The Latest Findings of PD-1/PD-L1 Inhibitor Application in Gynecologic Cancers
Abstract
:1. Introduction
2. PD-1/PDL1 Pathway
3. Cervical Cancer
3.1. Risk Factors and Clinical Features
3.2. Pre-Clinical Studies
3.3. PD-1 Inhibitors
3.4. Combination Therapy of PD-1 Inhibitors with Chemotherapy and Radiotherapy
3.5. PD-L1 Inhibitors
3.6. Combination Therapy of PD-L1 Inhibitors with Chemotherapy and Radiotherapy
4. Ovarian Cancer
4.1. Risk Factors and Clinical Features
4.2. Pre-Clinical Studies
4.3. PD-1 Inhibitors
4.4. Monotherapy or Combination Therapy with PD-L1 Inhibitors in Ovarian Cancer
4.5. Combination Therapy of PD-1 Inhibitors with Chemotherapy and Radiotherapy
5. Uterine Cancer
5.1. Risk Factors and Clinical Features
5.2. Pre-Clinical Studies
5.3. PD-1 Inhibitors
5.4. Combination Therapy with PD-1 Inhibitors
5.5. Ongoing Trials of Combination Therapy with PD-L1 Inhibitors
6. ICIs and Drug Resistance
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FDA | the US food and drug administration |
TILs | tumor-infiltrating lymphocytes |
T-reg | regulatory T cells |
TAM | tumor-associated macrophages |
CTLA-4 | cytotoxic T-lymphocyte antigen 4 |
PD-1 | programmed cell death protein 1 |
PD-L1 | Programmed death-ligand |
NACT | neoadjuvant chemotherapy |
SD | stable disease |
PFS | progression-free survival |
OS | overall survival |
irAEs | immune-related adverse events |
mPFS | median PFS |
mOS | median OS |
ORR | overall response rate |
HPV | human papillomavirus |
ICIs | immune checkpoint inhibitors |
PR | partial response |
ORR | overall response rate |
VPA | valproic acid |
OC | ovarian cancer |
UC | uterine cancer |
EC | endometrial cancer |
CTNNB1 | catenin beta 1 |
PIK3CA | phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
HGSOCs | high grade serous ovarian cancers |
DOR | response length |
ACT | adoptive cell transfer |
BiTE | bispecific T cell engager |
UC | uterine cancer |
EC | endometrial cancer |
MSI-H | the microsatellite instability-hyper-mutated |
POLE | the polymerase epsilon |
TKIs | tyrosine kinase inhibitors |
MSS | microsatellite stable |
HRQoL | health-related quality of life |
pCR | pathological complete response |
ADCC | antibody-dependent cell-mediated cytotoxicity |
B2M | beta-2 microglobulin |
EMT | epithelial-mesenchymal transition |
IPRES | primary PD-1 resistance |
HFRT | hypofractionated radiation therapy |
CTX | cyclophosphamide |
DLT | dose-limiting toxicity |
PK | pharmacokinetic |
References
- Purohit, P.; Sassarini, J.; Lumsden, M.A. Management of Induced Menopause in Gynaecological Cancers and Their Challenges. Curr. Obstet. Gynecol. Rep. 2019, 8, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Carter, J.; Penson, R.; Barakat, R.; Wenzel, L. Contemporary quality of life issues affecting gynecologic cancer survivors. Hematol. Oncol. Clin. N. Am. 2012, 26, 169–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manchana, T.; Ittiwut, C.; Mutirangura, A.; Kavanagh, J.J. Targeted therapies for rare gynaecological cancers. Lancet Oncol. 2010, 11, 685–693. [Google Scholar] [CrossRef]
- Pakish, J.B.; Jazaeri, A.A. Immunotherapy in gynecologic cancers: Are we there yet? Curr. Treat. Options Oncol. 2017, 18, 59. [Google Scholar] [CrossRef] [Green Version]
- Kooshkaki, O.; Derakhshani, A.; Hosseinkhani, N.; Torabi, M.; Safaei, S.; Brunetti, O.; Racanelli, V.; Silvestris, N.; Baradaran, B. Combination of Ipilimumab and Nivolumab in Cancers: From Clinical Practice to Ongoing Clinical Trials. Int. J. Mol. Sci. 2020, 21, 4427. [Google Scholar] [CrossRef]
- Yaghoubi, N.; Soltani, A.; Ghazvini, K.; Hassanian, S.M.; Hashemy, S.I. PD-1/PD-L1 blockade as a novel treatment for colorectal cancer. Biomed. Pharmacother. 2019, 110, 312–318. [Google Scholar] [CrossRef]
- Zolkind, P.; Uppaluri, R. Checkpoint immunotherapy in head and neck cancers. Cancer Metastasis Rev. 2017, 36, 475–489. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L.; Tong, R.; Yang, F.; Yin, L.; Li, M.; You, L.; Xue, J.; Lu, Y.J.F.I.P. PD-1/PD-L1 inhibitors in cervical cancer. Front. Pharmacol. 2019, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Ning, Y.M.; Suzman, D.; Maher, V.E.; Zhang, L.; Tang, S.; Ricks, T.; Palmby, T.; Fu, W.; Liu, Q.; Goldberg, K.B.J.T.O. FDA approval summary: Atezolizumab for the treatment of patients with progressive advanced urothelial carcinoma after platinum-containing chemotherapy. Oncologist 2017, 22, 743. [Google Scholar] [CrossRef] [Green Version]
- Gadducci, A.; Guerrieri, M.E. Immune checkpoint inhibitors in gynecological cancers: Update of literature and perspectives of clinical research. Anticancer Res. 2017, 37, 5955–5965. [Google Scholar] [PubMed] [Green Version]
- Maimela, N.R.; Liu, S.; Zhang, Y. Fates of CD8+ T cells in Tumor Microenvironment. Comput. Struct. Biotechnol. J. 2018, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Späth, S.S.; Weissman, S.M.; Katz, S.G. An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer Cell Interactions. Methods Mol. Biol. 2020, 2097, 139–171. [Google Scholar] [PubMed]
