Synergistic Interaction of Phytohormones in Determining Leaf Angle in Crops
Abstract
:1. Introduction
2. Regulation of Lamina Joint Bending by Brassinosteroid (BR)
3. Regulation of Lamina Joint Bending by Indoleacetic Acid (IAA)
4. Regulation of Lamina Joint Bending by Gibberellins (GA)
5. Regulation of Lamina Joint Bending by Crosstalk among Various Phytohormones
6. Other Phytohormones Involved in Regulation of Lamina Joint
7. Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LA | Leaf angle |
BR | Brassinosteroid |
IAA | Indoleacetic acid |
GA | Gibberellin |
SLs | Strigolactones |
JA | Jasmonic acid |
ABA | Abscisic acid |
References
- Duvick, D.N. The Contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 2005, 86, 83–145. [Google Scholar] [CrossRef]
- Duvick, D.N. Genetic progress in yield of United States maize (Zea mays L.). Maydica 2005, 50, 193–202. [Google Scholar]
- Leivar, P.; Tepperman, J.M.; Cohn, M.M.; Monte, E.; Al-Sady, B.; Erickson, E.; Quail, P.H. Dynamic antagonism between phytochromes and pif family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in arabidopsis. Plant Cell 2012, 24, 1398–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khush, G.S. Green revolution: Preparing for the 21st century. Genome 1999, 42, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; Ashikari, M.; Ueguchi-Tanaka, M.; Itoh, H.; Nishimura, A.; Swapan, D.; Ishiyama, K.; Saito, T.; Kobayashi, M.; Khush, G.S.; et al. Green revolution: A mutant gibberellin-synthesis gene in rice. Nature 2002, 416, 701–702. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Wang, S.; Song, W.; Zhang, J.; Wang, Y.; Liu, Q.; Yu, J.; Ye, Y.; Li, S.; Chen, J.; et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 2020, 367, eaaz2046. [Google Scholar] [CrossRef] [PubMed]
- Sharman, B.C. Developmental anatomy of the shoot of Zea mays L. Ann. Bot. 1942, 6, 245–282. [Google Scholar] [CrossRef]
- Sylvester, A.W.; Cande, W.Z.; Freeling, M. Division and differentiation during normal and liguleless-1 maize leaf development. Development 1990, 110, 985–1000. [Google Scholar]
- Mantilla-Perez, M.B.; Fernandez, M.G.S. Differential manipulation of leaf angle throughout the canopy: Current status and prospects. J. Exp. Bot. 2017, 68, 5699–5717. [Google Scholar] [CrossRef] [Green Version]
- Duvick, D.N.; Cassman, K. Post-green revolution trends in yield potential of temperate maize in the north-central united states. Crop. Sci. 1999, 39, 1622–1630. [Google Scholar] [CrossRef]
- Sakamoto, T.; Morinaka, Y.; Ohnishi, T.; Sunohara, H.; Fujioka, S.; Ueguchi-Tanaka, M.; Mizutani, M.; Sakata, K.; Takatsuto, S.; Yoshida, S.; et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat. Biotechnol. 2005, 24, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, T.R. Erect leaves and photosynthesis in rice. Science 1999, 283, 1456. [Google Scholar] [CrossRef]
- Kong, F.; Zhang, T.; Liu, J.; Heng, S.; Shi, Q.; Zhang, H.; Wang, Z.; Ge, L.; Li, P.; Lu, X.; et al. Regulation of leaf angle by auricle development in maize. Mol. Plant 2017, 10, 516–519. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Zheng, J.; Huang, R.; Huang, Y.; Wang, H.; Jiang, L.; Fang, X. Phytohormones signaling and crosstalk regulating leaf angle in rice. Plant Cell Rep. 2016, 35, 2423–2433. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xiao, L.; Xue, H.-W. Dynamic cytology and transcriptional regulation of rice lamina joint development. Plant Physiol. 2017, 174, 1728–1746. [Google Scholar] [CrossRef] [Green Version]
- Hong, Z.; Ueguchi-Tanaka, M.; Matsuoka, M. Brassinosteroids and rice architecture. J. Pestic. Sci. 2004, 29, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Duan, K.; Li, L.; Hu, P.; Xu, S.-P.; Xu, Z.-H.; Xue, H.-W. A brassinolide-suppressed rice MADS-box transcription factor, OsMDP1, has a negative regulatory role in BR signaling. Plant J. 2006, 47, 519–531. [Google Scholar] [CrossRef]
