 2011, 10, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.S.; Amlabu, E.; Pandey, A.K.; Mitra, P.; Chauhan, V.S.; Gaur, D. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc. Natl. Acad. Sci. USA 2015, 112, 1179–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Chen, H.; Oo, T.H.; Daly, T.M.; Bergman, L.W.; Liu, S.C.; Chishti, A.H.; Oh, S.S. A co-ligand complex anchors Plasmodium falciparum merozoites to the erythrocyte invasion receptor band 3. J. Biol. Chem. 2004, 279, 5765–5771. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, M.R.; Li, X.; Hanada, T.; Liu, S.C.; Chishti, A.H. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood 2015, 125, 2704–2711. [Google Scholar] [CrossRef] [Green Version]
- Urusova, D.; Carias, L.; Huang, Y.; Nicolete, V.C.; Popovici, J.; Roesch, C.; Salinas, N.D.; Witkowski, B.; Ferreira, M.U.; Adams, J.H.; et al. Structural basis for neutralization of Plasmodium vivax by naturally acquired human antibodies that target DBP. Nat. Microbiol. 2019, 4, 1486–1496. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, J.D.; Malpede, B.M.; Omattage, N.S.; DeKoster, G.T.; Henzler-Wildman, K.A.; Tolia, N.H. Red blood cell invasion by Plasmodium vivax: Structural basis for DBP engagement of DARC. PLoS Pathog. 2014, 10, e1003869. [Google Scholar] [CrossRef]
- Alanine, D.G.W.; Quinkert, D.; Kumarasingha, R.; Mehmood, S.; Donnellan, F.R.; Minkah, N.K.; Dadonaite, B.; Diouf, A.; Galaway, F.; Silk, S.E.; et al. Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies. Cell 2019, 178, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.; Paing, M.M.; Salinas, N.; Sim, B.K.; Tolia, N.H. Structural and functional basis for inhibition of erythrocyte invasion by antibodies that target Plasmodium falciparum EBA-175. PLoS Pathog. 2013, 9, e1003390. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.D.; Williams, A.R.; KnuePfer, E.; Illingworth, J.J.; Furze, J.M.; Crosnier, C.; Choudhary, P.; Bustamante, L.Y.; Zakutansky, S.E.; Awuah, D.K.; et al. Neutralization of Plasmodium falciparum merozoites by antibodies against PfRH5. J. Immunol. 2014, 192, 245–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawlinson, T.A.; Barber, N.M.; Mohring, F.; Cho, J.S.; Kosaisavee, V.; Gerard, S.F.; Alanine, D.G.W.; Labbe, G.M.; Elias, S.C.; Silk, S.E.; et al. Structural basis for inhibition of Plasmodium vivax invasion by a broadly neutralizing vaccine-induced human antibody. Nat. Microbiol. 2019, 4, 1497–1507. [Google Scholar] [CrossRef]
- World Health Organization. Word Malaria Report 2018; World Health Organization: Geneva, Switzerland, 2018; p. 211. [Google Scholar]
- Cowman, A.F.; Crabb, B.S. Invasion of red blood cells by malaria parasites. Cell 2006, 124, 755–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, J.H.; Mueller, I. The Biology of Plasmodium vivax. Cold Spring Harb. Perspect. Med. 2017, 7, a025585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malleret, B.; Li, A.; Zhang, R.; Tan, K.S.; Suwanarusk, R.; Claser, C.; Cho, J.S.; Koh, E.G.; Chu, C.S.; Pukrittayakamee, S.; et al. Plasmodium vivax: Restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood 2015, 125, 1314–1324. [Google Scholar] [CrossRef] [Green Version]