- Rad, F.R.; Ajdary, S.; Omranipour, R.; Alimohammadian, M.H.; Hassan, Z.M. Comparative analysis of CD4+ and CD8+ T cells in tumor tissues, lymph nodes and the peripheral blood from patients with breast cancer. Iran Biomed. J. 2015, 19, 35–44. [Google Scholar]
- Vazquez, M.I.; Catalan-Dibene, J.; Zlotnik, A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 2015, 74, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Gun, S.Y.; Lee, S.W.L.; Sieow, J.L.; Wong, S.C. Targeting immune cells for cancer therapy. Redox Biol. 2019, 25, 101174. [Google Scholar] [CrossRef]
- Chen, L.; Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 2013, 13, 227–242. [Google Scholar] [CrossRef]
- Izzedine, H.; Mateus, C.; Boutros, C.; Robert, C.; Rouvier, P.; Amoura, Z.; Mathian, A. Renal effects of immune checkpoint inhibitors. Nephrol. Dial. Transplant. 2017, 32, 936–942. [Google Scholar] [CrossRef] [Green Version]
- Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 2018, 62, 29–39. [Google Scholar] [CrossRef]
- Antonia, S.J.; López-Martin, J.A.; Bendell, J.; Ott, P.A.; Taylor, M.; Eder, J.P.; Jäger, D.; Pietanza, M.C.; Le, D.T.; de Braud, F. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): A multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016, 17, 883–895. [Google Scholar] [CrossRef] [Green Version]
- Chae, Y.K.; Arya, A.; Iams, W.; Cruz, M.R.; Chandra, S.; Choi, J.; Giles, F. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J. Immunother. Cancer 2018, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Vu, M.; Yu, J.; Awolude, O.A.; Chuang, L. Cervical cancer worldwide. Curr. Probl. Cancer 2018, 42, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Tsikouras, P.; Zervoudis, S.; Manav, B.; Tomara, E.; Iatrakis, G.; Romanidis, C.; Bothou, A.; Galazios, G. Cervical cancer: Screening, diagnosis and staging. J. Buon. 2016, 21, 320–325. [Google Scholar] [PubMed]
- Kashyap, N.; Krishnan, N.; Kaur, S.; Ghai, S. Risk Factors of Cervical Cancer: A Case-Control Study. Asia Pac. J. Oncol. Nurs. 2019, 6, 308–314. [Google Scholar] [CrossRef]
- Burd, E.M. Human papillomavirus and cervical cancer. Clin. Microbiol. Rev. 2003, 16, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Thaxton, L.; Waxman, A.G. Cervical cancer prevention: Immunization and screening 2015. Med. Clin. N. Am. 2015, 99, 469–477. [Google Scholar] [CrossRef]
- Kessler, T.A. Cervical Cancer: Prevention and Early Detection. Semin. Oncol. Nurs. 2017, 33, 172–183. [Google Scholar] [CrossRef]
- Cao, L.; Li, X.; Zhang, Y.; Li, X.; Wang, Q. Clinical features and prognosis of cervical cancer in young women. Zhong Nan Da Xue Xue Bao. Yi Xue Ban = J. Central South Univ. Med. Sci. 2010, 35, 875–878. [Google Scholar]
- Menderes, G.; Black, J.; Schwab, C.L.; Santin, A.D. Immunotherapy and targeted therapy for cervical cancer: An update. Expert Rev. Anticancer Ther. 2016, 16, 83–98. [Google Scholar] [CrossRef]
- Piersma, S.J.; Jordanova, E.S.; van Poelgeest, M.I.; Kwappenberg, K.M.; van der Hulst, J.M.; Drijfhout, J.W.; Melief, C.J.; Kenter, G.G.; Fleuren, G.J.; Offringa, R. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res. 2007, 67, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Lü, W.; Zhang, X.; Lü, B. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes before and after neoadjuvant chemotherapy in cervical cancer. Diagn. Pathol. 2018, 13, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Y.; Liang, H.; Hu, J.; Liu, S.; Hao, X.; Wong, M.S.K.; Li, X.; Hu, L. PD-L1 expression correlates with tumor infiltrating lymphocytes and response to neoadjuvant chemotherapy in cervical cancer. J. Cancer 2018, 9, 2938. [Google Scholar] [CrossRef] [PubMed]
- Anggraeni, T.D.; Rustamadji, P.; Aziz, M.F. Fas Ligand (FasL) in Association with Tumor-Infiltrating Lymphocytes (TILs) in Early Stage Cervical Cancer. Asian Pac. J. Cancer Prev. 2020, 21, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, R.; Fan, P.; Yao, X.; Qin, L.; Peng, Y.; Ma, M.; Asley, N.; Chang, X.; Feng, Y. A Comprehensive Analysis of Key Immune Checkpoint Receptors on Tumor-Infiltrating T Cells from Multiple Types of Cancer. Front. Oncol. 2019, 9, 1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frenel, J.-S.; le Tourneau, C.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; van Brummelen, E.M.; Rugo, H.S.; Thomas, S.; Saraf, S. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1–positive cervical cancer: Results from the phase Ib KEYNOTE-028 trial. J. Clin. Oncol. 2017, 35, 4035–4041. [Google Scholar] [CrossRef]
- Santin, A.D.; Deng, W.; Frumovitz, M.; Buza, N.; Bellone, S.; Huh, W.; Khleif, S.; Lankes, H.A.; Ratner, E.S.; O’Cearbhaill, R.E. Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002). Gynecol. Oncol. 2020, 157, 161–166. [Google Scholar] [CrossRef]
