Genetic Polymorphisms Associated with Rheumatoid Arthritis Development and Antirheumatic Therapy Response
Abstract
:1. Introduction
2. Genetic Predisposition for Rheumatoid Arthritis
2.1. Role of HLA Genes in Rheumatoid Arthritis Development
2.2. Polymorphisms of Non-HLA Genes Associated with Rheumatoid Arthritis
2.2.1. Cytokines and Cytokine Receptors
2.2.2. Chemokines and Chemokine Receptors
2.2.3. Components of Intracellular Pathways That Regulate Proliferation
2.2.4. Genes That Encode Costimulatory Molecules
3. Predisposition to RA Depends on the Method of Analysis of Genes and Population Characteristics
4. Genetic Factors are Prognostic Markers Associated with RA Clinical Manifestations
5. Genetic Predictors of Response to Rheumatoid Arthritis Drug Therapy
5.1. Therapy of RA with the Use of Antirheumatic Drugs
5.2. Genetic Variants Affecting csDMARD Effectiveness
5.3. Polymorphic Genetic Variants Associated with the Biological and Targeted DMARD Effectiveness
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karami:, J.; Aslani, S.; Jamshidi, A.; Garshasbi, M.; Mahmoudi, M. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene 2019, 702, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Sparks, J.A.; Costenbader, K.H. Genetics, Environment, and Gene-Environment Interactions in the Development of Systemic Rheumatic Diseases. Rheum. Dis. Clin. N. Am. 2014, 40, 637–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O.; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef] [PubMed]
- Scherer, H.U.; Häupl, T.; Burmester, G.R. The etiology of rheumatoid arthritis. J. Autoimmun. 2020, 110, 102400. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Terao, C.; Yamamoto, K. Linking of genetic risk variants to disease-specific gene expression via multi-omics studies in rheumatoid arthritis. Semin. Arthritis Rheum. 2019, 49, S49–S53. [Google Scholar] [CrossRef] [PubMed]
- Messemaker, T.C.; Huizinga, T.W.; Kurreeman, F. Immunogenetics of rheumatoid arthritis: Understanding functional implications. J. Autoimmun. 2015, 64, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Castro-Santos, P.; Díaz-Peña, R. Genetics of rheumatoid arthritis: A new boost is needed in Latin American populations. Rev. Bras. Reum. Engl. Ed. 2016, 56, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y.; Kim, K.; Han, B.; Pillai, N.E.; Ong, R.T.-H.; Saw, W.-Y.; Luo, M.; Jiang, L.; Yin, J.; Bang, S.-Y.; et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum. Mol. Genet. 2014, 23, 6916–6926. [Google Scholar] [CrossRef] [Green Version]
- Raslan, H.M.; Attia, H.R.; Hamed Ibrahim, M.; Mahmoud Hassan, E.; Salama, I.I.; Ismail, S.; Abdelmotaleb, E.; El Menyawi, M.M.; Amr, K.S. Association of anti-cyclic citrullinated peptide antibodies and rheumatoid factor isotypes with HLA-DRB1 shared epitope alleles in Egyptian rheumatoid arthritis patients. Int. J. Rheum. Dis. 2020, 23, 647–653. [Google Scholar] [CrossRef]
- Busch, R.; Kollnberger, S.; Mellins, E.D. HLA associations in inflammatory arthritis: Emerging mechanisms and clinical implications. Nat. Rev. Rheumatol. 2019, 15, 364–381. [Google Scholar] [CrossRef] [Green Version]
- Machaj, F.; Rosik, J.; Szostak, B.; Pawlik, A. The evolution in our understanding of the genetics of rheumatoid arthritis and the impact on novel drug discovery. Expert Opin. Drug Discov. 2020, 15, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.J.; Ahmed, A.F.; Danila, M.I.; Hughes, L.B.; Gregersen, P.K.; Raychaudhuri, S.; Plenge, R.M.; Bridges, S.L. HLA-DRB1-associated rheumatoid arthritis risk at multiple levels in African Americans: Hierarchical classification systems, amino acid positions, and residues. Arthritis Rheumatol. 