- Gruszczyk, J.; Kanjee, U.; Chan, L.J.; Menant, S.; Malleret, B.; Lim, N.T.Y.; Schmidt, C.Q.; Mok, Y.F.; Lin, K.M.; Pearson, R.D.; et al. Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science 2018, 359, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.H.; Mason, S.J.; Dvorak, J.A.; McGinniss, M.H.; Rothman, I.K. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 1975, 189, 561–563. [Google Scholar] [CrossRef]
- Gunalan, K.; Lo, E.; Hostetler, J.B.; Yewhalaw, D.; Mu, J.; Neafsey, D.E.; Yan, G.; Miller, L.H. Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans. Proc. Natl. Acad. Sci. USA 2016, 113, 6271–6276. [Google Scholar] [CrossRef] [Green Version]
- Chitnis, C.E.; Chaudhuri, A.; Horuk, R.; Pogo, A.O.; Miller, L.H. The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J. Exp. Med. 1996, 184, 1531–1536. [Google Scholar] [CrossRef] [Green Version]
- Chitnis, C.E.; Miller, L.H. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J. Exp. Med. 1994, 180, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Hans, D.; Pattnaik, P.; Bhattacharyya, A.; Shakri, A.R.; Yazdani, S.S.; Sharma, M.; Choe, H.; Farzan, M.; Chitnis, C.E. Mapping binding residues in the Plasmodium vivax domain that binds Duffy antigen during red cell invasion. Mol. Microbiol. 2005, 55, 1423–1434. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, J.D.; Zahm, J.A.; Tolia, N.H. Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC. Nat. Struct. Mol. Biol. 2011, 18, 908–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chootong, P.; Ntumngia, F.B.; VanBuskirk, K.M.; Xainli, J.; Cole-Tobian, J.L.; Campbell, C.O.; Fraser, T.S.; King, C.L.; Adams, J.H. Mapping epitopes of the Plasmodium vivax Duffy binding protein with naturally acquired inhibitory antibodies. Infect. Immun. 2010, 78, 1089–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ampudia, E.; Patarroyo, M.A.; Patarroyo, M.E.; Murillo, L.A. Genetic polymorphism of the Duffy receptor binding domain of Plasmodium vivax in Colombian wild isolates. Mol. Biochem. Parasitol. 1996, 78, 269–272. [Google Scholar] [CrossRef]
- Sousa, T.N.; Ceravolo, I.P.; Fernandes Fontes, C.J.; Couto, A.; Carvalho, L.H.; Brito, C.F. The pattern of major polymorphisms in the Duffy binding protein ligand domain among Plasmodium vivax isolates from the Brazilian Amazon area. Mol. Biochem. Parasitol. 2006, 146, 251–254. [Google Scholar] [CrossRef]
- Xainli, J.; Adams, J.H.; King, C.L. The erythrocyte binding motif of plasmodium vivax duffy binding protein is highly polymorphic and functionally conserved in isolates from Papua New Guinea. Mol. Biochem. Parasitol. 2000, 111, 253–260. [Google Scholar] [CrossRef]
- Nobrega de Sousa, T.; Carvalho, L.H.; Alves de Brito, C.F. Worldwide genetic variability of the Duffy binding protein: Insights into Plasmodium vivax vaccine development. PLoS ONE 2011, 6, e22944. [Google Scholar] [CrossRef]
- Ntumngia, F.B.; Schloegel, J.; Barnes, S.J.; McHenry, A.M.; Singh, S.; King, C.L.; Adams, J.H. Conserved and variant epitopes of Plasmodium vivax Duffy binding protein as targets of inhibitory monoclonal antibodies. Infect. Immun. 2012, 80, 1203–1208. [Google Scholar] [CrossRef] [Green Version]
- Cole-Tobian, J.L.; Cortes, A.; Baisor, M.; Kastens, W.; Xainli, J.; Bockarie, M.; Adams, J.H.; King, C.L. Age-acquired immunity to a Plasmodium vivax invasion ligand, the duffy binding protein. J. Infect. Dis. 2002, 186, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Tsuboi, T.; Kappe, S.H.; al-Yaman, F.; Prickett, M.D.; Alpers, M.; Adams, J.H. Natural variation within the principal adhesion domain of the Plasmodium vivax duffy binding protein. Infect. Immun. 1994, 62, 5581–5586. [Google Scholar] [CrossRef] [Green Version]