- Borcoman, E.; le Tourneau, C. Pembrolizumab in cervical cancer: Latest evidence and clinical usefulness. Ther. Adv. Med. Oncol. 2017, 9, 431–439. [Google Scholar] [CrossRef]
- Papadopoulos, K.P.; Crittenden, M.R.; Johnson, M.L.; Lockhart, A.C.; Moore, K.N.; Falchook, G.S.; Formenti, S.; Carvajal, R.D.; Leidner, R.S.; Naing, A.; et al. A first-in-human study of REGN2810, a monoclonal, fully human antibody to programmed death-1 (PD-1), in combination with immunomodulators including hypofractionated radiotherapy (hfRT). J. Clin. Oncol. 2016, 34, 3024. [Google Scholar] [CrossRef]
- Tuyaerts, S.; van Nuffel, A.M.T.; Naert, E.; van Dam, P.A.; Vuylsteke, P.; de Caluwé, A.; Aspeslagh, S.; Dirix, P.; Lippens, L.; de Jaeghere, E.; et al. PRIMMO study protocol: A phase II study combining PD-1 blockade, radiation and immunomodulation to tackle cervical and uterine cancer. BMC Cancer 2019, 19, 506. [Google Scholar] [CrossRef] [Green Version]
- Rotman, J.; Mom, C.; Jordanova, E.; de Gruijl, T.; Kenter, G. ‘DURVIT’: A phase-I trial of single low-dose durvalumab (Medi4736) IntraTumourally injected in cervical cancer: Safety, toxicity and effect on the primary tumour-and lymph node microenvironment. BMC Cancer 2018, 18, 888. [Google Scholar] [CrossRef] [PubMed]
- Mayadev, J.; Zamarin, D.; Deng, W.; Lankes, H.; O’Cearbhaill, R.; Aghajanian, C.A.; Schilder, R. Anti-PD-L1 (atezolizumab) as an immune primer and concurrently with extended-field chemoradiotherapy for node-positive locally advanced cervical cancer. Int. J. Gynecol. Cancer 2019, 30, 701–704. [Google Scholar] [CrossRef] [PubMed]
- Friedman, C.F.; Snyder, A.; Sharon, E.; de Meritens, A.B.; Cantrell, L.A.; Corr, B.R.; Konner, J.; Konstantinopoulos, P.A.; Soldan, K.; Aghajanian, C. A phase II study of atezolizumab in combination with bevacizumab in patients with recurrent, persistent or metastatic cervical cancer. Gynecol. Oncol. 2019, 154, 17–18. [Google Scholar] [CrossRef]
- Grau, J.F.; Farinas-Madrid, L.; Oaknin, A. A randomized phase III trial of platinum chemotherapy plus paclitaxel with bevacizumab and atezolizumab versus platinum chemotherapy plus paclitaxel and bevacizumab in metastatic (stage IVB), persistent, or recurrent carcinoma of the cervix: The BEATcc study (ENGOT-Cx10/GEICO 68-C/JGOG1084/GOG-3030). Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc. 2020, 30, 139–143. [Google Scholar]
- Jenkins, R.W.; Barbie, D.A.; Flaherty, K.T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 2018, 118, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Brunet, J.F.; Denizot, F.; Luciani, M.F.; Roux-Dosseto, M.; Suzan, M.; Mattei, M.G.; Golstein, P. A new member of the immunoglobulin superfamily--CTLA-4. Nature 1987, 328, 267–270. [Google Scholar] [CrossRef]
- Han, B.R.; You, B.R.; Park, W.H. Valproic acid inhibits the growth of HeLa cervical cancer cells via caspase-dependent apoptosis. Oncol. Rep. 2013, 30, 2999–3005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 41, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Narod, S. Can advanced-stage ovarian cancer be cured? Nat. Rev. Clin. Oncol. 2016, 13, 255. [Google Scholar] [CrossRef] [PubMed]
- Rooth, C. Ovarian cancer: Risk factors, treatment and management. Br. J. Nurs. 2013, 22, S23–S30. [Google Scholar] [CrossRef] [PubMed]
- Matulonis, U.A.; Sood, A.K.; Fallowfield, L.; Howitt, B.E.; Sehouli, J.; Karlan, B.Y. Ovarian cancer, Nature reviews. Dis. Primers 2016, 2, 16061. [Google Scholar] [CrossRef] [PubMed]
- Odunsi, K. Immunotherapy in ovarian cancer. Ann. Oncol. 2017, 28, viii1–viii7. [Google Scholar] [CrossRef]
- Krishnan, V.; Berek, J.S.; Dorigo, O. Immunotherapy in ovarian cancer. Curr. Probl. Cancer 2017, 41, 48–63. [Google Scholar] [CrossRef] [PubMed]
- Santoiemma, P.P.; Powell, D.J., Jr. Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biol. Ther. 2015, 16, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Conejo-Garcia, J.R.; Katsaros, D.; Gimotty, P.A.; Massobrio, M.; Regnani, G.; Makrigiannakis, A.; Gray, H.; Schlienger, K.; Liebman, M.N. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 2003, 348, 203–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendry, S.; Salgado, R.; Gevaert, T.; Russell, P.A.; John, T.; Thapa, B.; Christie, M.; van de Vijver, K.; Estrada, M.V.; Gonzalez-Ericsson, P.I. Assessing tumor infiltrating lymphocytes in solid tumors: A practical review for pathologists and proposal for a standardized method from the International Immuno-Oncology Biomarkers Working Group: Part 1: Assessing the host immune response, TILs in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv. Anat. Pathol. 2017, 24, 235. [Google Scholar]
- Wang, Q.; Lou, W.; Di, W.; Wu, X. Prognostic value of tumor PD-L1 expression combined with CD8+ tumor infiltrating lymphocytes in high grade serous ovarian cancer. Int. Immunopharmacol. 2017, 52, 7–14. [Google Scholar] [CrossRef]
- Dai, Y.; Sun, C.; Feng, Y.; Jia, Q.; Zhu, B. Potent immunogenicity in BRCA 1-mutated patients with high-grade serous ovarian carcinoma. J. Cell. Mol. Med. 2018, 22, 3979–3986. [Google Scholar] [CrossRef]