2014, 66, 3274–3282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochi, Y.; Suzuki, A.; Yamamoto, K. Genetic basis of rheumatoid arthritis: A current review. Biochem. Biophys. Res. Commun. 2014, 452, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Bang, S.Y.; Lee, H.S.; Bae, S.C. Update on the genetic architecture of rheumatoid arthritis. Nat. Rev. Rheumatol. 2017, 13, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Law, S.; Street, S.; Yu, C.-H.; Capini, C.; Ramnoruth, S.; Nel, H.J.; van Gorp, E.; Hyde, C.; Lau, K.; Pahau, H.; et al. T-cell autoreactivity to citrullinated autoantigenic peptides in rheumatoid arthritis patients carrying HLA-DRB1 shared epitope alleles. Arthritis Res. 2012, 14, R118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Li, J.; Li, S.; Zhang, T.P.; Li, L.J.; Lv, T.T.; Pan, H.F.; Ye, D.Q. Association of HLA-DQB1 polymorphisms with rheumatoid arthritis: A meta-analysis. Postgrad. Med. J. 2017, 93, 618–625. [Google Scholar] [CrossRef]
- Traylor, M.; Knevel, R.; Cui, J.; Taylor, J.; Harm-Jan, W.; Conaghan, P.G.; Cope, A.P.; Curtis, C.; Emery, P.; Newhouse, S.; et al. Genetic associations with radiological damage in rheumatoid arthritis: Meta-analysis of seven genome-wide association studies of 2,775 cases. PLoS ONE 2019, 14, e0223246. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Eyre, S.; Suzuki, A.; Kochi, Y.; Yamamoto, K. Genetics of rheumatoid arthritis: 2018 status. Ann. Rheum. Dis. 2019, 78, 446–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korczowska, I. Rheumatoid arthritis susceptibility genes: An overview. World J. Orthop. 2014, 5, 544–549. [Google Scholar] [CrossRef]
- Magyari, L.; Varszegi, D.; Kovesdi, E.; Sarlos, P.; Farago, B.; Javorhazy, A.; Sumegi, K.; Banfai, Z.; Melegh, B. Interleukins and interleukin receptors in rheumatoid arthritis: Research, diagnostics and clinical implications. World J. Orthop. 2014, 5, 516–536. [Google Scholar] [CrossRef]
- Zhang, C.; Jiao, S.; Li, T.; Zhao, L.; Chen, H. Relationship between polymorphisms in −572G/C interleukin 6 promoter gene polymorphisms (rs1800796) and risk of rheumatoid arthritis: A meta-analysis. Int. J. Rheum. Dis. 2020, 23, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Hou, J.; Zheng, M.; Cao, Y.; Alike, Y.; Mi, Y.; Zhu, J. IL-21 gene rs6822844 polymorphism and rheumatoid arthritis susceptibility. Biosci. Rep. 2020, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, F.S.; Aslani, S.; Mostafaei, S.; Jamshidi, A.; Riahi, P.; Mahmoudi, M. Are genetic variations in IL-21–IL-23R–IL-17A cytokine axis involved in a pathogenic pathway of rheumatoid arthritis? Bayesian hierarchical meta-analysis. J. Cell. Physiol. 2019, 234, 17159–17171. [Google Scholar] [CrossRef]
- Cheng, P.; Zhang, Y.; Huang, H.; Zhang, W.; Yang, Q.; Guo, F.; Chen, A. Association between CCR6 and rheumatoid arthritis: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 5388–5396. [Google Scholar] [PubMed]
- Toson, B.; Dos Santos, E.J.; Adelino, J.E.; Sandrin-Garcia, P.; Crovella, S.; Louzada-Júnior, P.; Oliveira, R.D.R.; Pedroza, L.S.R.A.; de Fátima Lobato Cunha Sauma, M.; de Lima, C.P.S.; et al. CCR5Δ32 and the genetic susceptibility to rheumatoid arthritis in admixed populations: A multicentre study. Rheumatol. (Oxf.) 2017, 56, 495–497. [Google Scholar]
- Chen, S.; Deng, C.; Hu, C.; Li, J.; Wen, X.; Wu, Z.; Li, Y.; Zhang, F.; Li, Y. Association of MCP-1-2518A/G polymorphism with susceptibility to autoimmune diseases: A meta-analysis. Clin. Rheumatol. 2016, 35, 1169–1179. [Google Scholar] [CrossRef]
- David, T.; Ling, S.F.; Barton, A. Genetics of immune-mediated inflammatory diseases. Clin. Exp. Immunol. 2018, 193, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yuan, X.; Zhou, Q.; Shi, J.; Song, Z.; Quan, R.; Zhang, D. Associations Between TNFAIP3 Gene Polymorphisms and Rheumatoid Arthritis Risk: A Meta-analysis. Arch. Med. Res. 2017, 48, 386–392. [Google Scholar] [CrossRef]