- VanBuskirk, K.M.; Cole-Tobian, J.L.; Baisor, M.; Sevova, E.S.; Bockarie, M.; King, C.L.; Adams, J.H. Antigenic drift in the ligand domain of Plasmodium vivax duffy binding protein confers resistance to inhibitory antibodies. J. Infect. Dis. 2004, 190, 1556–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.K.; Singh, A.P.; Pandey, S.; Yazdani, S.S.; Chitnis, C.E.; Sharma, A. Definition of structural elements in Plasmodium vivax and P. knowlesi Duffy-binding domains necessary for erythrocyte invasion. Biochem. J. 2003, 374, 193–198. [Google Scholar] [CrossRef]
- George, M.T.; Schloegel, J.L.; Ntumngia, F.B.; Barnes, S.J.; King, C.L.; Casey, J.L.; Foley, M.; Adams, J.H. Identification of an Immunogenic Broadly Inhibitory Surface Epitope of the Plasmodium vivax Duffy Binding Protein Ligand Domain. mSphere 2019, 4, e00194-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocampo, M.; Vera, R.; Eduardo Rodriguez, L.; Curtidor, H.; Urquiza, M.; Suarez, J.; Garcia, J.; Puentes, A.; Lopez, R.; Trujillo, M.; et al. Plasmodium vivax Duffy binding protein peptides specifically bind to reticulocytes. Peptides 2002, 23, 13–22. [Google Scholar] [CrossRef]
- Chen, E.; Salinas, N.D.; Huang, Y.; Ntumngia, F.; Plasencia, M.D.; Gross, M.L.; Adams, J.H.; Tolia, N.H. Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein. Proc. Natl. Acad. Sci. USA 2016, 113, 6277–6282. [Google Scholar] [CrossRef] [Green Version]
- Guy, A.J.; Irani, V.; Richards, J.S.; Ramsland, P.A. Structural patterns of selection and diversity for Plasmodium vivax antigens DBP and AMA1. Malar. J. 2018, 17, 183. [Google Scholar] [CrossRef] [Green Version]
- Bourgard, C.; Albrecht, L.; Kayano, A.; Sunnerhagen, P.; Costa, F.T.M. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front. Cell. Infect. Microbiol. 2018, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Chan, L.J.; Dietrich, M.H.; Nguitragool, W.; Tham, W.H. Plasmodium vivax Reticulocyte Binding Proteins for invasion into reticulocytes. Cell. Microbiol. 2020, 22, e13110. [Google Scholar] [CrossRef] [Green Version]
- Auburn, S.; Getachew, S.; Pearson, R.D.; Amato, R.; Miotto, O.; Trimarsanto, H.; Zhu, S.J.; Rumaseb, A.; Marfurt, J.; Noviyanti, R.; et al. Genomic Analysis of Plasmodium vivax in Southern Ethiopia Reveals Selective Pressures in Multiple Parasite Mechanisms. J. Infect. Dis. 2019, 220, 1738–1749. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Mukherjee, P.; Shakri, A.R.; Singh, A.; Pandey, G.; Bakshi, M.; Uppal, G.; Jena, R.; Rawat, A.; Kumar, P.; et al. Malaria vaccine candidate based on Duffy-binding protein elicits strain transcending functional antibodies in a Phase I trial. NPJ Vaccines 2018, 3, 48. [Google Scholar] [CrossRef]
- Payne, R.O.; Silk, S.E.; Elias, S.C.; Milne, K.H.; Rawlinson, T.A.; Llewellyn, D.; Shakri, A.R.; Jin, J.; Labbe, G.M.; Edwards, N.J.; et al. Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies. JCI Insight 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, C.L.; Michon, P.; Shakri, A.R.; Marcotty, A.; Stanisic, D.; Zimmerman, P.A.; Cole-Tobian, J.L.; Mueller, I.; Chitnis, C.E. Naturally acquired Duffy-binding protein-specific binding inhibitory antibodies confer protection from blood-stage Plasmodium vivax infection. Proc. Natl. Acad. Sci. USA 2008, 105, 8363–8368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolete, V.C.; Frischmann, S.; Barbosa, S.; King, C.L.; Ferreira, M.U. Naturally Acquired Binding-Inhibitory Antibodies to Plasmodium vivax Duffy Binding Protein and Clinical Immunity to Malaria in Rural Amazonians. J. Infect. Dis. 2016, 214, 1539–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntumngia, F.B.; Adams, J.H. Design and immunogenicity of a novel synthetic antigen based on the ligand domain of the Plasmodium vivax duffy binding protein. Clin. Vaccine Immunol. 2012, 19, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Rosa, D.S.; Iwai, L.K.; Tzelepis, F.; Bargieri, D.Y.; Medeiros, M.A.; Soares, I.S.; Sidney, J.; Sette, A.; Kalil, J.; Mello, L.E.; et al. Immunogenicity of a recombinant protein containing the Plasmodium vivax vaccine candidate MSP1(19) and two human CD4+ T-cell epitopes administered to non-human primates (Callithrix jacchus jacchus). Microbes Infect. 2006, 8, 2130–2137. [Google Scholar] [CrossRef] [PubMed]
- Devi, Y.S.; Mukherjee, P.; Yazdani, S.S.; Shakri, A.R.; Mazumdar, S.; Pandey, S.; Chitnis, C.E.; Chauhan, V.S. Immunogenicity of Plasmodium vivax combination subunit vaccine formulated with human compatible adjuvants in mice. Vaccine 2007, 25, 5166–5174. [Google Scholar] [CrossRef]
- Bouillet, L.E.; Dias, M.O.; Dorigo, N.A.; Moura, A.D.; Russell, B.; Nosten, F.; Renia, L.; Braga, E.M.; Gazzinelli, R.T.; Rodrigues, M.M.; et al. Long-term humoral and cellular immune responses elicited by a heterologous Plasmodium vivax apical membrane antigen 1 protein prime/adenovirus boost immunization protocol. Infect. Immun. 2011, 79, 3642–3652. [Google Scholar] [CrossRef] [Green Version]
- Vicentin, E.C.; Francoso, K.S.; Rocha, M.V.; Iourtov, D.; Dos Santos, F.L.; Kubrusly, F.S.; Sakauchi, M.A.; Raw, I.; Nosten, F.; Renia, L.; et al. Invasion-inhibitory antibodies elicited by immunization with Plasmodium vivax apical membrane antigen-1 expressed in Pichia pastoris yeast. Infect. Immun. 2014, 82, 1296–1307. [Google Scholar] [CrossRef] [Green Version]
- Cowman, A.F.; Healer, J.; Marapana, D.; Marsh, K. Malaria: Biology and Disease. Cell 2016, 167, 610–624. [Google Scholar] [CrossRef] [Green Version]
- Satchwell, T.J. Erythrocyte invasion receptors for Plasmodium falciparum: New and old. Transfus. Med. 2016, 26, 77–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahlgren, M.; Goel, S.; Akhouri, R.R. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat. Rev. Microbiol. 2017, 15, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.E.; Hjerrild, K.A.; Bartlett, J.; Douglas, A.D.; Jin, J.; Brown, R.E.; Illingworth, J.J.; Ashfield, R.; Clemmensen, S.B.; de Jongh, W.A.; et al. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature 2014, 515, 427–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, J.H.; Blair, P.L.; Kaneko, O.; Peterson, D.S. An expanding ebl family of Plasmodium falciparum. Trends Parasitol. 2001, 17, 297–299. [Google Scholar] [CrossRef]
- Wong, W.; Huang, R.; Menant, S.; Hong, C.; Sandow, J.J.; Birkinshaw, R.W.; Healer, J.; Hodder, A.N.; Kanjee, U.; Tonkin, C.J.; et al. Structure of Plasmodium falciparum Rh5-CyRPA-Ripr invasion complex. Nature 2019, 565, 118–121. [Google Scholar] [CrossRef]