- Cao, H.; Chen, S. Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene. Plant Growth Regul. 1995, 16, 189–196. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Bai, M.-Y.; Oh, E.; Zhu, J.-Y. Brassinosteroid signaling network and regulation of photomorphogenesis. Annu. Rev. Genet. 2012, 46, 701–724. [Google Scholar] [CrossRef]
- Zhang, C.; Bai, M.-Y.; Chong, K. Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep. 2014, 33, 683–696. [Google Scholar] [CrossRef]
- Tong, H.; Chu, C. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci. 2018, 23, 1016–1028. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bai, M.-Y.; Wang, Z.-Y. The brassinosteroid signaling network — a paradigm of signal integration. Curr. Opin. Plant Biol. 2014, 21, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Fu, Y.; Zhao, S.; Gu, P.; Zhu, Z.; Sun, C.; Tan, L. Clustered primary branch 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnol. J. 2015, 14, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Morinaka, Y.; Sakamoto, T.; Inukai, Y.; Agetsuma, M.; Kitano, H.; Ashikari, M.; Matsuoka, M. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice1. Plant Physiol. 2006, 141, 924–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanabe, S.; Ashikari, M.; Fujioka, S.; Takatsuto, S.; Yoshida, S.; Yano, M.; Yoshimura, A.; Kitano, H.; Matsuoka, M.; Fujisawa, Y.; et al. A novel cytochrome p450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 2005, 17, 776–790. [Google Scholar] [CrossRef] [Green Version]
- Hong, Z.; Ueguchi-Tanaka, M.; Fujioka, S.; Takatsuto, S.; Yoshida, S.; Hasegawa, Y.; Ashikari, M.; Kitano, H.; Matsuoka, M. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 2005, 17, 2243–2254. [Google Scholar] [CrossRef] [Green Version]
- Mori, M.; Nomura, T.; Ooka, H.; Ishizaka, M.; Yokota, T.; Sugimoto, K.; Okabe, K.; Kajiwara, H.; Satoh, K.; Yamamoto, K.; et al. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis1. Plant Physiol. 2002, 130, 1152–1161. [Google Scholar] [CrossRef] [Green Version]
- Hong, Z.; Ueguchi-Tanaka, M.; Shimizu-Sato, S.; Inukai, Y.; Fujioka, S.; Shimada, Y.; Takatsuto, S.; Agetsuma, M.; Yoshida, S.; Watanabe, Y.; et al. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J. 2002, 32, 495–508. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.-Y.; Ma, Q.-B.; Li, D.; Xu, Z.-H.; Chong, K. Heterotrimeric G protein α subunit is involved in rice brassinosteroid response. Cell Res. 2006, 16, 916–922. [Google Scholar] [CrossRef]
- Sun, Y.; Fan, X.-Y.; Cao, D.-M.; Tang, W.; He, K.; Zhu, J.-Y.; He, J.-X.; Bai, M.-Y.; Zhu, S.; Oh, E.; et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell 2010, 19, 765–777. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yang, C.; Zhang, C.; Wang, N.; Lu, D.; Wang, J.; Zhang, S.; Wang, Z.-X.; Ma, H.; Wang, X. Dual Role of BKI1 and 14-3-3 s in Brassinosteroid Signaling to Link Receptor with Transcription Factors. Dev. Cell 2011, 21, 825–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.; Yuan, M.; Wang, R.; Yang, Y.; Wang, C.; Oses-Prieto, J.A.; Kim, T.-W.; Zhou, H.-W.; Deng, Z.; Gampala, S.S.; et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat. Cell Biol. 2011, 13, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Yamamuro, C.; Ihara, Y.; Wu, X.; Noguchi, T.; Fujioka, S.; Takatsuto, S.; Ashikari, M.; Kitano, H.; Matsuoka, M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 2000, 12, 1591–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Wang, L.; Wang, M.; Xu, Y.-Y.; Luo, W.; Liu, Y.-J.; Xu, Z.-H.; Li, J.; Chong, K. EngineeringOsBAK1gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol. J. 2009, 7, 791–806. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.-Y.; Zhang, L.-Y.; Gampala, S.S.; Zhu, S.-W.; Song, W.-Y.; Chong, K.; Wang, Z.-Y. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc. Natl. Acad. Sci. USA 2007, 104, 13839–13844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Xu, Y.; Guo, S.; Zhu, J.; Huan, Q.; Liu, H.; Wang, L.; Luo, G.; Wang, X.; Chong, K. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet. 2012, 8, e1002686. [Google Scholar] [CrossRef] [Green Version]