- Gao, W.; Dong, X.; Yang, Z.; Mao, G.; Xing, W. Association between rs7574865 polymorphism in STAT4 gene and rheumatoid arthritis: An updated meta-analysis. Eur. J. Intern. Med. 2020, 71, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Mustelin, T.; Bottini, N.; Stanford, S.M. The Contribution of PTPN22 to Rheumatic Disease. Arthritis Rheumatol. 2019, 71, 486–495. [Google Scholar] [CrossRef]
- Abbasifard, M.; Imani, D.; Bagheri-Hosseinabadi, Z. PTPN22 gene polymorphism and susceptibility to rheumatoid arthritis (RA): Updated systematic review and meta-analysis. J. Gene Med. 2020, e3204. [Google Scholar] [CrossRef]
- Wu, X.; Yang, H.J.; Jung Kim, M.; Zhang, T.; Qiu, J.Y.; Park, S. Association between PTPN22 -1123G/C and susceptibility to rheumatoid arthritis: A systematic review and meta-analysis. Int. J. Rheum. Dis. 2019, 22, 769–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, K.; Okada, Y.; Suzuki, A.; Kochi, Y. Genetic studies of rheumatoid arthritis. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2015, 91, 410–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Liu, J.; Liu, J.; Liang, Y.; Xu, W.; Leng, R.; Pan, H.; Ye, D. Associations Between PADI4 Gene Polymorphisms and Rheumatoid Arthritis: An Updated Meta-analysis. Arch. Med. Res. 2015, 46, 317–325. [Google Scholar] [CrossRef]
- Bérczi, B.; Gerencsér, G.; Farkas, N.; Hegyi, P.; Veres, G.; Bajor, J.; Czopf, L.; Alizadeh, H.; Rakonczay, Z.; Vigh, É.; et al. Association between AIRE gene polymorphism and rheumatoid arthritis: A systematic review and meta-analysis of case-control studies. Sci. Rep. 2017, 7, 14096. [Google Scholar] [CrossRef]
- Tizaoui, K.; Kim, S.; Jeong, G.; Kronbichler, A.; Lee, K.; Lee, K.; Shin, J. Association of PTPN22 1858C/T Polymorphism with Autoimmune Diseases: A Systematic Review and Bayesian Approach. J. Clin. Med. 2019, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Bae, S.-C. Association between susceptibility to rheumatoid arthritis and PADI4 polymorphisms: A meta-analysis. Clin. Rheumatol. 2016, 35, 961–971. [Google Scholar] [CrossRef]
- Li, G.; Shi, F.; Liu, J.; Li, Y. The effect of CTLA-4 A49G polymorphism on rheumatoid arthritis risk: A meta-analysis. Diagn. Pathol. 2014, 9, 157. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Bae, S.-C. Monocyte chemoattractant protein-1 promoter -2518 polymorphism and susceptibility to vasculitis, rheumatoid arthritis, and multiple sclerosis: A meta-analysis. Cell. Mol. Biol. (Noisy-Le-Grand) 2016, 62, 65–71. [Google Scholar]
- Yuan, Y.; Shao, W.; Li, Y. Associations between C677T and A1298C polymorphisms of MTHFR and susceptibility to rheumatoid arthritis: A systematic review and meta-analysis. Rheumatol. Int. 2017, 37, 557–569. [Google Scholar] [CrossRef]
- Bagheri-Hosseinabadi, Z.; Imani, D.; Yousefi, H.; Abbasifard, M. MTHFR gene polymorphisms and susceptibility to rheumatoid arthritis: A meta-analysis based on 16 studies. Clin. Rheumatol. 2020, 3, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yang, J.; He, H.; Yu, Y.; Lyu, J. Associations between interleukin-10 polymorphisms and susceptibility to rheumatoid arthritis: A meta-analysis and meta-regression. Clin. Rheumatol. 2018, 37, 3229–3237. [Google Scholar] [CrossRef]
- Du, J.; Wang, X.; Tan, G.; Liang, Z.; Zhang, Z.; Yu, H. The association between genetic polymorphisms of interleukin 23 receptor gene and the risk of rheumatoid arthritis: An updated meta-analysis. Clin. Immunol. 2020, 210, 108250. [Google Scholar] [CrossRef]