- Volz, J.C.; Yap, A.; Sisquella, X.; Thompson, J.K.; Lim, N.T.; Whitehead, L.W.; Chen, L.; Lampe, M.; Tham, W.H.; Wilson, D.; et al. Essential Role of the PfRh5/PfRipr/CyRPA Complex during Plasmodium falciparum Invasion of Erythrocytes. Cell Host Microbe 2016, 20, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Bogyo, M.; da Fonseca, P.C. The cryo-EM structure of the Plasmodium falciparum 20S proteasome and its use in the fight against malaria. FEBS J. 2016, 283, 4238–4243. [Google Scholar] [CrossRef] [Green Version]
- Baum, J.; Chen, L.; Healer, J.; Lopaticki, S.; Boyle, M.; Triglia, T.; Ehlgen, F.; Ralph, S.A.; Beeson, J.G.; Cowman, A.F. Reticulocyte-binding protein homologue 5 - an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int. J. Parasitol. 2009, 39, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Hayton, K.; Gaur, D.; Liu, A.; Takahashi, J.; Henschen, B.; Singh, S.; Lambert, L.; Furuya, T.; Bouttenot, R.; Doll, M.; et al. Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. Cell Host Microbe 2008, 4, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, L.Y.; Bartholdson, S.J.; Crosnier, C.; Campos, M.G.; Wanaguru, M.; Nguon, C.; Kwiatkowski, D.P.; Wright, G.J.; Rayner, J.C. A full-length recombinant Plasmodium falciparum PfRH5 protein induces inhibitory antibodies that are effective across common PfRH5 genetic variants. Vaccine 2013, 31, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Manske, M.; Miotto, O.; Campino, S.; Auburn, S.; Almagro-Garcia, J.; Maslen, G.; O’Brien, J.; Djimde, A.; Doumbo, O.; Zongo, I.; et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature 2012, 487, 375–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouattara, A.; Tran, T.M.; Doumbo, S.; Adams, M.; Agrawal, S.; Niangaly, A.; Nelson-Owens, S.; Doumtabe, D.; Tolo, Y.; Ongoiba, A.; et al. Extent and Dynamics of Polymorphism in the Malaria Vaccine Candidate Plasmodium falciparum Reticulocyte-Binding Protein Homologue-5 in Kalifabougou, Mali. Am. J. Trop. Med. Hyg. 2018, 99, 43–50. [Google Scholar] [CrossRef]
- Ajibaye, O.; Osuntoki, A.A.; Balogun, E.O.; Olukosi, Y.A.; Iwalokun, B.A.; Oyebola, K.M.; Hikosaka, K.; Watanabe, Y.I.; Ebiloma, G.U.; Kita, K.; et al. Genetic polymorphisms in malaria vaccine candidate Plasmodium falciparum reticulocyte-binding protein homologue-5 among populations in Lagos, Nigeria. Malar. J. 2020, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Galaway, F.; Drought, L.G.; Fala, M.; Cross, N.; Kemp, A.C.; Rayner, J.C.; Wright, G.J. P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. Nat. Commun. 2017, 8, 14333. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, M.; Lustigman, S.; Montero, E.; Oksov, Y.; Lobo, C.A. PfRH5: A novel reticulocyte-binding family homolog of plasmodium falciparum that binds to the erythrocyte, and an investigation of its receptor. PLoS ONE 2008, 3, e3300. [Google Scholar] [CrossRef]
- Heller, M.; von der Ohe, M.; Kleene, R.; Mohajeri, M.H.; Schachner, M. The immunoglobulin-superfamily molecule basigin is a binding protein for oligomannosidic carbohydrates: An anti-idiotypic approach. J. Neurochem. 2003, 84, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Galaway, F.; Yu, R.; Constantinou, A.; Prugnolle, F.; Wright, G.J. Resurrection of the ancestral RH5 invasion ligand provides a molecular explanation for the origin of P. falciparum malaria in humans. PLoS Biol. 2019, 17, e3000490. [Google Scholar] [CrossRef] [Green Version]
- Arevalo-Pinzon, G.; Curtidor, H.; Munoz, M.; Patarroyo, M.A.; Bermudez, A.; Patarroyo, M.E. A single amino acid change in the Plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. Vaccine 2012, 30, 637–646. [Google Scholar] [CrossRef]