- Strickland, K.C.; Howitt, B.E.; Shukla, S.A.; Rodig, S.; Ritterhouse, L.L.; Liu, J.F.; Garber, J.E.; Chowdhury, D.; Wu, C.J.; D’Andrea, A.D. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 2016, 7, 13587. [Google Scholar] [CrossRef] [Green Version]
- Hamanishi, J.; Mandai, M.; Ikeda, T.; Minami, M.; Kawaguchi, A.; Murayama, T.; Kanai, M.; Mori, Y.; Matsumoto, S.; Chikuma, S. Safety and antitumor activity of anti–PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol. 2015, 33, 4015–4022. [Google Scholar] [CrossRef]
- Varga, A.; Piha-Paul, S.; Ott, P.A.; Mehnert, J.M.; Berton-Rigaud, D.; Morosky, A.; Yang, P.; Ruman, J.; Matei, D. Pembrolizumab in patients with programmed death ligand 1–positive advanced ovarian cancer: Analysis of KEYNOTE-028. Gynecol. Oncol. 2019, 152, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Gordon, M.; Veneris, J.; Braiteh, F.; Balmanoukian, A.; Eder, J.P.; Oaknin, A.; Hamilton, E.; Wang, Y.; Sarkar, I. Safety, clinical activity and biomarker assessments of atezolizumab from a Phase I study in advanced/recurrent ovarian and uterine cancers. Gynecol. Oncol. 2019, 154, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, A.S.; Nichols, E.; Cimino-Mathews, A.; Peer, C.; Cao, L.; Lee, M.J.; Kohn, E.C.; Annunziata, C.M.; Lipkowitz, S.; Trepel, J.B.; et al. A phase I study of the PD-L1 inhibitor, durvalumab, in combination with a PARP inhibitor, olaparib, and a VEGFR1-3 inhibitor, cediranib, in recurrent women’s cancers with biomarker analyses. J. Immunother. Cancer 2019, 7, 197. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, T.; Fatkhutdinov, N.; Zundell, J.A.; Tcyganov, E.N.; Nacarelli, T.; Karakashev, S.; Wu, S.; Liu, Q.; Gabrilovich, D.I.; Zhang, R. HDAC6 Inhibition Synergizes with Anti-PD-L1 Therapy in ARID1A-Inactivated Ovarian Cancer. Cancer Res. 2019, 79, 5482–5489. [Google Scholar] [CrossRef]
- Miller, C.R.; Oliver, K.E.; Farley, J.H. MEK1/2 inhibitors in the treatment of gynecologic malignancies. Gynecol. Oncol. 2014, 133, 128–137. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Petersen, E.; Patel, R.; Migden, M.R. Cemiplimab-rwlc as first and only treatment for advanced cutaneous squamous cell carcinoma. Expert Rev. Clin. Pharmacol. 2019, 12, 947–951. [Google Scholar] [CrossRef]
- Coleman, R.L.; Brady, M.F.; Herzog, T.J.; Sabbatini, P.; Armstrong, D.K.; Walker, J.L.; Kim, B.-G.; Fujiwara, K.; Tewari, K.S.; O’Malley, D.M. Bevacizumab and paclitaxel–carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017, 18, 779–791. [Google Scholar] [CrossRef] [Green Version]
- Kopecký, J.; Kubecek, O.; Geryk, T.; Podhola, M.; Ziaran, M.; Priester, P.; Hanisova, M.; Borilova, S. Hepatic Injury Induced by a Single Dose of Nivolumab—A Case Report and Literature Review. Klinicka Onkol. Cas. Ceske Slov. Onkol. Spol. 2019, 32, 133–138. [Google Scholar] [CrossRef]
- Eva, A.; Aaronson, S.A. Isolation of a new human oncogene from a diffuse B-cell lymphoma. Nature 1985, 316, 273–275. [Google Scholar] [CrossRef]
- De Coaña, Y.P.; Wolodarski, M.; Poschke, I.; Yoshimoto, Y.; Yang, Y.; Nyström, M.; Edbäck, U.; Brage, S.E.; Lundqvist, A.; Masucci, G.V.; et al. Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget 2017, 8, 21539–21553. [Google Scholar] [CrossRef] [Green Version]
- Pignata, S.; Scambia, G.; Ferrandina, G.; Savarese, A.; Sorio, R.; Breda, E.; Gebbia, V.; Musso, P.; Frigerio, L.; del Medico, P. Carboplatin plus paclitaxel versus carboplatin plus pegylated liposomal doxorubicin as first-line treatment for patients with ovarian cancer: The MITO-2 randomized phase III trial. J. Clin. Oncol. 2011, 29, 3628–3635. [Google Scholar] [CrossRef] [PubMed]
- Jaigirdar, A.; Rosenberg, S.A.; Parkhurst, M. A high avidity WT1 reactive T cell receptor mediates recognition of peptide and processed antigen but not naturally occurring WT1 positive tumor cells. J. Immunother. 2016, 39, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.F.; Herold, C.; Gray, K.P.; Penson, R.T.; Horowitz, N.; Konstantinopoulos, P.A.; Castro, C.M.; Hill, S.J.; Curtis, J.; Luo, W.; et al. Assessment of Combined Nivolumab and Bevacizumab in Relapsed Ovarian Cancer: A Phase 2 Clinical Trial. JAMA Oncol. 2019, 5, 1731–1738. [Google Scholar] [CrossRef]
- Zamarin, D.; Burger, R.A.; Sill, M.W.; Powell, D.J., Jr.; Lankes, H.A.; Feldman, M.D.; Zivanovic, O.; Gunderson, C.; Ko, E.; Mathews, C.; et al. Randomized Phase II Trial of Nivolumab Versus Nivolumab and Ipilimumab for Recurrent or Persistent Ovarian Cancer: An NRG Oncology Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.M.; Overbeek-Wager, E.A.; Grumbo, R.J. Diagnosis and Management of Endometrial Cancer. Am. Fam. Physician 2016, 93, 468–474. [Google Scholar] [PubMed]