- Agonia, I.; Couras, J.; Cunha, A.; Andrade, A.J.; Macedo, J.; Sousa-Pinto, B. IL-17, IL-21 and IL-22 polymorphisms in rheumatoid arthritis: A systematic review and meta-analysis. Cytokine 2020, 125, 154813. [Google Scholar] [CrossRef] [PubMed]
- Song, G.G.; Bae, S.-C.; Lee, Y.H. Associations between functional TNFR2 196 M/R polymorphisms and susceptibility to rheumatoid arthritis: A meta-analysis. Rheumatol. Int. 2014, 34, 1529–1537. [Google Scholar] [CrossRef]
- Zhou, T.-B.; Zhao, H.-L.; Fang, S.-L.; Drummen, G.P.C. Association of transforming growth factor-β1 T869C, G915C, and C509T gene polymorphisms with rheumatoid arthritis risk. J. Recept. Signal Transduct. 2014, 34, 469–475. [Google Scholar] [CrossRef]
- Julià, A.; González, I.; Fernández-Nebro, A.; Blanco, F.; Rodriguez, L.; González, A.; Cañete, J.D.; Maymó, J.; Alperi-López, M.; Olivé, A.; et al. A genome-wide association study identifies SLC8A3 as a susceptibility locus for ACPA-positive rheumatoid arthritis. Rheumatology 2016, 55, 1106–1111. [Google Scholar] [CrossRef] [Green Version]
- Razi, B.; Reykandeh, S.E.; Alizadeh, S.; Amirzargar, A.; Saghazadeh, A.; Rezaei, N. TIM family gene polymorphism and susceptibility to rheumatoid arthritis: Systematic review and meta-analysis. PLoS ONE 2019, 14, e0211146. [Google Scholar] [CrossRef]
- Zheng, W.; Rao, S. Knowledge-based analysis of genetic associations of rheumatoid arthritis to inform studies searching for pleiotropic genes: A literature review and network analysis. Arthritis Res. 2015, 17, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freudenberg, J.; Gregersen, P.; Li, W. Enrichment of Genetic Variants for Rheumatoid Arthritis within T-Cell and NK-Cell Enhancer Regions. Mol. Med. 2015, 21, 180–184. [Google Scholar] [CrossRef]
- Fodil, M.; Teixeira, V.H.; Chaudru, V.; Hilliquin, P.; Bombardieri, S.; Balsa, A.; Westhovens, R.; Barrera, P.; Alves, H.; Migliorin, P.; et al. Relationship between SNPs and expression level for candidate genes in rheumatoid arthritis. Scand. J. Rheumatol. 2015, 44, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Hou, J.; Wu, Y.; Li, G.; Liu, J.; Ma, G.; Chen, B.; Song, Y. Identification of key genes in rheumatoid arthritis and osteoarthritis based on bioinformatics analysis. Medicine (USA) 2018, 97, 22. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Lin, X.; Yu, H. Identifying genes related with rheumatoid arthritis via system biology analysis. Gene 2015, 571, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Gang, X.; Sun, Y.; Li, F.; Yu, T.; Jiang, Z.; Zhu, X.; Jiang, Q.; Wang, Y. Identification of key genes associated with rheumatoid arthritis with bioinformatics approach. Medicine (USA) 2017, 96, e7673. [Google Scholar] [CrossRef] [PubMed]
- Shchetynsky, K.; Diaz-Gallo, L.-M.; Folkersen, L.; Hensvold, A.H.; Catrina, A.I.; Berg, L.; Klareskog, L.; Padyukov, L. Discovery of new candidate genes for rheumatoid arthritis through integration of genetic association data with expression pathway analysis. Arthritis Res. 2017, 19, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Lai-Han Leung, E.; Pan, H.; Yao, X.; Huang, Q.; Wu, M.; Xu, T.; Wang, Y.; Cai, J.; Li, R.; et al. Identification of potential genetic causal variants for rheumatoid arthritis by whole-exome sequencing. Oncotarget 2017, 8, 111119–111129. [Google Scholar] [CrossRef]
- Viatte, S.; Plant, D.; Han, B.; Fu, B.; Yarwood, A.; Thomson, W.; Symmons, D.P.M.; Worthington, J.; Young, A.; Hyrich, K.L.; et al. Association of HLA-DRB1 Haplotypes With Rheumatoid Arthritis Severity, Mortality, and Treatment Response. JAMA 2015, 313, 1645. [Google Scholar] [CrossRef]