- Chen, L.; Lopaticki, S.; Riglar, D.T.; Dekiwadia, C.; Uboldi, A.D.; Tham, W.H.; O’Neill, M.T.; Richard, D.; Baum, J.; Ralph, S.A.; et al. An EGF-like protein forms a complex with PfRh5 and is required for invasion of human erythrocytes by Plasmodium falciparum. PLoS Pathog. 2011, 7, e1002199. [Google Scholar] [CrossRef] [Green Version]
- Ntege, E.H.; Arisue, N.; Ito, D.; Hasegawa, T.; Palacpac, N.M.Q.; Egwang, T.G.; Horii, T.; Takashima, E.; Tsuboi, T. Identification of Plasmodium falciparum reticulocyte binding protein homologue 5-interacting protein, PfRipr, as a highly conserved blood-stage malaria vaccine candidate. Vaccine 2016, 34, 5612–5622. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Y.; Wong, W.; Thompson, J.K.; Healer, J.; Goddard-Borger, E.D.; Lawrence, M.C.; Cowman, A.F. Structural basis for inhibition of erythrocyte invasion by antibodies to Plasmodium falciparum protein CyRPA. Elife 2017, 6, e21347. [Google Scholar] [CrossRef] [Green Version]
- Favuzza, P.; Guffart, E.; Tamborrini, M.; Scherer, B.; Dreyer, A.M.; Rufer, A.C.; Erny, J.; Hoernschemeyer, J.; Thoma, R.; Schmid, G.; et al. Structure of the malaria vaccine candidate antigen CyRPA and its complex with a parasite invasion inhibitory antibody. Elife 2017, 6, e20383. [Google Scholar] [CrossRef] [Green Version]
- Koch, M.; Wright, K.E.; Otto, O.; Herbig, M.; Salinas, N.D.; Tolia, N.H.; Satchwell, T.J.; Guck, J.; Brooks, N.J.; Baum, J. Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysical change in the red blood cell that facilitates invasion. Proc. Natl. Acad. Sci. USA 2017, 114, 4225–4230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolia, N.H.; Enemark, E.J.; Sim, B.K.; Joshua-Tor, L. Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell 2005, 122, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Duraisingh, M.T.; Maier, A.G.; Triglia, T.; Cowman, A.F. Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways. Proc. Natl. Acad. Sci. USA 2003, 100, 4796–4801. [Google Scholar] [CrossRef] [Green Version]
- Jaskiewicz, E.; Jodlowska, M.; Kaczmarek, R.; Zerka, A. Erythrocyte glycophorins as receptors for Plasmodium merozoites. Parasites Vectors 2019, 12, 317. [Google Scholar] [CrossRef] [Green Version]
- Orlandi, P.A.; Klotz, F.W.; Haynes, J.D. A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum recognizes the terminal Neu5Ac(alpha 2-3)Gal- sequences of glycophorin A. J. Cell Biol. 1992, 116, 901–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanaguru, M.; Crosnier, C.; Johnson, S.; Rayner, J.C.; Wright, G.J. Biochemical analysis of the Plasmodium falciparum erythrocyte-binding antigen-175 (EBA175)-glycophorin-A interaction: Implications for vaccine design. J. Biol. Chem. 2013, 288, 32106–32117. [Google Scholar] [CrossRef] [Green Version]
- Salinas, N.D.; Paing, M.M.; Tolia, N.H. Critical glycosylated residues in exon three of erythrocyte glycophorin A engage Plasmodium falciparum EBA-175 and define receptor specificity. MBio 2014, 5, e01606-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, R.A.; Hackett, F.; Howell, S.A.; Treeck, M.; Struck, N.; Krnajski, Z.; Withers-Martinez, C.; Gilberger, T.W.; Blackman, M.J. Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J. Cell Biol. 2006, 174, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Sisquella, X.; Nebl, T.; Thompson, J.K.; Whitehead, L.; Malpede, B.M.; Salinas, N.D.; Rogers, K.; Tolia, N.H.; Fleig, A.; O’Neill, J.; et al. Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion. Elife 2017, 6, e21083. [Google Scholar] [CrossRef]
