Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer?
Abstract
:1. Introduction
2. How to Transform a Chloroplast in Three Steps
2.1. Robust Methods for DNA Delivery into the Chloroplast
2.2. Harnessing Homologous Recombination in Chloroplasts
2.3. Selection Methods and Regeneration Protocols for Transplastomic Cells and Plants
3. Can Plastid Transformation Work in Crops? CRISPR-Cas, Morphogenic Regulators, and Protoplast Regeneration Can Help
4. What Needs Can Plastid Transformation Fill?
4.1. Antigen Vaccines and Protein-based Drugs
4.2. Industrial Enzymes and Biomaterials
4.3. Phytoremediation
4.4. Biofuels Production
4.5. Everything Looks Great, Right?
5. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CMC | Carboxymethyl Cellulose |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
CSFV | Classical Swine Fever Virus |
DAP | Day After Pollination |
DSB | Double Strand Breaks |
DW | Dry Weight |
FW | Fresh Weight |
GMO | Genetically Modified Organisms |
HIV | Human Immunodeficiency Virus |
HR | Homologous Recombination |
IBDV | Infectious Burial Disease Virus |
PEG | Polyethylene Glycol |
SWNT | Single-Walled Carbon Nanotubes |
TALEN | Transcription Activator-Like Effector Nucleases |
TLP | Total Leaf Protein |
TRAIL | Tumor Necrosis Factor Related Apoptosis-Inducing Ligand |
TSP | Total Soluble Protein |
TSCP | Total Soluble Cellular Protein |
YFP | Yellow Fluorescent Protein |
References
- Maliga, P. Plastid transformation in higher plants. Annu. Rev. Plant Biol. 2004, 55, 289–313. [Google Scholar] [CrossRef]
- McFadden, G.I. Chloroplast origin and integration. Plant Physiol. 2001, 125, 50–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adem, M.; Beyene, D.; Feyissa, T. Recent achievements obtained by chloroplast transformation. Plant Methods 2017, 13, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fathi Roudsari, M.; Salmanian, A.H.; Mousavi, A.; Hashemi Sohi, H.; Jafari, M. Regeneration of glyphosate-tolerant Nicotiana tabacum after plastid transformation with a mutated variant of bacterial aroA gene. Iran. J. Biotechnol. 2009, 7, 247–253. [Google Scholar]
- Daniell, H.; Singh, N.D.; Mason, H.; Streatfield, S.J. Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci. 2009, 14, 669–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bock, R.; Warzecha, H. Solar-powered factories for new vaccines and antibiotics. Trends Biotechnol. 2010, 28, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Bock, R. Engineering plastid genomes: Methods, tools, and applications in basic research and biotechnology. Annu. Rev. Plant Biol. 2015, 66, 211–241. [Google Scholar] [CrossRef] [Green Version]
- Castiglia, D.; Sannino, L.; Marcolongo, L.; Ionata, E.; Tamburino, R.; De Stradis, A.; Cobucci-Ponzano, B.; Moracci, M.; La Cara, F.; Scotti, N. High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L. biomass. Biotechnol. Biofuels 2016, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.M.; Yin, W.B.; Hu, Z.M. Chloroplast transformation. Methods Mol. Biol. 2006, 318, 285–303. [Google Scholar]
- Cui, Y.; Qin, S.; Jiang, P. Chloroplast transformation of Platymonas (Tetraselmis) subcordiformis with the bar gene as selectable marker. PLoS ONE 2014, 9, e98607. [Google Scholar] [CrossRef] [Green Version]
- Hanson, M.R.; Gray, B.N.; Ahner, B.A. Chloroplast transformation for engineering of photosynthesis. J. Exp. Bot. 2013, 64, 731–742. [Google Scholar] [CrossRef]
- Fuentes, P.; Armarego-Marriott, T.; Bock, R. Plastid transformation and its application in metabolic engineering. Curr. Opin. Biotechnol. 2018, 49, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Sarwar Khan, M.; Mustafa, G.; Ahmad Joyia, F. Technical advances in chloroplast biotechnology. In Transgenic Crops—Emerging Trends and Future Perspectives; IntechOpen: London, UK, 2019. [Google Scholar]
- Sánchez, E.A.E.; Castillo, J.; Cruz, Q.; García, S. Biotechnological Applications of Plastid Foreign Gene Expression; IntechOpen: London, UK, 2018. [Google Scholar]
- Day, A.; Goldschmidt-Clermont, M. The chloroplast transformation toolbox: Selectable markers and marker removal. Plant Biotechnol. J. 2011, 9, 540–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narra, M.; Kota, S.; Velivela, Y.; Ellendula, R.; Allini, V.; Abbagani, S. Construction of chloroplast transformation vector and its functional evaluation in Momordica charantia L. 3 Biotech 2018, 8, 140. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, C.; Abdin, M.Z.; Kumar, S. Chloroplast genome transformation of medicinal plant Artemisia annua. Plant Biotechnol. J. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muralikrishna, N.; Srinivas, K.; Kumar, K.; Sadanandam, A. Stable plastid transformation in Scoparia dulcis L. Physiol. Mol. Biol. Plants 2016, 22, 575–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kota, S.; Hao, Q.; Narra, M.; Anumula, V.; Rao, A.V.; Hu, Z.; Abbagani, S. Improved plastid transformation efficiency in Scoparia dulcis L. J. Plant Biotechnol. 2019, 46, 323–330. [Google Scholar] [CrossRef]
- Tran, M.; Van, C.; Barrera, D.J.; Pettersson, P.L.; Peinado, C.D.; Bui, J.; Mayfield, S.P. Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc. Natl. Acad. Sci. USA 2013, 110, E15–E22. [Google Scholar] [CrossRef] [Green Version]
- Doetsch, N.A.; Favreau, M.R.; Kuscuoglu, N.; Thompson, M.D.; Hallick, R.B. Chloroplast transformation in Euglena gracilis: Splicing of a group III twintron transcribed from a transgenic psbK operon. Curr. Genet. 2001, 39, 49–60. [Google Scholar] [CrossRef]
- Sugiura, C.; Sugita, M. Plastid transformation reveals that moss tRNA(Arg)-CCG is not essential for plastid function. Plant J. 2004, 40, 314–321. [Google Scholar] [CrossRef]