- Ling, S.F.; Viatte, S.; Lunt, M.; Van Sijl, A.M.; Silva-Fernandez, L.; Symmons, D.P.M.; Young, A.; Macgregor, A.J.; Barton, A. HLA-DRB1 Amino Acid Positions 11/13, 71, and 74 Are Associated With Inflammation Level, Disease Activity, and the Health Assessment Questionnaire Score in Patients With Inflammatory Polyarthritis. Arthritis Rheumatol. 2016, 68, 2618–2628. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Lasanta, M.; Julià, A.; Maymó, J.; Fernández-Gutierrez, B.; Ureña-Garnica, I.; Blanco, F.J.; Cañete, J.D.; Alperi-López, M.; Olivè, A.; Corominas, H.; et al. Variation at interleukin-6 receptor gene is associated to joint damage in rheumatoid arthritis. Arthritis Res. 2015, 17, 242. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, E.H.; Saleh, M.H.; Al-Shahaly, M.H.; Toraih, E.A.; Fathy, A. IL-37 gene variant ( rs3811047 ): A marker of disease activity in rheumatoid arthritis: A pilot study. Autoimmunity 2018, 51, 378–385. [Google Scholar] [CrossRef]
- Zhi, L.; Yao, S.; Ma, W.; Zhang, W.; Chen, H.; Li, M.; Ma, J. Polymorphisms of RAD51B are associated with rheumatoid arthritis and erosion in rheumatoid arthritis patients. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Bang, S.-Y.; Lee, H.-S.; Cho, S.-K.; Choi, C.-B.; Sung, Y.-K.; Kim, T.-H.; Jun, J.-B.; Yoo, D.H.; Kang, Y.M.; et al. High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci. Ann. Rheum. Dis. 2015, 74, e13. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, J.; Cui, G.; Yang, H.; Cao, T.; Wang, L. Evaluation of the association of UBASH3A and SYNGR1 with rheumatoid arthritis and disease activity and severity in Han Chinese. Oncotarget 2017, 8, 103385–103392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannini, D.; Antonucci, M.; Petrelli, F.; Bilia, S.; Alunno, A.; Puxeddu, I. One year in review 2020: Pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol. 2020, 38, 387–397. [Google Scholar] [PubMed]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, J.A.; Saag, K.G.; Bridges, S.L.; Akl, E.A.; Bannuru, R.R.; Sullivan, M.C.; Vaysbrot, E.; McNaughton, C.; Osani, M.; Shmerling, R.H.; et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res. (Hoboken) 2016, 68, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Castañeda, S.; López-Mejías, R.; González-Gay, M.A. Gene polymorphisms and therapy in rheumatoid arthritis. Expert Opin. Drug Metab. Toxicol. 2016, 12, 225–229. [Google Scholar] [CrossRef]
- Chen, Y.; Zou, K.; Sun, J.; Yang, Y.; Liu, G. Are gene polymorphisms related to treatment outcomes of methotrexate in patients with rheumatoid arthritis? A systematic review and meta-analysis. Pharmacogenomics 2017, 18, 175–195. [Google Scholar] [CrossRef]
- Soukup, T.; Dosedel, M.; Pavek, P.; Nekvindova, J.; Barvik, I.; Bubancova, I.; Bradna, P.; Kubena, A.A.; Carazo, A.F.; Veleta, T.; et al. The impact of C677T and A1298C MTHFR polymorphisms on methotrexate therapeutic response in East Bohemian region rheumatoid arthritis patients. Rheumatol. Int. 2015, 35, 1149–1161. [Google Scholar] [CrossRef]
- Qiu, Q.; Huang, J.; Shu, X.; Fan, H.; Zhou, Y.; Xiao, C. Polymorphisms and Pharmacogenomics for the Clinical Efficacy of Methotrexate in Patients with Rheumatoid Arthritis: A Systematic Review and Meta-analysis. Sci. Rep. 2017, 7, 44015. [Google Scholar] [CrossRef] [Green Version]
- Moya, P.; Salazar, J.; Arranz, M.J.; Díaz-Torné, C.; Del Río, E.; Casademont, J.; Corominas, H.; Baiget, M. Methotrexate pharmacokinetic genetic variants are associated with outcome in rheumatoid arthritis patients. Pharmacogenomics 2016, 17, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Bernardes, M.; Azevedo, R.; Medeiros, R.; Seabra, V. Pharmacogenomics of Methotrexate Membrane Transport Pathway: Can Clinical Response to Methotrexate in Rheumatoid Arthritis Be Predicted? Int. J. Mol. Sci. 2015, 16, 13760–13780. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.; Bernardes, M.; Azevedo, R.; Monteiro, J.; Sousa, H.; Medeiros, R.; Seabra, V. SLC19A1, SLC46A1 and SLCO1B1 Polymorphisms as Predictors of Methotrexate-Related Toxicity in Portuguese Rheumatoid Arthritis Patients. Toxicol. Sci. 2014, 142, 196–209. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Q.; Huang, J.; Lin, Y.; Shu, X.; Fan, H.; Tu, Z.; Zhou, Y.; Xiao, C. Polymorphisms and pharmacogenomics for the toxicity of methotrexate monotherapy in patients with rheumatoid arthritis: A systematic review and meta-analysis. Medicine. (Baltim.) 2017, 96, e6337. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Yuan, Y.; Li, Y. Association Between MTHFR C677T Polymorphism and Methotrexate Treatment Outcome in Rheumatoid Arthritis Patients: A Systematic Review and Meta-Analysis. Genet. Test. Mol. Biomark. 2017, 21, 275–285. [Google Scholar] [CrossRef]
- Jekic, B.; Maksimovic, N.; Damnjanovic, T. Methotrexate pharmacogenetics in the treatment of rheumatoid arthritis. Pharmacogenomics 2019, 20, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Bae, S.-C. Association of the ATIC 347 C/G polymorphism with responsiveness to and toxicity of methotrexate in rheumatoid arthritis: A meta-analysis. Rheumatol. Int. 2016, 36, 1591–1599. [Google Scholar] [CrossRef] [PubMed]
- Eektimmerman, F.; Swen, J.J.; Madhar, M.B.; Allaart, C.F.; Guchelaar, H.-J. Predictive genetic biomarkers for the efficacy of methotrexate in rheumatoid arthritis: A systematic review. Pharm. J. 2020, 20, 159–168. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Sun, M.; Liang, S.; Li, M.; Li, L.; Yang, Y. Association between ABCB1 C3435T polymorphism and methotrexate treatment outcomes in rheumatoid arthritis patients: A meta-analysis. Pharmacogenomics 2019, 20, 381–392. [Google Scholar] [CrossRef]
- Maldonado-Montoro, M.; Cañadas-Garre, M.; González-Utrilla, A.; Ángel Calleja-Hernández, M. Influence of IL6R gene polymorphisms in the effectiveness to treatment with tocilizumab in rheumatoid arthritis. Pharm. J. 2018, 18, 167–172. [Google Scholar] [CrossRef]
- Luxembourger, C.; Ruyssen-Witrand, A.; Ladhari, C.; Rittore, C.; Degboe, Y.; Maillefert, J.-F.; Gaudin, P.; Marotte, H.; Wendling, D.; Jorgensen, C.; et al. A single nucleotide polymorphism of IL6-receptor is associated with response to tocilizumab in rheumatoid arthritis patients. Pharm. J. 2019, 19, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Quax, R.A.M.; Koper, J.W.; Huisman, A.M.; Weel, A.; Hazes, J.M.W.; Lamberts, S.W.J.; Feelders, R.A. Polymorphisms in the glucocorticoid receptor gene and in the glucocorticoid-induced transcript 1 gene are associated with disease activity and response to glucocorticoid bridging therapy in rheumatoid arthritis. Rheumatol. Int. 2015, 35, 1325–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Sheng, X.; Sheng, R.; Lu, H.; Xu, H. Genetic and clinical markers for predicting treatment responsiveness in rheumatoid arthritis. Front. Med. 2019, 13, 411–419. [Google Scholar] [CrossRef]
- Avila-Pedretti, G.; Tornero, J.; Fernández-Nebro, A.; Blanco, F.; González-Alvaro, I.; Cañete, J.D.; Maymó, J.; Alperiz, M.; Fernández-Gutiérrez, B.; Olivé, A.; et al. Variation at FCGR2A and functionally related genes is associated with the response to anti-TNF therapy in rheumatoid arthritis. PLoS ONE 2015, 10, e0122088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bek, S.; Bojesen, A.B.; Nielsen, J.V.; Sode, J.; Bank, S.; Vogel, U.; Andersen, V. Systematic review and meta-Analysis: Pharmacogenetics of anti-TNF treatment response in rheumatoid arthritis. Pharm. J. 2017, 17, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro-Iglesias, A.; Montes, A.; Perez-Pampin, E.; Cañete, J.D.; Raya, E.; Magro-Checa, C.; Vasilopoulos, Y.; Caliz, R.; Ferrer, M.A.; Joven, B.; et al. Evaluation of 12 GWAS-drawn SNPs as biomarkers of rheumatoid arthritis response to TNF inhibitors. A potential SNP association with response to etanercept. PLoS ONE 2019, 14, e0213073. [Google Scholar] [CrossRef]