- Qiao, S.; Sun, S.; Wang, L.; Wu, Z.; Li, C.; Li, X.; Wang, T.; Leng, L.; Tian, W.; Lu, T.; et al. The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. Plant Cell 2017, 29, 292–309. [Google Scholar] [CrossRef] [Green Version]
- Hirano, K.; Yoshida, H.; Aya, K.; Kawamura, M.; Hayashi, M.; Hobo, T.; Sato-Izawa, K.; Kitano, H.; Ueguchi-Tanaka, M.; Matsuoka, M. Small organ size 1 and small organ size 2/dwarf and low-tillering form a complex to integrate auxin and brassinosteroid signaling in rice. Mol. Plant 2017, 10, 590–604. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, A.; Nakagawa, H.; Tomita, C.; Shimatani, Z.; Ohtake, M.; Nomura, T.; Jiang, C.-J.; Dubouzet, J.G.; Kikuchi, S.; Sekimoto, H.; et al. Brassinosteroid upregulated1, encoding a Helix-Loop-Helix Protein, Is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice1. Plant Physiol. 2009, 151, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.-Y.; Bai, M.-Y.; Wu, J.; Zhu, J.-Y.; Wang, H.; Zhang, Z.; Wang, W.; Sun, Y.; Zhao, J.; Sun, X.; et al. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 2009, 21, 3767–3780. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Li, M.-Q.; Chang, Y.-P.; Zhang, B.; Zhao, Q.-Z.; Zhao, W.-L. The basic helix-loop-helix transcription factor OsBLR1 regulates leaf angle in rice via brassinosteroid signalling. Plant Mol. Biol. 2020, 102, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.; Kim, S.-H.; Lee, B.-D.; Lim, J.-H.; Lee, S.-J.; An, G.; Paek, N.-C. The rice basic Helix–Loop–Helix 79 (OsbHLH079) determines leaf angle and grain shape. Int. J. Mol. Sci. 2020, 21, 2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Xiong, G.; Cui, X.; Yan, M.; Xu, T.; Qian, Q.; Xue, Y.; Li, J.; Wang, Y. OsGRAS19 may be a novel component involved in the brassinosteroid signaling pathway in rice. Mol. Plant 2013, 6, 988–991. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Yan, J.; Su, J.; Liu, H.; Hu, C.; Li, G.; Wang, F.; Lin, Y. Novel OsGRAS19 mutant, D26, positively regulates grain shape in rice (Oryza sativa). Funct. Plant Biol. 2019, 46, 857. [Google Scholar] [CrossRef]
- Jiang, F.; Guo, M.; Yang, F.; Duncan, K.; Jackson, D.; Rafalski, A.; Wang, S.; Li, B. Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize. PLoS ONE 2012, 7, e37040. [Google Scholar] [CrossRef] [Green Version]
- Kir, G.; Ye, H.; Nelissen, H.; Neelakandan, A.; Kusnandar, A.S.; Luo, A.; Inzé, D.; Sylvester, A.W.; Yin, Y.; Becraft, P.W. RNA interference knockdown of brassinosteroid insensitive1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol. 2015, 169, 826–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, M.A.; Harper, E.C.; Krueger, R.W.; Dellaporta, S.L.; Freeling, M. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev. 1997, 11, 616–628. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Park, J.; Kim, S.L.; Yim, J.; An, G. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Mol. Biol. 2007, 65, 487–499. [Google Scholar] [CrossRef]
- Tian, J.; Wang, C.; Xia, J.; Wu, L.; Xu, G.; Wu, W.; Li, D.; Qin, W.; Han, X.; Chen, Q.; et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 2019, 365, 658–664. [Google Scholar] [CrossRef]
- Liu, K.; Cao, J.; Yu, K.; Liu, X.; Gao, Y.; Chen, Q.; Zhang, W.; Peng, H.; Du, J.; Xin, M.; et al. Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiol. 2019, 181, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Wu, L.; Ku, L.; Wang, H.; Zeng, H.; Su, H.; Wei, L.; Dou, D.; Liu, H.; Cao, Y.; et al. ZmILI1 regulates leaf angle by directly affecting liguleless1 expression in maize. Plant Biotechnol. J. 2019, 18, 881–883. [Google Scholar] [CrossRef] [Green Version]
- Fellner, M.; Horton, L.A.; Cocke, A.E.; Stephens, N.R.; Ford, E.D.; Van Volkenburgh, E. Light interacts with auxin during leaf elongation and leaf angle development in young corn seedlings. Planta 2003, 216, 366–376. [Google Scholar] [CrossRef]
- Mockaitis, K.; Estelle, M. Auxin receptors and plant development: A new signaling paradigm. Annu. Rev. Cell Dev. Biol. 2008, 24, 55–80. [Google Scholar] [CrossRef] [Green Version]