- Kwon, K.C.; Sherman, A.; Chang, W.J.; Kamesh, A.; Biswas, M.; Herzog, R.W.; Daniell, H. Expression and assembly of largest foreign protein in chloroplasts: Oral delivery of human FVIII made in lettuce chloroplasts robustly suppresses inhibitor formation in haemophilia A mice. Plant Biotechnol. J. 2018, 16, 1148–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Marchis, F.; Bellucci, M. Plastid transformation in sugar beet: Beta vulgaris. Methods Mol. Biol. 2014, 1132, 367–373. [Google Scholar]
- Yu, Q.G.; Lutz, K.A.; Maliga, P. Efficient plastid transformation in Arabidopsis. Plant Physiol. 2017, 175, 186–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.W.; Lin, C.C.; Chen, J.J.W.; Tseng, M.J. Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep. 2007, 26, 1733–1744. [Google Scholar] [CrossRef]
- Cheng, L.; Li, H.-P.; Qu, B.; Huang, T.; Tu, J.-X.; Fu, T.-D.; Liao, Y.-C. Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Rep. 2010, 29, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Nugent, G.D.; Coyne, S.; Nguyen, T.T.; Kavanagh, T.A.; Dix, P.J. Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci. 2006, 170, 135–142. [Google Scholar]
- Skarjinskaia, M.; Svab, Z.; Maliga, P. Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res. 2003, 12, 115–122. [Google Scholar] [CrossRef]
- Dufourmantel, N.; Dubald, M.; Matringe, M.; Canard, H.; Garcon, F.; Job, C.; Kay, E.; Wisniewski, J.P.; Ferullo, J.M.; Pelissier, B.; et al. Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol. J. 2007, 5, 118–133. [Google Scholar] [CrossRef]
- Kumar, S.; Dhingra, A.; Daniell, H. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol. Biol. 2004, 56, 203–216. [Google Scholar] [CrossRef]
- Wang, Y.P.; Wei, Z.Y.; Xing, S.C. Stable plastid transformation of rice, a monocot cereal crop. Biochem. Biophys. Res. Commun. 2018, 503, 2376–2379. [Google Scholar] [CrossRef]
- Okumura, S.; Sawada, M.; Park, Y.W.; Hayashi, T.; Shimamura, M.; Takase, H.; Tomizawa, K.I. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res. 2006, 15, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Kota, S.; Lakkam, R.; Kasula, K.; Narra, M.; Qiang, H.; Allini, V.; Hu, Z.; Abbagani, S. Construction of a species-specific vector for improved plastid transformation efficiency in Capsicum annuum L. 3 Biotech 2019, 9, 226. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.H.; Rijzaani, H.; Karcher, D.; Ruf, S.; Bock, R. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc. Natl. Acad. Sci. USA 2013, 110, E623–E632. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Verma, S.S.; Bansal, K.C. Plastid transformation in eggplant (Solanum melongena L.). Transgenic Res. 2010, 19, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Valkov, V.T.; Gargano, D.; Scotti, N.; Cardi, T. Plastid transformation in potato: Solanum tuberosum. Methods Mol. Biol. 2014, 1132, 295–303. [Google Scholar]
- Zubko, M.K.; Zubko, E.I.; van Zuilen, K.; Meyer, P.; Day, A. Stable transformation of petunia plastids. Transgenic Res. 2004, 13, 523–530. [Google Scholar] [CrossRef]
- Kumar, S.; Dhingra, A.; Daniell, H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol. 2004, 136, 2843–2854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boynton, J.E.; Gillham, N.W.; Harris, E.H.; Hosler, J.P.; Johnson, A.M.; Jones, A.R.; Shark, K.B. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 1988, 240, 1534–1538. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H. Transformation and foreign gene expression in plants mediated by microprojectile bombardment. In Recombinant Gene Expression Protocols. Methods in Molecular Biology; Tuan, R.S., Ed.; Humana Press: Totowa, NJ, USA, 1997; Volume 62, pp. 463–489. [Google Scholar]
- O’neill, C.; Horvath, G.V.; Horvath, E.; Dix, P.J.; Medgyesy, P. Chloroplast transformation in plants: Polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J. 1993, 3, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.Y.; Lew, T.T.S.; Sweeney, C.J.; Koman, V.B.; Wong, M.H.; Bohmert-Tatarev, K.; Snell, K.D.; Seo, J.S.; Chua, N.H.; Strano, M.S. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 2019, 14, 447–455. [Google Scholar] [CrossRef]
- Wu, F.H.; Shen, S.C.; Lee, L.Y.; Lee, S.H.; Chan, M.T.; Lin, C.S. Tape-Arabidopsis Sandwich—A simpler Arabidopsis protoplast isolation method. Plant Methods 2009, 5, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, D.; Samson, N.P.; Koya, V.; Daniell, H. A protocol for expression of foreign genes in chloroplasts. Nat. Protoc. 2008, 3, 739. [Google Scholar] [CrossRef] [PubMed]
- Scotti, N.; Cardi, T. Plastid transformation as an expression tool for plant-derived biopharmaceuticals. In Transgenic Plants. Methods in Molecular Biology; Dunwell, J.M., Wetten, A.C., Eds.; Humana Press: Totowa, NJ, USA, 2012; Volume 847, pp. 451–466. [Google Scholar]
- Santana, I.; Wu, H.; Hu, P.; Giraldo, J.P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 2020, 11, 2045. [Google Scholar] [CrossRef] [PubMed]
- Dauvillee, D.; Hilbig, L.; Preiss, S.; Johanningmeier, U. Minimal extent of sequence homology required for homologous recombination at the psbA locus in Chlamydomonas reinhardtii chloroplasts using PCR-generated DNA fragments. Photosynth. Res. 2004, 79, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Ruhlman, T.; Verma, D.; Samson, N.; Daniell, H. The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol. 2010, 152, 2088–2104. [Google Scholar] [CrossRef] [PubMed]
- Svab, Z.; Hajukiewicz, P.; Maliga, P. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 1990, 87, 8526–8530. [Google Scholar] [CrossRef] [Green Version]
- Carrer, H.; Hockenberry, T.N.; Svab, Z.; Maliga, P. Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 1993, 241, 49–56. [Google Scholar] [CrossRef]