- Cuppen, B.V.J.; Pardali, K.; Kraan, M.C.; Marijnissen, A.C.A.; Yrlid, L.; Olsson, M.; Bijlsma, J.W.J.; Lafeber, F.P.J.G.; Fritsch-Stork, R.D.E. Polymorphisms in the multidrug-resistance 1 gene related to glucocorticoid response in rheumatoid arthritis treatment. Rheumatol. Int. 2017, 37, 531–536. [Google Scholar] [CrossRef] [Green Version]
- Yarwood, A.; Eyre, S.; Worthington, J. Genetic susceptibility to rheumatoid arthritis and its implications for novel drug discovery. Expert Opin. Drug Discov. 2016, 11, 805–813. [Google Scholar] [CrossRef]
- Oliver, J.; Plant, D.; Webster, A.P.; Barton, A. Genetic and genomic markers of anti-TNF treatment response in rheumatoid arthritis. Biomark. Med. 2015, 9, 499–512. [Google Scholar] [CrossRef]
- Burmester, G.R.; Durez, P.; Shestakova, G.; Genovese, M.C.; Schulze-Koops, H.; Li, Y.; Wang, Y.A.; Lewitzky, S.; Koroleva, I.; Berneis, A.A.; et al. Association of HLA-DRB1 alleles with clinical responses to the anti-interleukin-17A monoclonal antibody secukinumab in active rheumatoid arthritis. Rheumatology 2016, 55, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Swierkot, J.; Bogunia-Kubik, K.; Nowak, B.; Bialowas, K.; Korman, L.; Gebura, K.; Kolossa, K.; Jeka, S.; Wiland, P. Analysis of associations between polymorphisms within genes coding for tumour necrosis factor (TNF)-alpha and TNF receptors and responsiveness to TNF-alpha blockers in patients with rheumatoid arthritis. Jt. Bone Spine 2015, 82, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Iwaszko, M.; Świerkot, J.; Kolossa, K.; Jeka, S.; Wiland, P.; Bogunia-Kubik, K. Polymorphisms within the human leucocyte antigen-E gene and their associations with susceptibility to rheumatoid arthritis as well as clinical outcome of anti-tumour necrosis factor therapy. Clin. Exp. Immunol. 2015, 182, 270–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juli, A.; Fernandez-Nebro, A.; Blanco, F.; Ortiz, A.; Cañete, J.D.; Maymó, J.; Alperi-López, M.; Fernández-Gutierrez, B.; Oliv, A.; Corominas, H.; et al. A genome-wide association study identifies a new locus associated with the response to anti-TNF therapy in rheumatoid arthritis. Pharm. J. 2016, 16, 147–150. [Google Scholar] [CrossRef]
- Lee, Y.H.; Bae, S.-C. Associations between PTPRC rs10919563 A/G and FCGR2A R131H polymorphisms and responsiveness to TNF blockers in rheumatoid arthritis: A meta-analysis. Rheumatol. Int. 2016, 36, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Sode, J.; Vogel, U.; Bank, S.; Andersen, P.S.; Hetland, M.L.; Locht, H.; Heegaard, N.H.H.; Andersen, V. Genetic Variations in Pattern Recognition Receptor Loci Are Associated with Anti-TNF Response in Patients with Rheumatoid Arthritis. PLoS ONE 2015, 10, e0139781. [Google Scholar] [CrossRef]
- Nemtsova, M.V.; Zaletaev, D.V.; Bure, I.V.; Mikhaylenko, D.S.; Kuznetsova, E.B.; Alekseeva, E.A.; Zamyatnin, A.A. Epigenetic Changes in the Pathogenesis of Rheumatoid Arthritis. Front. Genet. 2019, 10, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Liu, H.; Chen, L.; Wang, Y.; Yao, X.; Jiang, X. Association of microRNAs genes polymorphisms with arthritis: A systematic review and meta-analysis. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef]
Protein Product | Gene | Polymorphism | Allele/Genotype Associated with RA | Reference |
---|---|---|---|---|
Protein tyrosine phosphatase, nonreceptor type 22 | PTPN22 | rs2476601 rs2488457 | T C | [30,31,32,36] |
Peptidyl arginine deiminase 4 | PADI4 | rs11203367 rs884871 rs2240340 | T G A | [37] |