- Sim, B.K.; Chitnis, C.E.; Wasniowska, K.; Hadley, T.J.; Miller, L.H. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 1994, 264, 1941–1944. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, P.H.; Heegaard, P.M.; Koch, C.; Wasniowska, K.; Lemnge, M.M.; Jensen, J.B.; Sim, B.K. Identification of an erythrocyte binding peptide from the erythrocyte binding antigen, EBA-175, which blocks parasite multiplication and induces peptide-blocking antibodies. Infect. Immun. 1998, 66, 4203–4207. [Google Scholar] [CrossRef]
- Healer, J.; Thompson, J.K.; Riglar, D.T.; Wilson, D.W.; Chiu, Y.H.; Miura, K.; Chen, L.; Hodder, A.N.; Long, C.A.; Hansen, D.S.; et al. Vaccination with conserved regions of erythrocyte-binding antigens induces neutralizing antibodies against multiple strains of Plasmodium falciparum. PLoS ONE 2013, 8, e72504. [Google Scholar] [CrossRef] [Green Version]
- Baum, J.; Thomas, A.W.; Conway, D.J. Evidence for diversifying selection on erythrocyte-binding antigens of Plasmodium falciparum and P. vivax. Genetics 2003, 163, 1327–1336. [Google Scholar] [PubMed]
- Verra, F.; Chokejindachai, W.; Weedall, G.D.; Polley, S.D.; Mwangi, T.W.; Marsh, K.; Conway, D.J. Contrasting signatures of selection on the Plasmodium falciparum erythrocyte binding antigen gene family. Mol. Biochem. Parasitol. 2006, 149, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Guy, A.J.; Irani, V.; Beeson, J.G.; Webb, B.; Sali, A.; Richards, J.S.; Ramsland, P.A. Proteome-wide mapping of immune features onto Plasmodium protein three-dimensional structures. Sci. Rep. 2018, 8, 4355. [Google Scholar] [CrossRef] [Green Version]
- Kain, K.C.; Lanar, D.E. Determination of genetic variation within Plasmodium falciparum by using enzymatically amplified DNA from filter paper disks impregnated with whole blood. J. Clin. Microbiol. 1991, 29, 1171–1174. [Google Scholar] [CrossRef] [Green Version]
- Binks, R.H.; Baum, J.; Oduola, A.M.; Arnot, D.E.; Babiker, H.A.; Kremsner, P.G.; Roper, C.; Greenwood, B.M.; Conway, D.J. Population genetic analysis of the Plasmodium falciparum erythrocyte binding antigen-175 (eba-175) gene. Mol. Biochem. Parasitol. 2001, 114, 63–70. [Google Scholar] [CrossRef]
- Soulama, I.; Bigoga, J.D.; Ndiaye, M.; Bougouma, E.C.; Quagraine, J.; Casimiro, P.N.; Stedman, T.T.; Sirima, S.B. Genetic diversity of polymorphic vaccine candidate antigens (apical membrane antigen-1, merozoite surface protein-3, and erythrocyte binding antigen-175) in Plasmodium falciparum isolates from western and central Africa. Am. J. Trop. Med. Hyg. 2011, 84, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.S.; Stanisic, D.I.; Fowkes, F.J.; Tavul, L.; Dabod, E.; Thompson, J.K.; Kumar, S.; Chitnis, C.E.; Narum, D.L.; Michon, P.; et al. Association between naturally acquired antibodies to erythrocyte-binding antigens of Plasmodium falciparum and protection from malaria and high-density parasitemia. Clin. Infect. Dis. 2010, 51, e50–e60. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.E.; Curtidor, H.; Urquiza, M.; Cifuentes, G.; Reyes, C.; Patarroyo, M.E. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem. Rev. 2008, 108, 3656–3705. [Google Scholar] [CrossRef] [PubMed]