- Staub, J.M.; Garcia, B.; Graves, J.; Hajdukiewicz, P.T.; Hunter, P.; Nehra, N.; Paradkar, V.; Schlittler, M.; Carroll, J.A.; Spatola, L. High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotechnol. 2000, 18, 333–338. [Google Scholar] [CrossRef]
- Maliga, P. Towards plastid transformation in flowering plants. Trends Biotechnol. 1993, 11, 101–107. [Google Scholar] [CrossRef]
- Sikdar, S.; Serino, G.; Chaudhuri, S.; Maliga, P. Plastid transformation in Arabidopsis thaliana. Plant Cell Rep. 1998, 18, 20–24. [Google Scholar] [CrossRef]
- Sidorov, V.A.; Kasten, D.; Pang, S.Z.; Hajdukiewicz, P.T.; Staub, J.M.; Nehra, N.S. Stable chloroplast transformation in potato: Use of green fluorescent protein as a plastid marker. Plant J. 1999, 19, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Maliga, P. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat. Biotechnol. 1999, 17, 910–915. [Google Scholar] [CrossRef]
- Hou, B.K.; Zhou, Y.H.; Wan, L.H.; Zhang, Z.L.; Shen, G.F.; Chen, Z.H.; Hu, Z.M. Chloroplast transformation in oilseed rape. Transgenic Res. 2003, 12, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Ruf, S.; Hermann, M.; Berger, I.J.; Carrer, H.; Bock, R. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat. Biotechnol. 2001, 19, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Scotti, N.; Rigano, M.M.; Cardi, T. Production of foreign proteins using plastid transformation. Biotechnol. Adv. 2012, 30, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Bock, R. Genetic engineering of the chloroplast: Novel tools and new applications. Curr. Opin. Biotechnol. 2014, 26, 7–13. [Google Scholar] [CrossRef]
- Rosellini, D. Selectable markers and reporter genes: A well furnished toolbox for plant science and genetic engineering. CRC Crit. Rev. Plant Sci. 2012, 31, 401–453. [Google Scholar] [CrossRef]
- Huang, F.C.; Klaus, S.M.J.; Herz, S.; Zou, Z.; Koop, H.U.; Golds, T.J. Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol. Genet. Genom. 2002, 268, 19–27. [Google Scholar] [CrossRef]
- Carter, A.P.; Clemons, W.M.; Brodersen, D.E.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 2000, 407, 340–348. [Google Scholar] [CrossRef]
- Borovinskaya, M.A.; Shoji, S.; Holton, J.M.; Fredric, K.; Cate, J.H.D. A steric block in translation caused by the antibiotic spectinomycin. ACS Chem. Biol. 2007, 2, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Parker, N.; Wang, Y.X.; Meinke, D. Natural variation in sensitivity to a loss of chloroplast translation in arabidopsis. Plant Physiol. 2014, 166, 2013–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, N.; Wang, Y.X.; Meinke, D. Analysis of Arabidopsis accessions hypersensitive to a loss of chloroplast translation. Plant Physiol. 2016, 172, 1862–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruf, S.; Forner, J.; Hasse, C.; Kroop, X.; Seeger, S.; Schollbach, L.; Schadach, A.; Bock, R. High-efficiency generation of fertile transplastomic Arabidopsis plants. Nat. Plants 2019, 5, 282–289. [Google Scholar] [CrossRef]
- Yoo, B.C.; Yadav, N.S.; Orozco, E.M.; Sakai, H. Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts. PeerJ 2020, 8, e8362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miki, D.; Zhang, W.X.; Zeng, W.J.; Feng, Z.Y.; Zhu, J.K. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat. Commun. 2018, 9, 1967. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, B.; Spalding, M.H.; Weeks, D.P.; Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 2012, 30, 390–392. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, F.G.; Li, Z.W.; Zhang, J.F.; Li, X.; Dong, J.L.; Wang, T. TALEN-based mutagenesis of lipoxygenase LOX3 enhances the storage tolerance of rice (Oryza sativa) seeds. PLoS ONE 2015, 10, e0143877. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Altpeter, F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol. Biol. 2016, 92, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Tang, N.; Fang, Z.; Xia, Y.M.; Cao, M.L. Co-transfer of TALENs construct targeted for chloroplast genome and chloroplast transformation vector into rice using particle bombardment. J. Nanosci. Nanotechnol. 2016, 16, 12194–12201. [Google Scholar] [CrossRef]
- Smigocki, A.C.; Owens, L.D. Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant-cells. Proc. Natl. Acad. Sci. USA 1988, 85, 5131–5135. [Google Scholar] [CrossRef] [Green Version]
- Ebinuma, H.; Sugita, K.; Matsunaga, E.; Yamakado, M. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc. Natl. Acad. Sci. USA 1997, 94, 2117–2121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, K.; Wu, E.; Wang, N.; Hoerster, G.; Hastings, C.; Cho, M.J.; Scelonge, C.; Lenderts, B.; Chamberlin, M.; Cushatt, J.; et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 2016, 28, 1998–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkins, P.A.; Voytas, D.F. Overcoming bottlenecks in plant gene editing. Curr. Opin. Plant Biol. 2020, 54, 79–84. [Google Scholar] [CrossRef]
- Maher, M.F.; Nasti, R.A.; Vollbrecht, M.; Starker, C.G.; Clark, M.D.; Voytas, D.F. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 2020, 38, 84–89. [Google Scholar] [CrossRef]
- Takebe, I.; Labib, G.; Melchers, G. Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 1971, 58, 318–320. [Google Scholar] [CrossRef]
- Lin, C.S.; Hsu, C.T.; Yang, L.H.; Lee, L.Y.; Fu, J.Y.; Cheng, Q.W.; Wu, F.H.; Hsiao, H.C.W.; Zhang, Y.S.; Zhang, R.; et al. Application of protoplast technology to CRISPR/Cas9 mutagenesis: From single-cell mutation detection to mutant plant regeneration. Plant Biotechnol. J. 2018, 16, 1295–1310. [Google Scholar] [CrossRef] [Green Version]
- Craig, W.; Gargano, D.; Scotti, N.; Nguyen, T.T.; Lao, N.T.; Kavanagh, T.A.; Dix, P.J.; Cardi, T. Direct gene transfer in potato: A comparison of particle bombardment of leaf explants and PEG-mediated transformation of protoplasts. Plant Cell Rep. 2005, 24, 603–611. [Google Scholar] [CrossRef]