- Janda, M.; McGrath, S.; Obermair, A. Challenges and controversies in the conservative management of uterine and ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2019, 55, 93–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saso, S.; Louis, L.S.; Doctor, F.; Hamed, A.H.; Chatterjee, J.; Yazbek, J.; Bora, S.; Abdalla, H.; Ghaem-Maghami, S.; Thum, M.-Y. Does fertility treatment increase the risk of uterine cancer? A meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 195, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Lheureux, S.; Oza, A.M. Treatment strategies for endometrial cancer: Current practice and perspective. Curr. Opin. Obstet. Gynecol. 2017, 29, 47–58. [Google Scholar] [CrossRef]
- Di Tucci, C.; Capone, C.; Galati, G.; Iacobelli, V.; Schiavi, M.C.; di Donato, V.; Muzii, L.; Panici, P.B. Immunotherapy in endometrial cancer: New scenarios on the horizon. J. Gynecol. Oncol. 2018, 30. [Google Scholar] [CrossRef] [Green Version]
- Carter, J.; Pather, S. An overview of uterine cancer and its management. Expert Rev. Anticancer Ther. 2006, 6, 33–41. [Google Scholar] [CrossRef]
- Moore, K.; Brewer, M.A. Endometrial Cancer: Is This a New Disease? Am. Soc. Clin. Oncol. Educ. Book 2017, 37, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Mittica, G.; Ghisoni, E.; Giannone, G.; Aglietta, M.; Genta, S.; Valabrega, G. Checkpoint inhibitors in endometrial cancer: Preclinical rationale and clinical activity. Oncotarget 2017, 8, 90532–90544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longoria, T.C.; Eskander, R.N. Immunotherapy in endometrial cancer-an evolving therapeutic paradigm. Gynecol. Oncol. Res. Pract. 2015, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Reddy, O.L.; Shintaku, P.I.; Moatamed, N.A. Programmed death-ligand 1 (PD-L1) is expressed in a significant number of the uterine cervical carcinomas. Diagn. Pathol. 2017, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Ventriglia, J.; Paciolla, I.; Pisano, C.; Cecere, S.C.; di Napoli, M.; Tambaro, R.; Califano, D.; Losito, S.; Scognamiglio, G.; Setola, S.V. Immunotherapy in ovarian, endometrial and cervical cancer: State of the art and future perspectives. Cancer Treat. Rev. 2017, 59, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Shanes, E.D.; Friedman, L.A.; Mills, A.M. PD-L1 Expression and Tumor-infiltrating Lymphocytes in Uterine Smooth Muscle Tumors. Am. J. Surg. Pathol. 2019, 43, 792–801. [Google Scholar] [CrossRef]
- Engerud, H.; Berg, H.F.; Myrvold, M.; Halle, M.K.; Bjorge, L.; Haldorsen, I.S.; Hoivik, E.A.; Trovik, J.; Krakstad, C. High degree of heterogeneity of PD-L1 and PD-1 from primary to metastatic endometrial cancer. Gynecol. Oncol. 2020, 157, 260–267. [Google Scholar] [CrossRef]
- Mo, Z.; Liu, J.; Zhang, Q.; Chen, Z.; Mei, J.; Liu, L.; Yang, S.; Li, H.; Zhou, L.; You, Z. Expression of PD-1, PD-L1 and PD-L2 is associated with differentiation status and histological type of endometrial cancer. Oncol. Lett. 2016, 12, 944–950. [Google Scholar] [CrossRef] [Green Version]
- Sungu, N.; Yildirim, M.; Desdicioglu, R.; Aydoğdu, Ö.B.; Kiliçarslan, A.; Doğan, H.T.; Yazgan, A.K.; Akyol, M.; Erdoğan, F. Expression of Immunomodulatory Molecules PD-1, PD-L1, and PD-L2, and their Relationship With Clinicopathologic Characteristics in Endometrial Cancer. Int. J. Gynecol. Pathol. 2019, 38, 404–413. [Google Scholar] [CrossRef]
- Arend, R.C.; Jones, B.A.; Martinez, A.; Goodfellow, P. Endometrial cancer: Molecular markers and management of advanced stage disease. Gynecol. Oncol. 2018, 150, 569–580. [Google Scholar] [CrossRef]
- Rexer, H.; Bedke, J. First-line therapy in advanced renal cell carcinoma: A randomized, open-label phase III study evaluating the efficacy and safety of pembrolizumab (MK-3475) in combination with axitinib compared to sunitinib monotherapy as first-line treatment for locally advanced or metastatic renal cell carcinoma (mRCC) (Keynote-426)—AN 39/16 of the AUO. Urologe. Ausg. 2017, 56, 385–386. [Google Scholar]
- Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.M.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Tabata, K.; Hori, Y.; Tachino, S.; Okamoto, K.; Matsui, J. Abstract A92: Effects of lenvatinib on tumor-associated macrophages enhance antitumor activity of PD-1 signal inhibitors. Am. Assoc. Cancer Res. 2015, 14, A92. [Google Scholar]
- Makker, V.; Rasco, D.W.; Dutcus, C.E.; Stepan, D.E.; Li, D.; Schmidt, E.V.; Shumaker, R.C.; Taylor, M.H. A phase Ib/II trial of lenvatinib (LEN) plus pembrolizumab (Pembro) in patients (Pts) with endometrial carcinoma. J. Clin. Oncol. 2017, 35, 5598. [Google Scholar] [CrossRef]
- Makker, V.; Rasco, D.; Vogelzang, N.J.; Brose, M.S.; Cohn, A.L.; Mier, J.; di Simone, C.; Hyman, D.M.; Stepan, D.E.; Dutcus, C.E. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: An interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2019, 20, 711–718. [Google Scholar] [CrossRef]
- Pembrolizumab with Axitinib in Recurrent Endometrial Cancer 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT04197219?cond=NCT04197219&draw=2&rank=1 (accessed on 13 December 2019).