Tumor necrosis factor, alpha-induced protein 3 (A20) | TNFAIP3 | rs2230926 rs5029937 | G T | [28] |
Cytotoxic T-lymphocyte associated protein 4 | CTLA4 | rs231775 | GG | [38] |
Signal transducer and activator of transcription 4 | STAT4 | rs7574865 | T | [29] |
C-C motif chemokine receptor 6 | CCR6 | rs3093024 | A | [24] |
C-C motif chemokine ligand 2 (monocytes chemo-attractant) | CCL2 | rs1024611 | G | [39] |
Autoimmune regulator (transcription factor) | AIRE | rs2075876 rs760426 | A G | [35] |
Methylene tetrahydrofolate reductase | MTHFR | rs1801133 rs1801131 | T CC | [40,41] |
Interleukin 10 | IL10 | rs1800896 rs3021097 rs1800872 | AA TT AA | [42] |
Interleukin 23 receptor | IL23R | rs11209026 rs10489629 rs1343151 | AA G A | [23,43] |
Interleukin 17 | IL17 | rs2275913 | AA | [44] |
Tumour necrosis factor receptor type 2 | TNFR2 | rs1061622 | GG | [45] |
Transforming growth factor beta and its receptors | TGFB | rs1800470 rs1800469 | TT TT | [46] |
Drug Class | Gene | Polymorphism | Association | Reference |
---|---|---|---|---|
Cytostatic agents | MTHFR | rs1801133 | T-allele–MTX toxicity | [75,76] |
ATIC | rs7563206 rs2372536 | T-allele G allele–MTX nonresponders | [77,78] | |
TYMS | rs2244500 rs2847153 rs3786362 | AA genotype A-allele G-allele–MTX efficacy | [78] | |
RFC1 | rs1051266 | AA genotype–MTX efficacy | [70] | |
ABCB1 | rs1045642 | C-allele–MTX efficacy | [79] | |
DHODH | rs3213422 | AA genotype–leflunomide efficacy | [67] | |
IL6 inhibitors | IL6R | rs12083537 rs11265618 | AA genotype CC genotype–tocilizumab better response | [80,81] |
Glucocorticoids | GLCCI1 GR | rs37972 rs41423247 rs6195 | T-allele–decreased sensitivity G-allele–increased sensitivity to transition therapy | [82] |
TNF inhibitors | TNFRSF1B | rs1061622 | G-allele–increased sensitivity | [83] |
TNFA | rs1800629 rs361525 | A-alleles–anti-TNF agent efficacy | [11] | |
FCGR2A | rs1801274 | HH + HR genotype–adalimumab efficacy | [84] | |
PTPRC | rs10919563 | A-allele–decreased sensitivity | [84] | |
TLR1 TLR5 | rs4833095 rs5744174 | CC genotype; C-allele–anti-TNF agent efficacy | [85] | |
NUBPL | rs2378945 | Minor allele–decreased etanercept sensitivity | [86] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhaylenko, D.S.; Nemtsova, M.V.; Bure, I.V.; Kuznetsova, E.B.; Alekseeva, E.A.; Tarasov, V.V.; Lukashev, A.N.; Beloukhova, M.I.; Deviatkin, A.A.; Zamyatnin, A.A., Jr. Genetic Polymorphisms Associated with Rheumatoid Arthritis Development and Antirheumatic Therapy Response. Int. J. Mol. Sci. 2020, 21, 4911. https://doi.org/10.3390/ijms21144911
Mikhaylenko DS, Nemtsova MV, Bure IV, Kuznetsova EB, Alekseeva EA, Tarasov VV, Lukashev AN, Beloukhova MI, Deviatkin AA, Zamyatnin AA Jr. Genetic Polymorphisms Associated with Rheumatoid Arthritis Development and Antirheumatic Therapy Response. International Journal of Molecular Sciences. 2020; 21(14):4911. https://doi.org/10.3390/ijms21144911
Chicago/Turabian StyleMikhaylenko, Dmitry S., Marina V. Nemtsova, Irina V. Bure, Ekaterina B. Kuznetsova, Ekaterina A. Alekseeva, Vadim V. Tarasov, Alexander N. Lukashev, Marina I. Beloukhova, Andrei A. Deviatkin, and Andrey A. Zamyatnin, Jr. 2020. "Genetic Polymorphisms Associated with Rheumatoid Arthritis Development and Antirheumatic Therapy Response" International Journal of Molecular Sciences 21, no. 14: 4911. https://doi.org/10.3390/ijms21144911
APA StyleMikhaylenko, D. S., Nemtsova, M. V., Bure, I. V., Kuznetsova, E. B., Alekseeva, E. A., Tarasov, V. V., Lukashev, A. N., Beloukhova, M. I., Deviatkin, A. A., & Zamyatnin, A. A., Jr. (2020). Genetic Polymorphisms Associated with Rheumatoid Arthritis Development and Antirheumatic Therapy Response. International Journal of Molecular Sciences, 21(14), 4911. https://doi.org/10.3390/ijms21144911