- Nugent, G.D.; ten Have, M.; van der Gulik, A.; Dix, P.J.; Uijtewaal, B.A.; Mordhorst, A.P. Plastid transformants of tomato selected using mutations affecting ribosome structure. Plant Cell Rep. 2005, 24, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Kohli, A.; Gahakwa, D.; Vain, P.; Laurie, D.A.; Christou, P. Transgene expression in rice engineered through particle bombardment: Molecular factors controlling stable expression and transgene silencing. Planta 1999, 208, 88–97. [Google Scholar] [CrossRef]
- Travella, S.; Ross, S.M.; Harden, J.; Everett, C.; Snape, J.W.; Harwood, W.A. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep. 2005, 23, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Wurbs, D.; Ruf, S.; Bock, R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J. 2007, 49, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Ruf, S.; Bock, R. Plastid transformation in tomato. Methods Mol. Biol. 2014, 1132, 265–276. [Google Scholar]
- Bock, R. Towards plastid transformation in maize. News Rep. 2007, 6, 2–5. [Google Scholar]
- Cui, C.; Song, F.; Tan, Y.; Zhou, X.; Zhao, W.; Ma, F.; Liu, Y.; Hussain, J.; Wang, Y.; Yang, G.; et al. Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.). Acta Biochim. Biophys. Sin. 2011, 43, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.J.; Senthilkumar, R.; Jane, W.N.; He, Y.; Tian, Z.; Yeh, K.W. Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnol. J. 2014, 12, 503–515. [Google Scholar] [CrossRef]
- Fouad, W.M.; Altpeter, F. Transplastomic expression of bacterial L-aspartate-alpha-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress. Transgenic Res. 2009, 18, 707–718. [Google Scholar] [CrossRef]
- Jin, S.; Daniell, H. Expression of gamma-tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal-induced oxidative stresses by reducing reactive oxygen species. Plant Biotechnol. J. 2014, 12, 1274–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, G.N.; Hajdukiewicz, P.T.; Broyles, D.; Rodriguez, D.; Xu, C.W.; Nehra, N.; Staub, J.M. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J. 2001, 25, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, A.; Portis, A.R.; Daniell, H. Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. Proc. Natl. Acad. Sci. USA 2004, 101, 6315–6320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-San Millan, A.; Aranjuelo, I.; Douthe, C.; Nadal, M.; Ancin, M.; Larraya, L.; Farran, I.; Flexas, J.; Veramendi, J. Physiological performance of transplastomic tobacco plants overexpressing aquaporin AQP1 in chloroplast membranes. J. Exp. Bot. 2018, 69, 3661–3673. [Google Scholar] [CrossRef] [Green Version]
- Pengelly, J.; Förster, B.; von Caemmerer, S.; Badger, M.; Price, G.D.; Whitney, S. Transplastomic integration of a cyanobacterial bicarbonate transporter into tobacco chloroplasts. J. Exp. Bot. 2014, 65, 3071–3080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz-Barrio, R.; Corral-Martinez, P.; Ancin, M.; Segui-Simarro, J.M.; Farran, I. Overexpression of plastidial thioredoxin f leads to enhanced starch accumulation in tobacco leaves. Plant Biotechnol. J. 2013, 11, 618–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.; Kanagaraj, A.; Verma, D.; Lange, T.; Daniell, H. Release of hormones from conjugates: Chloroplast expression of beta-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters. Plant Physiol. 2011, 155, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-B.; Kwon, H.-B.; Kwon, S.-J.; Park, S.-C.; Jeong, M.-J.; Han, S.-E.; Byun, M.-O.; Daniell, H. Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol. Breed. 2003, 11, 1–13. [Google Scholar] [CrossRef]
- Daniell, H.; Datta, R.; Varma, S.; Gray, S.; Lee, S.-B. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 1998, 16, 345–348. [Google Scholar] [CrossRef]
- Lutz, K.A.; Knapp, J.E.; Maliga, P. Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol. 2001, 125, 1585–1590. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, O.N.; Alvarez, D.; Torres, C.; Roman, L.; Daniell, H. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol. J. 2011, 9, 609–617. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, O.N.; Hussein, H.S.; Terry, N.; Daniell, H. Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol. 2003, 132, 1344–1352. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Li, B.; Jin, S.; Daniell, H. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol. J. 2011, 9, 100–115. [Google Scholar] [CrossRef] [Green Version]
- De Cosa, B.; Moar, W.; Lee, S.-B.; Miller, M.; Daniell, H. Overexpression of the Bt cry 2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 2001, 19, 71–74. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Wei, Z.-Y.; Zhang, Y.-Y.; Lin, C.-J.; Zhong, X.-F.; Wang, Y.-L.; Ma, J.-Y.; Ma, J.; Xing, S.-C. Chloroplast-expressed MSI-99 in tobacco improves disease resistance and displays inhibitory effect against rice blast fungus. Int. J. Mol. Sci. 2015, 16, 4628–4641. [Google Scholar] [CrossRef] [PubMed]
- Dufourmantel, N.; Tissot, G.; Goutorbe, F.; Garcon, F.; Muhr, C.; Jansens, S.; Pelissier, B.; Peltier, G.; Dubald, M. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol. Biol. 2005, 58, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.K.; Lutz, K.A.; Lertwiriyawong, B.; Svab, Z.; Maliga, P. Expression of the cry9Aa2 Bt gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Res. 2006, 15, 481. [Google Scholar] [CrossRef] [PubMed]
- Kota, M.; Daniell, H.; Varma, S.; Garczynski, S.F.; Gould, F.; Moar, W.J. Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc. Natl. Acad. Sci. USA 1999, 96, 1840–1845. [Google Scholar] [CrossRef] [Green Version]
- Yabuta, Y.; Tanaka, H.; Yoshimura, S.; Suzuki, A.; Tamoi, M.; Maruta, T.; Shigeoka, S. Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res. 2013, 22, 391–402. [Google Scholar] [CrossRef]