- Esposito, K.; Chiodini, P.; Capuano, A.; Bellastella, G.; Maiorino, M.I.; Giugliano, D. Metabolic Syndrome and Endometrial Cancer: A Meta-Analysis; Springer: New York, NY, USA, 2014. [Google Scholar]
- Arriola, E.; Wheater, M.; Galea, I.; Cross, N.; Maishman, T.; Hamid, D.; Stanton, L.; Cave, J.; Geldart, T.; Mulatero, C.; et al. Outcome and Biomarker Analysis from a Multicenter Phase 2 Study of Ipilimumab in Combination with Carboplatin and Etoposide as First-Line Therapy for Extensive-Stage SCLC. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2016, 11, 1511–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciardiello, F.; Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med. 2008, 358, 1160–1174. [Google Scholar] [CrossRef] [Green Version]
- Fleming, G.F.; Emens, L.A.; Eder, J.P.; Hamilton, E.P.; Liu, J.F.; Liu, B.; Molinero, L.; Fasso, M.; O’Hear, C.; Braiteh, F.S. Clinical activity, safety and biomarker results from a phase Ia study of atezolizumab (atezo) in advanced/recurrent endometrial cancer (rEC). Am. Soc. Clin. Oncol. 2017. [Google Scholar] [CrossRef]
- Saglam, O.; Conejo-Garcia, J. PD-1/PD-L1 immune checkpoint inhibitors in advanced cervical cancer. Integr. Cancer Sci. Ther. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Hugo, W.; Zaretsky, J.M.; Sun, L.; Song, C.; Moreno, B.H.; Hu-Lieskovan, S.; Berent-Maoz, B.; Pang, J.; Chmielowski, B.; Cherry, G. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 2016, 165, 35–44. [Google Scholar] [CrossRef] [Green Version]
- David, Y.B.; Chetrit, A.; Hirsh-Yechezkel, G.; Friedman, E.; Beck, B.; Beller, U.; Ben-Baruch, G.; Fishman, A.; Levavi, H.; Lubin, F. Effect of BRCA mutations on the length of survival in epithelial ovarian tumors. J. Clin. Oncol. 2020, 20, 463–466. [Google Scholar] [CrossRef]
- Liu, B.; Zhan, Y.; Chen, X.; Wu, B.; Pan, S. Bladder cancer exhibiting high immune infiltration shows the lowest response rate to immune checkpoint inhibitors. Front. Oncol. 2019, 9, 1101. [Google Scholar]
- Gargiulo, P.; della Pepa, C.; Berardi, S.; Califano, D.; Scala, S.; Buonaguro, L.; Ciliberto, G.; Brauchli, P.; Pignata, S. Tumor genotype and immune microenvironment in POLE-ultramutated and MSI-hypermutated endometrial cancers: New candidates for checkpoint blockade immunotherapy? Cancer Treat. Rev. 2016, 48, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Tian, Z. NK Cell Dysfunction and Checkpoint Immunotherapy. Front. Immunol. 2019, 10, 1999. [Google Scholar] [CrossRef] [PubMed]
- Pesce, S.; Greppi, M.; Grossi, F.; del Zotto, G.; Moretta, L.; Sivori, S.; Genova, C.; Marcenaro, E. PD/1-PD-Ls Checkpoint: Insight on the Potential Role of NK Cells. Front. Immunol. 2019, 10, 1242. [Google Scholar] [CrossRef]
- Judge, S.J.; Dunai, C.; Aguilar, E.G.; Vick, S.C.; Sturgill, I.R.; Khuat, L.T.; Stoffel, K.M.; van Dyke, J.; Longo, D.L.; Darrow, M.A.; et al. Minimal PD-1 expression in mouse and human NK cells under diverse conditions. J. Clin. Investig. 2020, 130, 3051–3068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Bi, J.; Zheng, X.; Chen, Y.; Wang, H.; Wu, W.; Wang, Z.; Wu, Q.; Peng, H.; Wei, H.; et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 2018, 19, 723–732. [Google Scholar] [CrossRef]
- Kamiya, T.; Seow, S.V.; Wong, D.; Robinson, M.; Campana, D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J. Clin. Investig. 2019, 129, 2094–2106. [Google Scholar] [CrossRef] [Green Version]
- Hsu, J.; Hodgins, J.J.; Marathe, M.; Nicolai, C.J.; Bourgeois-Daigneault, M.C.; Trevino, T.N.; Azimi, C.S.; Scheer, A.K.; Randolph, H.E.; Thompson, T.W.; et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Investig. 2018, 128, 4654–4668. [Google Scholar] [CrossRef]
- Qu, Q.X.; Xie, F.; Huang, Q.; Zhang, X.G. Membranous and Cytoplasmic Expression of PD-L1 in Ovarian Cancer Cells. Cell. Physiol. Biochem. 2017, 43, 1893–1906. [Google Scholar] [CrossRef]
- Greppi, M.; Tabellini, G.; Patrizi, O.; Candiani, S.; Decensi, A.; Parolini, S.; Sivori, S.; Pesce, S.; Paleari, L.; Marcenaro, E. Strengthening the AntiTumor NK Cell Function for the Treatment of Ovarian Cancer. Int. J. Mol. Sci. 2019, 20, 890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Lin, J.; Yang, X.; Long, J.; Bai, Y.; Yang, X.; Mao, Y.; Sang, X.; Seery, S.; Zhao, H. Combination regimens with PD-1/PD-L1 immune checkpoint inhibitors for gastrointestinal malignancies. J. Hematol. Oncol. 2019, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Planes-Laine, G.; Rochigneux, P.; Bertucci, F.; Chrétien, A.-S.; Viens, P.; Sabatier, R.; Gonçalves, A. PD-1/PD-L1 targeting in breast cancer: The first clinical evidences are emerging—A literature review. Cancers 2019, 11, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, V.; Brunetti, O.; Azzariti, A.; Galetta, D.; Nardulli, P.; Leonetti, F.; Silvestris, N. Strategies to improve cancer immune checkpoint inhibitors efficacy, other than abscopal effect: A systematic review. Cancers 2019, 11, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Estimated Completion date | Title | Phase | Country | Indication | Endpoints | Clinical Trials. Gov. Identifier |