- Hagen, G. Auxin signal transduction. Essays Biochem. 2015, 58, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Vanneste, S.; Friml, J. Auxin: A trigger for change in plant development. Cell 2009, 136, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Lavy, M.; Estelle, M. Mechanisms of auxin signaling. Development 2016, 143, 3226–3229. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, T.; Ito, M.; Sumikura, T.; Nakayama, A.; Nishimura, T.; Kitano, H.; Yamaguchi, I.; Koshiba, T.; Hibara, K.-I.; Nagato, Y.; et al. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. Plant J. 2014, 78, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.-Q.; Xiang, J.-J.; Xue, H.-W. Studies on the rice leaf inclination1 (lc1), an iaa–amido synthetase, reveal the effects of auxin in leaf inclination control. Mol. Plant 2013, 6, 174–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, H.; Xie, Y.; Guo, F.; Han, N.; Ma, S.; Zeng, Z.; Wang, J.; Yang, Y.; Zhu, M. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol. 2012, 196, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, C.Y.; Miao, R.; Zhou, C.L.; Cao, P.H.; Lan, J.; Zhu, X.J.; Mou, C.L.; Huang, Y.S.; Liu, S.J.; et al. DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling. Rice 2018, 11, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.-H.; Zhou, L.; Xu, P.; Xue, H.-W. SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling. PLoS Genet. 2018, 14, e1007829. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Zhang, X.; Zhang, Z.; Liu, H.; Lin, Z. A new allele of the Brachytic2 gene in maize can efficiently modify plant architecture. Heredity 2018, 121, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wei, J.; Wang, H.; Fang, Y.; Yin, S.; Xu, Y.; Liu, J.; Yang, Z.; Xu, C. Natural variation and domestication selection of zmpgp1 affects plant architecture and yield-related traits in maize. Genes 2019, 10, 664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, A.; Ueguchi-Tanaka, M.; Sakamoto, T.; Fujioka, S.; Takatsuto, S.; Yoshida, S.; Sazuka, T.; Ashikari, M.; Matsuoka, M. The riceSPINDLYgene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J. 2006, 48, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Zentella, R.; Sui, N.; Barnhill, B.; Hsieh, W.-P.; Hu, J.; Shabanowitz, J.; Boyce, M.; Olszewski, N.E.; Zhou, P.; Hunt, N.F.; et al. The Arabidopsis O-fucosyltransferase spindly activates nuclear growth repressor DELLA. Nat. Methods 2017, 13, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Wan, H.; Wang, J.; Liang, S.; Fang, H.; Xiao, Z. Estimating leaf area index by fusing MODIS and MISR data. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; Volume 29, pp. 1820–1823. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Gu, L.; Song, X.; Cui, X.; Lu, Z.; Zhou, M.; Wang, L.; Hu, F.; Zhai, J.; Meyers, B.C.; et al. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proc. Natl. Acad. Sci. USA 2014, 111, 3877–3882. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Liu, H.; Guo, S.; Wang, B.; Li, Z.; Chong, K.; Xu, Y. OsmiR396d affects gibberellin and brassinosteroid signaling to regulate plant architecture in rice. Plant Physiol. 2017, 176, 946–959. [Google Scholar] [CrossRef] [Green Version]
- Attia, K.A.; Abdelkhalik, A.F.; Ammar, M.H.; Wei, C.; Yang, J.; Lightfoot, D.A.; El-Sayed, W.M.; El-Shemy, H.A. Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice. Curr. Issues Mol. Biol. 2009, 11. [Google Scholar]
- Song, Y.; You, J.; Xiong, L. Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol. Biol. 2009, 70, 297–309. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S.; Xu, Y.; Yu, C.; Shen, C.; Qian, Q.; Geißler, M.; Jiang, D.A.; Qi, Y. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH 3-5 and OsBRI 1. Plant Cell Environ. 2014, 38, 638–654. [Google Scholar] [CrossRef] [Green Version]