- Ruhlman, T.A.; Rajasekaran, K.; Cary, J.W. Expression of chloroperoxidase from Pseudomonas pyrrocinia in tobacco plastids for fungal resistance. Plant Sci. 2014, 228, 98–106. [Google Scholar] [CrossRef]
- Verma, D.; Kanagaraj, A.; Jin, S.; Singh, N.D.; Kolattukudy, P.E.; Daniell, H. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol. J. 2010, 8, 332–350. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Zhang, X.; Daniell, H. Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol. J. 2012, 10, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, O.N.; Daniell, H. Engineering cytoplasmic male sterility via the chloroplast genome by expression of β-ketothiolase. Plant Physiol. 2005, 138, 1232–1246. [Google Scholar] [CrossRef] [Green Version]
- Davidson, J.A. Advances in therapy for type 2 diabetes: GLP-1 receptor agonists and DPP-4 inhibitors. Cleve Clin. J. Med. 2009, 76 (Suppl. 5), S28–S38. [Google Scholar] [CrossRef] [Green Version]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [Green Version]
- Basaran, P.; Rodriguez-Cerezo, E. Plant molecular farming: Opportunities and challenges. Crit. Rev. Biotechnol. 2008, 28, 153–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, K.C.; Nityanandam, R.; New, J.S.; Daniell, H. Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells. Plant Biotechnol. J. 2013, 11, 77–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razmi, S.; Jalali Javaran, M.; Bagheri, A.; Honari, H.; Soleimani Zadeh, M. Expression of human interferon gamma in tobacco chloroplasts. Rom. Biotechnol. Lett. 2019, 24, 208–215. [Google Scholar] [CrossRef]
- Řepková, J. Potential of chloroplast genome in plant breeding. Czech J. Genet. Plant Breed. 2010, 46, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Morgenfeld, M.; Lentz, E.; Segretin, M.E.; Alfano, E.F.; Bravo-Almonacid, F. Translational fusion and redirection to thylakoid lumen as strategies to enhance accumulation of human papillomavirus E7 antigen in tobacco chloroplasts. Mol. Biotechnol. 2014, 56, 1021–1031. [Google Scholar] [CrossRef]
- Whitehead, M.; Öhlschläger, P.; Almajhdi, F.N.; Alloza, L.; Marzábal, P.; Meyers, A.E.; Rybicki, E.P. Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice. BMC Cancer 2014, 14, 367. [Google Scholar] [CrossRef] [Green Version]
- Morgenfeld, M.; Segretin, M.E.; Wirth, S.; Lentz, E.; Zelada, A.; Mentaberry, A.; Gissmann, L.; Bravo-Almonacid, F. Potato virus X coat protein fusion to human papillomavirus 16 E7 oncoprotein enhance antigen stability and accumulation in tobacco chloroplast. Mol. Biotechnol. 2009, 43, 243. [Google Scholar] [CrossRef]
- Herzog, R.W.; Nichols, T.C.; Su, J.; Zhang, B.; Sherman, A.; Merricks, E.P.; Raymer, R.; Perrin, G.Q.; Hager, M.; Wiinberg, B.; et al. Oral tolerance induction in hemophilia B dogs fed with transplastomic lettuce. Mol. Ther. 2017, 25, 512–522. [Google Scholar] [CrossRef] [Green Version]
- Verma, D.; Moghimi, B.; LoDuca, P.A.; Singh, H.D.; Hoffman, B.E.; Herzog, R.W.; Daniell, H. Oral delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice. Proc. Natl. Acad. Sci. USA 2010, 107, 7101–7106. [Google Scholar] [CrossRef] [Green Version]
- Saxena, B.; Subramaniyan, M.; Malhotra, K.; Bhavesh, N.S.; Potlakayala, S.D.; Kumar, S. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth. J. Biosci. 2014, 39, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Arlen, P.A.; Falconer, R.; Cherukumilli, S.; Cole, A.; Cole, A.M.; Oishi, K.K.; Daniell, H. Field production and functional evaluation of chloroplast-derived interferon-α2b. Plant Biotechnol. J. 2007, 5, 511–525. [Google Scholar] [CrossRef] [Green Version]
- Davoodi-Semiromi, A.; Schreiber, M.; Nalapalli, S.; Verma, D.; Singh, N.D.; Banks, R.K.; Chakrabarti, D.; Daniell, H. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol. J. 2010, 8, 223–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohli, N.; Westerveld, D.R.; Ayache, A.C.; Verma, A.; Shil, P.; Prasad, T.; Zhu, P.; Chan, S.L.; Li, Q.; Daniell, H. Oral delivery of bioencapsulated proteins across blood–brain and blood–retinal barriers. Mol. Ther. 2014, 22, 535–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arlen, P.A.; Singleton, M.; Adamovicz, J.J.; Ding, Y.; Davoodi-Semiromi, A.; Daniell, H. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect. Immun. 2008, 76, 3640–3650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tregoning, J.S.; Nixon, P.; Kuroda, H.; Svab, Z.; Clare, S.; Bowe, F.; Fairweather, N.; Ytterberg, J.; van Wijk, K.J.; Dougan, G. Expression of tetanus toxin fragment C in tobacco chloroplasts. Nucleic Acids Res. 2003, 31, 1174–1179. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Chen, F.; Li, D.; Zhang, Z.; Liu, Y.; Zheng, D.; Wang, Y.; Shen, G. Expression of human soluble TRAIL in Chlamydomonas reinhardtii chloroplast. Chin. Sci. Bull. 2006, 51, 1703–1709. [Google Scholar] [CrossRef]
- Dauvillee, D.; Delhaye, S.; Gruyer, S.; Slomianny, C.; Moretz, S.E.; d’Hulst, C.; Long, C.A.; Ball, S.G.; Tomavo, S. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS ONE 2010, 5, e15424. [Google Scholar] [CrossRef]
- Wang, X.; Brandsma, M.; Tremblay, R.; Maxwell, D.; Jevnikar, A.M.; Huner, N.; Ma, S. A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol. 2008, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Qian, K.; Su, N.; Chang, H.; Liu, J.; Shen, G. Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol. Lett. 2003, 25, 1087–1092. [Google Scholar] [CrossRef]
- Manuell, A.L.; Beligni, M.V.; Elder, J.H.; Siefker, D.T.; Tran, M.; Weber, A.; McDonald, T.L.; Mayfield, S.P. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol. J. 2007, 5, 402–412. [Google Scholar] [CrossRef] [PubMed]