---|---|---|---|---|---|---|
2023 | Combination of GX-188E Vaccination and Pembrolizumab in Patients with HPV 16 and/or 18+ Cervical Cancer | Phase 1/2 | Republic of Korea | Advanced, inoperable, or metastatic cervical cancer | ORR, DLT evaluation for safety and tolerability PFS | NCT03444376 |
2025 | Combination Pembrolizumab, Chemotherapy, and Bevacizumab in Patients with Cervical Cancer | Phase 2 | United States | Recurrent, persistent, or metastatic (primary stage IVB) cervical cancer | ORR, PFS, OS | NCT03367871 |
2021 | Pembrolizumab and Chemoradiation Treatment for Advanced Cervical Cancer | Phase 2 | United States | Advanced cervical cancer | Change in immunologic markers, PFS, OS | NCT02635360 |
2023 | Carboplatin-Paclitaxel-Pembrolizumab in Neoadjuvant Treatment of Locally Advanced Cervical Cancer (MITO CERV 3) | Phase 2 | Italy | Locally advanced cervical cancer | 2-year PFS, OS, clinical response rate, adverse events | NCT04238988 |
2022 | Efficacy and Safety Study of First-line Treatment with Pembrolizumab (MK-3475) plus Chemotherapy Versus Placebo Plus Chemotherapy in Women with Persistent, Recurrent, or Metastatic Cervical Cancer (MK-3475-826/KEYNOTE-826) | Phase 3 | United States | Persistent, recurrent, or metastatic cervical cancer | PFS, OS, ORR, DOR | NCT03635567 |
2022 | Cabozantinib plus Pembrolizumab for Recurrent, Persistent, and/or Metastatic Cervical Cancer | Phase 2 | United States | Recurrent, persistent, or cervical cancer | PFS, ORR, OS, incidence of emergent adverse events | NCT04230954 |
2022 | Nivolumab in Association with radiotherapy and Cisplatin in Locally Advanced Cervical Cancers Followed by Adjuvant Nivolumab for up to 6 Months (NiCOL) | Phase 1/2 | France | Locally advanced cervical cancer | ORR, PFS, disease-free survival (DFS) | NCT03298893 |
2023 | BrUOG 355: Nivolumab to Tailored Radiation Therapy with Concomitant Cisplatin in the Treatment of Patients with Cervical Cancer | Phase 2 | United States | Advanced cervical cancer | Feasibility of the incorporation of nivolumab with weekly cisplatin | NCT03527264 |
2019 | Nivolumab in Treating Patients with Persistent, Recurrent, or Metastatic Cervical Cancer | Phase 2 | United States | Stage IV, stage IVA, and stage IVB cervical cancer | Frequency of objective tumor response, incidence of adverse events | NCT02257528 |
Estimated Completion Date | Title | Phase | Country | Indication | Clinical Trials. Gov. Identifier |
---|---|---|---|---|---|
July 2020 | Doxorubicin Alone Versus Atezolizumab Alone Versus Doxorubicin and Atezolizumab in Recurrent Cervical Cancer | Phase 2 | Belgium | Recurrent Cervical Cancer | NCT03340376 |
July 2022 | Trial Assessing the Inhibitor of Programmed Cell Death Ligand 1 (PD-L1) Immune Checkpoint Atezolizumab (ATEZOLACC) | Phase 2 | France | Locally Advanced Cervical Cancer | NCT03612791 |
December 2023 | Platinum Chemotherapy Plus Paclitaxel with Bevacizumab and Atezolizumab in Metastatic Carcinoma of the Cervix | Phase 3 | Finland | Metastatic Cervical Cancer | NCT03556839 |
August 2020 | Atezolizumab and Bevacizumab in Treating Patients with Recurrent, Persistent, or Metastatic Cervical Cancer | Phase 2 | United States | Stage IV-IVA-IVB Cervical Cancer | NCT02921269 |
November 2021 | Atezolizumab Before and/or With Chemoradiotherapy in Immune System Activation in Patients with Node-Positive Stage IB2, II, IIIB, or IVA Cervical Cancer | Phase 1 | United States | Different Stage of Cervical Cancer | NCT03738228 |
Estimated Completion Date | Title | Phase | Country | Indication | Clinical Trials. Gov. Identifier |
---|---|---|---|---|---|
2026 | NeoVax with Nivolumab in Patients with Ovarian Cancer | Phase 1 | United States | Primary peritoneal or fallopian tube ovarian cancer | NCT04024878 |
2021 | A Study of WT1 Vaccine and Nivolumab For Recurrent Ovarian Cancer | Phase 1 | United States | Recurrent ovarian Cancer | NCT02737787 |