- Patarroyo, M.E.; Arevalo-Pinzon, G.; Reyes, C.; Moreno-Vranich, A.; Patarroyo, M.A. Malaria Parasite Survival Depends on Conserved Binding Peptides’ Critical Biological Functions. Curr. Issues Mol. Biol. 2016, 18, 57–78. [Google Scholar]
- Sakura, T.; Yahata, K.; Kaneko, O. The upstream sequence segment of the C-terminal cysteine-rich domain is required for microneme trafficking of Plasmodium falciparum erythrocyte binding antigen 175. Parasitol. Int. 2013, 62, 157–164. [Google Scholar] [CrossRef]
- Narum, D.L.; Haynes, J.D.; Fuhrmann, S.; Moch, K.; Liang, H.; Hoffman, S.L.; Sim, B.K. Antibodies against the Plasmodium falciparum receptor binding domain of EBA-175 block invasion pathways that do not involve sialic acids. Infect. Immun. 2000, 68, 1964–1966. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.R.; Narum, D.L.; Gozalo, A.S.; Aguiar, J.; Fuhrmann, S.R.; Liang, H.; Haynes, J.D.; Moch, J.K.; Lucas, C.; Luu, T.; et al. Protection of Aotus monkeys by Plasmodium falciparum EBA-175 region II DNA prime-protein boost immunization regimen. J. Infect. Dis. 2001, 183, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Sim, B.K.; Narum, D.L.; Chattopadhyay, R.; Ahumada, A.; Haynes, J.D.; Fuhrmann, S.R.; Wingard, J.N.; Liang, H.; Moch, J.K.; Hoffman, S.L. Delineation of stage specific expression of Plasmodium falciparum EBA-175 by biologically functional region II monoclonal antibodies. PLoS ONE 2011, 6, e18393. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, L.E.; Urquiza, M.; Ocampo, M.; Suarez, J.; Curtidor, H.; Guzman, F.; Vargas, L.E.; Trivinos, M.; Rosas, M.; Patarroyo, M.E. Plasmodium falciparum EBA-175 kDa protein peptides which bind to human red blood cells. Parasitology 2000, 120, 225–235. [Google Scholar] [CrossRef]
Vaccine Candidate | Development Phase | Antigen | Formulation | Ref |
---|---|---|---|---|
PvDBPII-DEKnull | Pre-clinical | DBP1 | Rec. protein- adjuvant | [66] |
PvMSP119 | Pre-clinical | PvMSP1 | Rec. protein-Montanide ISA720 | [67,68] |
ChAd63-PvAMA1/MVA-PvAMA1 | Pre-clinical | PvAMA1 | Prime boost, viral vectors | [69] |
PvAMA1 | Pre-clinical | PvAMA1 | Rec. protein-adjuvant | [70] |
ChAd63-PvDBPII/MVA-PvDBPII | Clinical Phase Ia | DBP1 | Prime boost, viral vectors | [63] |
PvDBPII/GLA-SE | Clinical Phase Ia | DBP1 | Rec. protein-GLA-SE | [62] |
PvDBPII/Matrix M1 | Clinical Phase I/IIa | DBP1 | Rec. protein-adjuvant | N.A. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patarroyo, M.A.; Molina-Franky, J.; Gómez, M.; Arévalo-Pinzón, G.; Patarroyo, M.E. Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion. Int. J. Mol. Sci. 2020, 21, 4729. https://doi.org/10.3390/ijms21134729
Patarroyo MA, Molina-Franky J, Gómez M, Arévalo-Pinzón G, Patarroyo ME. Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion. International Journal of Molecular Sciences. 2020; 21(13):4729. https://doi.org/10.3390/ijms21134729
Chicago/Turabian StylePatarroyo, Manuel Alfonso, Jessica Molina-Franky, Marcela Gómez, Gabriela Arévalo-Pinzón, and Manuel Elkin Patarroyo. 2020. "Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion" International Journal of Molecular Sciences 21, no. 13: 4729. https://doi.org/10.3390/ijms21134729
APA StylePatarroyo, M. A., Molina-Franky, J., Gómez, M., Arévalo-Pinzón, G., & Patarroyo, M. E. (2020). Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion. International Journal of Molecular Sciences, 21(13), 4729. https://doi.org/10.3390/ijms21134729