- He, D.-M.; Qian, K.-X.; Shen, G.-F.; Zhang, Z.-F.; Yi-Nü, L.; Su, Z.-L.; Shao, H.-B. Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. Colloids Surf. B Biointerfaces 2007, 55, 26–30. [Google Scholar] [CrossRef]
- Dobrogojski, J.; Spychalski, M.; Luciński, R.; Borek, S. Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiol. Plant 2018, 40, 162. [Google Scholar] [CrossRef] [Green Version]
- Sherman, A.; Su, J.; Lin, S.; Wang, X.; Herzog, R.W.; Daniell, H.B. The Journal of the American Society of Hematology, Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells. Blood 2014, 124, 1659–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scotti, N.; Alagna, F.; Ferraiolo, E.; Formisano, G.; Sannino, L.; Buonaguro, L.; De Stradis, A.; Vitale, A.; Monti, L.; Grillo, S. High-level expression of the HIV-1 Pr55 gag polyprotein in transgenic tobacco chloroplasts. Planta 2009, 229, 1109–1122. [Google Scholar] [CrossRef] [PubMed]
- Leelavathi, S.; Reddy, V.S. Chloroplast expression of His-tagged GUS-fusions: A general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol. Breed. 2003, 11, 49–58. [Google Scholar] [CrossRef]
- Farran, I.; Río-Manterola, F.; Íñiguez, M.; Gárate, S.; Prieto, J.; Mingo-Castel, A.M. High-density seedling expression system for the production of bioactive human cardiotrophin-1, a potential therapeutic cytokine, in transgenic tobacco chloroplasts. Plant Biotechnol. J. 2008, 6, 516–527. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi, P.S.; Verma, D.; Yang, X.; Lloyd, B.; Daniell, H. Low cost tuberculosis vaccine antigens in capsules: Expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS ONE 2013, 8, e54708. [Google Scholar] [CrossRef]
- Permyakova, N.V.; Zagorskaya, A.A.; Belavin, P.A.; Uvarova, E.A.; Nosareva, O.V.; Nesterov, A.E.; Novikovskaya, A.A.; Zav’yalov, E.L.; Moshkin, M.P.; Deineko, E.V. Transgenic carrot expressing fusion protein comprising M. tuberculosis antigens induces immune response in mice. Biomed. Res. Int. 2015, 2015, 417565. [Google Scholar] [CrossRef] [Green Version]
- Gottschamel, J.; Lössl, A.; Ruf, S.; Wang, Y.; Skaugen, M.; Bock, R.; Clarke, J.L. Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems. Plant Mol. Biol. 2016, 91, 497–512. [Google Scholar] [CrossRef] [Green Version]
- Bohmert-Tatarev, K.; McAvoy, S.; Daughtry, S.; Peoples, O.P.; Snell, K.D. High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol. 2011, 155, 1690–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snell, K.D.; Peoples, O.P. PHA bioplastic: A value-added coproduct for biomass biorefineries. Biofuels Bioprod. Biorefining Innov. Sustain. Econ. 2009, 3, 456–467. [Google Scholar] [CrossRef]
- Espinoza-Sánchez, E.A.; Torres-Castillo, J.A.; Rascón-Cruz, Q.; Zavala-García, F.; Sinagawa-García, S.R. Production and characterization of fungal β-glucosidase and bacterial cellulases by tobacco chloroplast transformation. Plant Biotechnol. Rep. 2016, 10, 61–73. [Google Scholar] [CrossRef]
- Petersen, K.; Bock, R. High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol. Biol. 2011, 76, 311–321. [Google Scholar] [CrossRef]
- Agrawal, P.; Verma, D.; Daniell, H. Expression of Trichoderma reesei beta-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis. PLoS ONE 2011, 6, e29302. [Google Scholar] [CrossRef] [Green Version]
- Kolotilin, I.; Kaldis, A.; Pereira, E.O.; Laberge, S.; Menassa, R. Optimization of transplastomic production of hemicellulases in tobacco: Effects of expression cassette configuration and tobacco cultivar used as production platform on recombinant protein yields. Biotechnol. Biofuels 2013, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Viitanen, P.V.; Devine, A.L.; Khan, M.S.; Deuel, D.L.; Van Dyk, D.E.; Daniell, H. Metabolic engineering of the chloroplast genome using the Echerichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Plant Physiol. 2004, 136, 4048–4060. [Google Scholar] [CrossRef] [Green Version]
- Terry, N.; Zayed, A.M.; De Souza, M.P.; AS, T. Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [Green Version]
- Pilon-Smits, E.; Pilon, M. Phytoremediation of metals using transgenic plants. CRC Crit. Rev. Plant Sci. 2002, 21, 439–456. [Google Scholar] [CrossRef]
- Hussein, H.S.; Ruiz, O.N.; Terry, N.; Daniell, H. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants-Enhanced root uptake, translocation to shoots, and volatilization. Environ. Sci. Technol. 2007, 41, 8439–8446. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Donaldson, A.A.; Ma, X. Advancements and future directions in enzyme technology for biomass conversion. Biotechnol. Adv. 2012, 30, 913–919. [Google Scholar] [CrossRef]
- Jin, S.; Daniell, H. The engineered chloroplast genome just got smarter. Trends Plant Sci. 2015, 20, 622–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, B.N.; Yang, H.; Ahner, B.A.; Hanson, M.R. An efficient downstream box fusion allows high-level accumulation of active bacterial beta-glucosidase in tobacco chloroplasts. Plant Mol. Biol. 2011, 76, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Nakahira, Y.; Ishikawa, K.; Tanaka, K.; Tozawa, Y.; Shiina, T. Overproduction of hyperthermostable beta-1,4-endoglucanase from the archaeon Pyrococcus horikoshii by tobacco chloroplast engineering. Biosci. Biotechnol. Biochem. 2013, 77, 2140–2143. [Google Scholar] [CrossRef] [PubMed]
- Pantaleoni, L.; Longoni, P.; Ferroni, L.; Baldisserotto, C.; Leelavathi, S.; Reddy, V.S.; Pancaldi, S.; Cella, R. Chloroplast molecular farming: Efficient production of a thermostable xylanase by Nicotiana tabacum plants and long-term conservation of the recombinant enzyme. Protoplasma 2014, 251, 639–648. [Google Scholar] [CrossRef]
- Xue, X.-Y.; Mao, Y.-B.; Tao, X.-Y.; Huang, Y.-P.; Chen, X.-Y. New approaches to agricultural insect pest control based on RNA interference. Adv. Insect. Phys. 2012, 42, 73–117. [Google Scholar]