2021 | Tolerance of Intraperitoneal (IP) Nivolumab after Extensive Debulking Surgery and Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in Patients with Advanced Ovarian Carcinoma (ICONIC) | Phase ½ | France | Advanced ovarian cancer | NCT03959761 |
2030 | A Study in Ovarian Cancer Patients Evaluating Rucaparib and Nivolumab as Maintenance Treatment Following Response to Front-Line Platinum-Based Chemotherapy (ATHENA) | Phase 3 | United States | Maintenance treatment for ovarian cancer | NCT03522246 |
2020 | Nivolumab with or without Ipilimumab in Treating Patients with Persistent or Recurrent Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancer | Phase 2 | United States | Recurrent Ovarian carcinoma | NCT02498600 |
Estimated Completion Date | Title | Phase | Country | Indication | Clinical Trials Gov. Identifier |
---|---|---|---|---|---|
2021 | Avelumab and Talazoparib in Untreated Advanced Ovarian Cancer (JAVELIN OVARIAN PARP 100) | Phase 3 | United States | Advanced Ovarian Cancer | NCT03642132 |
2019 | A Study of Avelumab Alone or in Combination with Pegylated Liposomal Doxorubicin versus Pegylated Liposomal Doxorubicin Alone in Patients with Platinum Resistant/Refractory Ovarian Cancer (JAVELIN Ovarian 200) | Phase 3 | United States | Resistant/Refractory Ovarian Cancer | NCT02580058 |
2023 | A Trial of Hu5F9-G4 with Avelumab in Ovarian Cancer | Phase 1 | United States | Advanced Solid-Tumor Ovarian Cancer | NCT03558139 |
2021 | Phase 1b/2 Study of Avelumab with or without Entinostat in Patients with Advanced Epithelial Ovarian Cancer | Phase 1/2 | United States | Epithelial Ovarian Cancer Peritoneal Cancer Fallopian Tube Cancer | NCT02915523 |
2022 | Atezolizumab with Neoadjuvant Chemotherapy for Patients with Newly Diagnosed Advanced-Stage Ovarian Cancer (AdORN) | Phase 1/2 | United States | Advanced-Stage Ovarian Cancer | NCT03394885 |
2022 | Atezolizumab with Bevacizumab and Chemotherapy vs. Bevacizumab and Chemotherapy in Early Relapse Ovarian Cancer | Phase 3 | Germany | Recurrent Ovarian Carcinoma | NCT03353831 |
2022 | A Clinical Study of Cobimetinib Administered in Combination with Niraparib, with or without Atezolizumab, to Patients with Advanced Platinum-Sensitive Ovarian Cancer | Phase 1 | United States | Advanced Platinum-sensitive Ovarian Cancer | NCT03695380 |
Treatment Setting | Phase | Estimated Completion Date | Endpoints | Clinical Trials. Gov. Identifier | Enrollment |
---|---|---|---|---|---|
Avelumab Talazoparib | 2 | 2024 | PFS OS irAEs | NCT02912572 | 70 participants |
Carboplatin Paclitaxel Avelumab | 2 | 2023 | PFS OS Number of patients with complete and PR | NCT03503786 | 120 participants |
PARP Inhibitor and Durvalumab | 2 | 2023 | PFS ORR OS irAEs | NCT03951415 | 55 participants |
Durvalumab Tremelimumab | 2 | 2021 | ORR | NCT03015129 | 80 participants |
Bevacizumab Atezolizumab | 2 | 2023 | Number of patients with complete and PR PFS OS | NCT03526432 | 55 participants |
Carboplatin, Cyclophosphamide, Atezolizumab | 1 | 2020 | Toxicity ORR | NCT02914470 | 12 participants |
Rucaparib, Bevacizumab, Atezolizumab | 2 | 2026 | ORR PFS irAEs OS | NCT03694262 | 30 participants |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kooshkaki, O.; Derakhshani, A.; Safarpour, H.; Najafi, S.; Vahedi, P.; Brunetti, O.; Torabi, M.; Lotfinejad, P.; Paradiso, A.V.; Racanelli, V.; et al. The Latest Findings of PD-1/PD-L1 Inhibitor Application in Gynecologic Cancers. Int. J. Mol. Sci. 2020, 21, 5034. https://doi.org/10.3390/ijms21145034
Kooshkaki O, Derakhshani A, Safarpour H, Najafi S, Vahedi P, Brunetti O, Torabi M, Lotfinejad P, Paradiso AV, Racanelli V, et al. The Latest Findings of PD-1/PD-L1 Inhibitor Application in Gynecologic Cancers. International Journal of Molecular Sciences. 2020; 21(14):5034. https://doi.org/10.3390/ijms21145034
Chicago/Turabian StyleKooshkaki, Omid, Afshin Derakhshani, Hossein Safarpour, Souzan Najafi, Parviz Vahedi, Oronzo Brunetti, Mitra Torabi, Parisa Lotfinejad, Angelo Virgilio Paradiso, Vito Racanelli, and et al. 2020. "The Latest Findings of PD-1/PD-L1 Inhibitor Application in Gynecologic Cancers" International Journal of Molecular Sciences 21, no. 14: 5034. https://doi.org/10.3390/ijms21145034
APA StyleKooshkaki, O., Derakhshani, A., Safarpour, H., Najafi, S., Vahedi, P., Brunetti, O., Torabi, M., Lotfinejad, P., Paradiso, A. V., Racanelli, V., Silvestris, N., & Baradaran, B. (2020). The Latest Findings of PD-1/PD-L1 Inhibitor Application in Gynecologic Cancers. International Journal of Molecular Sciences, 21(14), 5034. https://doi.org/10.3390/ijms21145034