- Kim, J.Y.; Kavas, M.; Fouad, W.M.; Nong, G.; Preston, J.F.; Altpeter, F. Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production. Plant Mol. Biol. 2011, 76, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.; Ribeiro, T.; Lin, S.N.; Saha, P.; McMichael, C.; Chowdhary, R.; Agarwal, A. Validation of leaf and microbial pectinases: Commercial launching of a new platform technology. Plant Biotechnol. J. 2019, 17, 1154–1166. [Google Scholar] [CrossRef]
- Gray, B.N.; Ahner, B.A.; Hanson, M.R. High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnol. Bioeng. 2009, 102, 1045–1054. [Google Scholar] [CrossRef]
- Verma, D.; Jin, S.; Kanagaraj, A.; Singh, N.D.; Daniel, J.; Kolattukudy, P.E.; Miller, M.; Daniell, H. Expression of fungal cutinase and swollenin in tobacco chloroplasts reveals novel enzyme functions and/or substrates. PLoS ONE 2013, 8, e57187. [Google Scholar] [CrossRef]
- Leelavathi, S.; Gupta, N.; Maiti, S.; Ghosh, A.; Reddy, V.S. Overproduction of an alkali- and thermo-stable xylanase in tobacco chloroplasts and efficient recovery of the enzyme. Mol. Breed. 2003, 11, 59–67. [Google Scholar] [CrossRef]
- Kwon, K.C.; Chan, H.T.; Leon, I.R.; Williams-Carrier, R.; Barkan, A.; Daniell, H. Codon optimization to enhance expression yields insights into chloroplast translation. Plant Physiol. 2016, 172, 62–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Li, Y.; Jin, J.; Chen, Q.; Xie, X.; Wang, Z.; Luo, Z.; Yang, J. Recent advances in tobacco chloroplast genetic engineering. Tobacco Sci. Technol. 2017, 50, 88–98. [Google Scholar]
- Valkov, V.T.; Scotti, N.; Kahlau, S.; MacLean, D.; Grillo, S.; Gray, J.C.; Bock, R.; Cardi, T. Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: Transcriptional and posttranscriptional control. Plant Physiol. 2009, 150, 2030–2044. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Michoux, F.; Lossl, A.G.; Nixon, P.J. Challenges and perspectives in commercializing plastid transformation technology. J. Exp. Bot. 2016, 67, 5945–5960. [Google Scholar] [CrossRef]
Family | Scientific Name | Common Name | Selection Marker | Resistance | Method | Reference |
---|---|---|---|---|---|---|
Chlamydomonadaceae | Chlamydomonas reindhartii | Chlamydomonas | aphA6 | Kan 1 | Biolistic | [20] |
Euglenaceae | Euglena gracilis | Euglena | aadA | Spec 2/Strep 3 | Biolistic | [21] |
Funariaceae | Physcomitrella patens | moss | aadA | Spec | PEG 4 | [22] |
Asteraceae | Lactuca sativa | lettuce | aadA | Spec | Biolistic | [23] |
Amaranthaceae | Beta vulgaris | sugarbeet | aadA | Spec | Biolistic | [24] |
Asteraceae | Artemisia annua | sweet wormwood | aadA | Spec | Biolistic | [17] |
Brassicaceae | Arabidopsis thaliana | Arabidopsis | aadA | Spec | Biolistic | [25] |
Brassicaceae | Brassica capitate | cabbage | aadA | Spec/Strep | Biolistic | [26] |
Brassicaceae | Brassica napus | oilseed rape | aadA | Spec | Biolistic | [27] |
Brassicaceae | Brassica oleracea var. botrytis | cauliflower | aadA | Spec | PEG | [28] |
Brassicaceae | Lesquerella fendleri | popweed | aadA/GFP | Spec/Strep | Biolistic | [29] |
Cucurbitaceae | Momordica charantia | bitter squash | aadA | Spec | Biolistic | [16] |
Fabaceae | Glycine max | soybean | aadA | Spec | Biolistic | [30] |
Malvaceae | Gossypium spp. | cotton | aphA6/nptII | KNO3/Kan | Biolistic | [31] |
Poaceae | Oryza sativa | rice | hpt | Hygromycin | Biolistic | [32] |
Salicaceae | Populus alba | poplar | aadA | Spec | Biolistic | [33] |
Scrophulariaceae | Scoparia dulcis | licorice weed | aadA | Spec | Biolistic | [19] |
Solanaceae | Capsicum annuum | pepper | aadA | Spec | Biolistic | [34] |
Solanaceae | Nicotiana tabacum | tobacco | aadA | Spec | Biolistic | [8] |
Solanaceae | Solanum lycopersicum | tomato | aadA | Spec | Biolistic | [35] |
Solanaceae | Scoparia melongena | eggplant | aadA | Spec | Biolistic | [36] |
Solanaceae | Solanum tuberosum | potato | aadA | Spec/Strep | Biolistic | [37] |
Solanaceae | Petunia xhybrida | petunia | aadA | Spec/Strep | Biolistic | [38] |
Umbelliferae | Daucus carota | carrot | aadA | Spec | Biolistic | [39] |
Promoters | 5′-UTRs | 3′-UTRs | Insertion Sites |
---|---|---|---|
psbA | ggagg | psbA | trnl/trnA |
rrn | T7g10 | rps16 | rbcL/accD |
rbcL | rbcL | rbcL | trnfM-trnG |
psbA | petD | trnV/rps12 | |
atpB | trnN-trnR | ||
ycf3-trnS |
Integration Site | Regulatory Sequence Promoter/Terminator | Transgene | Efficiency of Expression | Enhanced Trait(s) | References |
---|---|---|---|---|---|
rbcL/accD | Prrn/rbcL 3′ | panD | >4-fold β-alanine | Photosynthesis and biomass production in response to high temperature stress | [90] |
trnI/trnA | T7g10 or PpsbA | RbcS | >150-fold RbcS transcript | Photosynthetic performance | [93] |
trnI/trnA | PpsbA/TpsbA | AQP1, TicAQP1 | 16-fold transcript | Photosynthetic performance | [94] |
trnV/orf708 | PpsbA/TpsbA | bicA | ~0.1% TLP | Photosynthetic performance | [95] |
trnV/rps12 | Prrn/T7g10/Trps16 | Trx f, Trx m | 700% leaf starch increased | Carbohydrate/starch content | [96] |
trnI/trnA | PpsbA/TpsbA | bgl-1 | >160-fold enzyme | Resistance to whitefly and aphids | [97] |
trnI/trnA | Prrn/ggagg/psbA 3′ | tps1 | >169-fold transcript | Drought tolerance | [98] |
trnI/trnA | PpsbA/T7g10/Trps16 | badh | 93–101 μmol/g DW | Salt tolerance (up to 400 mM NaCl) | [39] |
rbcL/accD | PpsbA/rbcL 3′ | hppd | 5% TSP | Resistance to herbicide | [30] |
rbcL/accD | Prrn/TpsbA | EPSPS | NR | Resistance to the herbicide glyphosate (>5 mM) | [99] |
rps7,12/trnV | Prrn/T7g10/Trps16 | EPSPS | >10% TSP | Resistance to the herbicide glyphosate | [92] |
trnV/rps12,7 | Prrn/TrbcL | bar | >7% in TSCP | Resistance to the herbicide phosphinothricin | [100] |
trnfM/trnG | PatpI/Trps16 | Lycopene β-cyclase, Phytoene synthase | NR | Herbicide resistance and carotenoid biosynthesis | [85] |
trnI/trnA | Prrn/T7g10/Trps16 | mt1 | NR | Phytoremediation capability on mercury accumulation | [101] |
trnI/trnA | Prrn/ggagg/TpsbA | merA, merB | NR | Phytoremediation capability on mercury accumulation | [102] |
trnI/trnA | PpsbA/TpsbA | RC101, PG1 | 32–38% TSP; 17–26% TSP | Resistance to viral and bacterial infections | [103] |
trnI/trnA | Prrn/TpsbA | Bt-cry2Aa2 | 45.3% TSP | Insecticidal protein content | [104] |
trnI/trnA | Prrn/T7g10/Trps16 | MSI-99 | 89.75 μg/g FW | Resistance to rice blast fungus | [105] |
trnV/rps12,7 | Prrn/T7g10/TrbcL | cry1Ab | NR | Resistance to caterpillar (Anticarsia gemmatalis) | [106] |
trnI/trnA | TrbcL | Bt-cry9Aa2 | ~10% of TSP | Resistance to potato tuber moth (Phthorimaea operculella) | [107] |
rbcL/accD | Prrn/TpsbA | cry2Aa2 | 2–3% TSP | Resistance to moth (Heliothis virescens, Helicoverpa zea, and Spodoptera exigua) | [108] |
rbcL/accD | PpsbA/SD/Trsp16 | TC, γ-TMT | 3.05 nmol h−1mg−1 protein | Vitamin E content in tobacco and lettuce | [109] |
trnfM/trnG | Prrn/TrbcL | HPT, TCY, TMT | NR | Vitamin E content in fruit; cold-stress tolerance | [35] |
trnI/trnA | Prrn/TpsbA | sporamin. CeCPI, chitinase | 0.85–1% TSP | Resistance to phytopathogens and insects | [89] |
trnI/trnA | PpsbA/TpsbA | cpo | 15-fold increased | Resistance to fungal infection (Fusarium verticillioides, Verticillium dahliae and Alternaria alternata) | [110] |
trnI/trnA | Prrn/T7g10/TpsbA | γ-TMT | 7.7% TLP | α-tocopherol content to regulate abiotic stress resistance | [91] |
trnI/trnA | PpsbA/TpsbA | PelB, PelD | 2.42 U/mg; 2.31 U/mg | Resistance to Erwinia soft rot | [111] |
trnI/trnA | PpsbA/TpsbA | pta | 5.16–9.27% TSP | Resistance to aphid, whitefly, Lepidopteran insects, and bacterial and viral pathogens | [112] |
trnI/trnA | PpsbA/TpsbA | phaA | 14.71 U/mg plant protein | Capacity for cytoplasmic male sterility engineering | [113] |
Trait | Protein Being Expressed | Expression | Host Plant | References |
---|---|---|---|---|
Insulin | EX4 | 14.3% TSP | tobacco | [117] |
Hemophilia B | FIX | 1.79 mg/g DW in lettuce; 3.8% TSP in tobacco | lettuce; tobacco | [123] [124] |
Hemophilia A | FVIII | 852 μg/g DW in lettuce; 370 mg/g FW in tobacco | lettuce; tobacco | [23] [138] |
Malaria | PMK, MVK, MDD, AACT, HMGS, HMGRt; IPP, FPP, ADS, CYP71AV1, AACPR | 0.1 mg/g FW | tobacco | [125] |
HIV | Pr55gag | 78–% TSP | tobacco | [139] |
HPV | E7 | 3–8% TSP | tobacco | [120] |
Human cytokine | IFNα2b | 3 mg/g FW | tobacco | [126] |
Human cytokine | IFN-γ | 6% TSP | tobacco | [140] |
Human cytokine | hCT-1 | 5% TSP | tobacco | [141] |
Cholera | AMA1 | 7.3 % TSP in tobacco; 13.2 % TSP in lettuce | tobacco; lettuce | [127] |
Tuberculosis | Mtb72F and ESAT6 | 1.2–7.5% TSP | tobacco | [142] |
Tuberculosis | CFP10, ESTA6 and dIFN | >0.035% TSP | carrot | [143] |
Dengue virus | EDIII | 0.8–1.6% TSP | tobacco | [144] |
Therapeutic Protein | Expression | References |
---|---|---|
αCD22HCH23PE40, αCD22PE40 -Targets and kills B cell tumor | 0.2–0.3% TSP | [20] |
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) -Leads to the apoptosis of cancer cells | 0.43–0.67% TSP | [131] |
GBSS-AMA1, GBSS-MSP1 -Anti-malarial | 0.2–1.0 μg/mg Starch | [132] |
Human glutamic acid decarboxylase (hGAD65) -For the treatment of Type I diabetes | 0.25–0.3% TSP | [133] |
Protein VP1 of Foot-and-mouth disease virus (FMDV-VP1) -Mucosal vaccine | 3% TSP | [134] |
Bovine mammary-associated serum amyloid (M-SAA) -Mucin induction | 3–5% TSP | [135] |
Protein E2 of classical swine fever virus (CSFV-E2) -Prevents classical swine fever | 1.5–2% TSP | [136] |
Protein VP2 of Infectious burial disease virus (IBDV-VP2) -Prevents IBDV infection | 0.8–4% TCP | [137] |
Products | Gene(s) | Expression | References |
---|---|---|---|
β-Glucosidase | bgl-1 | 44.4 U/g FW | [97] |
β-Glucosidase, Cellulases | bgl1, celA, celB | 9.9–58.2 U/mg of TSP | [147] |
Cellulases, Xylanase | endo, celB, xyn | 0.38–75.6% TSP | [8] |
Cell wall-degrading enzyme | bgl1C, cel6B, cel9A, xeg74 | 5–40% TSP | [148] |
β-Mannanase | manI | 25 U/g FW | [149] |
Xylanase | xynA, xyn10A, xyn11B | 0.2–6% TSP | [150] |
p-Hydroxybenzoic acid | UbiC | 25% DW | [151] |
Polyhydroxybutyrate | PHB pathway genes | 18.8% TSP | [145] |
Gene | Source | Expression Level | Promoter | Insertion Site | Reference |
---|---|---|---|---|---|
xyn | Alicyclobacillus acidocaldarius | 35.7% TSP | Prrn | rrn16/trnV–rps12/7 | [8] |
xynA | Bacillus subtilis strain NG-27 | 6% TSP | Prrn | rbcL-accD | [165] |
xyn2 | Trichoderma reesei | 421 U/mg TSP | Prrn | trnI-trnA | [111] |
xyl10B | Thermotoga maritima | 13%TSP; 61.9 U/mg DW | Prrn | rbcL-accD | [161] |
xynA | Clostridium cellulovorans | 0.5% TSP | Prrn or PpsbA | trnI-trnA | [150] |
xyn10A | Aspergillus niger | 0.2% TSP | PpsbA | trnI-trnA | [150] |
xyn11B | Aspergillus niger | 6% TSP | PpsbA | trnI-trnA | [150] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Yu, P.-C.; Chang, W.-J.; Yu, K.; Lin, C.-S. Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer? Int. J. Mol. Sci. 2020, 21, 4854. https://doi.org/10.3390/ijms21144854
Yu Y, Yu P-C, Chang W-J, Yu K, Lin C-S. Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer? International Journal of Molecular Sciences. 2020; 21(14):4854. https://doi.org/10.3390/ijms21144854
Chicago/Turabian StyleYu, Yihe, Po-Cheng Yu, Wan-Jung Chang, Keke Yu, and Choun-Sea Lin. 2020. "Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer?" International Journal of Molecular Sciences 21, no. 14: 4854. https://doi.org/10.3390/ijms21144854
APA StyleYu, Y., Yu, P. -C., Chang, W. -J., Yu, K., & Lin, C. -S. (2020). Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer? International Journal of Molecular Sciences, 21(14), 4854. https://doi.org/10.3390/ijms21144854