- Ferrero-Serrano, Á.; Assmann, S.M. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. J. Exp. Bot. 2016, 67, 3433–3443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oki, K.; Inaba, N.; Kitagawa, K.; Fujioka, S.; Kitano, H.; Fujisawa, Y.; Kato, H.; Iwasaki, Y. Function of the subunit of rice heterotrimeric g protein in brassinosteroid signaling. Plant Cell Physiol. 2008, 50, 161–172. [Google Scholar] [CrossRef]
- Jang, S.; An, G.; Li, H.-Y. Rice leaf angle and grain size are affected by the OsBUL1 transcriptional activator complex. Plant Physiol. 2016, 173, 688–702. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Xiao, Y.; Liu, D.; Gao, S.; Liu, L.; Yin, Y.; Jin, Y.; Qian, Q.; Chu, C. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 2014, 26, 4376–4393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Wang, L.; Liu, M.; Dong, Z.; Li, Q.; Fei, S.; Xiang, H.; Liu, B.; Jin, W. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7. Plant Physiol. 2020. [Google Scholar] [CrossRef]
- Li, X.; Sun, S.; Li, C.; Qiao, S.; Wang, T.; Leng, L.; Shen, H.; Wang, X. The Strigolactone-related mutants have enhanced lamina joint inclination phenotype at the seedling stage. J. Genet. Genom. 2014, 41, 605–608. [Google Scholar] [CrossRef]
- Shindo, M.; Yamamoto, S.; Shimomura, K.; Umehara, M. Strigolactones Decrease leaf angle in response to nutrient deficiencies in rice. Front. Plant Sci. 2020, 11, 135. [Google Scholar] [CrossRef]
- Gan, L.; Wu, H.; Wu, D.; Zhang, Z.; Guo, Z.; Yang, N.; Xia, K.; Zhou, X.; Oh, K.; Matsuoka, M.; et al. Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice. Plant Sci. 2015, 241, 238–245. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, D. Brassinosteroid insensitive2 interacts with abscisic acid insensitive5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell 2014, 26, 4394–4408. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Dou, L.; Gong, Z.; Wang, X.; Liu, X. BES 1 hinders abscisic acid insensitive 5 and promotes seed germination in Arabidopsis. New Phytol. 2018, 221, 908–918. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Tang, J.; Liu, J.; Hu, J.; Liu, J.; Chen, Y.; Cai, Z.; Wang, X. Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Mol. Plant 2018, 11, 315–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.-F.; Lu, J.; Zhou, Y.; Wu, F.; Tong, H.; Wang, J.-D.; Yu, J.-W.; Zhang, C.-Q.; Fan, X.-L.; Liu, Q. Abscisic acid represses rice lamina joint inclination by antagonizing brassinosteroid biosynthesis and signaling. Int. J. Mol. Sci. 2019, 20, 4908. [Google Scholar] [CrossRef] [Green Version]
- Dou, D.; Han, S.; Ku, L.; Liu, H.; Su, H.; Ren, Z.; Zhang, D.; Zeng, H.; Dong, Y.; Liu, Z.; et al. ZmCLA4 regulates leaf angle through multiple plant hormone-mediated signal pathways in maize 2020. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Zeng, H.; Ku, L.; Ren, Z.; Han, Y.; Su, H.; Dou, D.; Liu, H.; Dong, Y.; Zhu, F.; et al. ZmIBH1-1 regulates plant architecture in maize. J. Exp. Bot. 2020, 71, 2943–2955. [Google Scholar] [CrossRef] [PubMed]
- Bao, F.; Shen, J.; Brady, S.R.; Muday, G.K.; Asami, T.; Yang, Z. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol. 2004, 134, 1624–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuldashev, R.; Avalbaev, A.; Bezrukova, M.; Vysotskaya, L.; Khripach, V.; Shakirova, F. Cytokinin oxidase is involved in the regulation of cytokinin content by 24-epibrassinolide in wheat seedlings. Plant Physiol. Biochem. 2012, 55, 1–6. [Google Scholar] [CrossRef]
- Peleg, Z.; Reguera, M.; Tumimbang, E.; Walia, H.; Blumwald, E. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol. J. 2011, 9, 747–758. [Google Scholar] [CrossRef]
- Yoshida, H.; Tanimoto, E.; Hirai, T.; Miyanoiri, Y.; Mitani, R.; Kawamura, M.; Takeda, M.; Takehara, S.; Hirano, K.; Kainosho, M.; et al. Evolution and diversification of the plant gibberellin receptor GID1. Proc. Natl. Acad. Sci. USA 2018, 115, E7844–E7853. [Google Scholar] [CrossRef] [Green Version]
- Ishii, T.; Numaguchi, K.; Miura, K.; Yoshida, K.; Thanh, P.T.; Htun, T.M.; Yamasaki, M.; Komeda, N.; Matsumoto, T.; Terauchi, R.; et al. OsLG1 regulates a closed panicle trait in domesticated rice. Nat. Genet. 2013, 45, 462–465. [Google Scholar] [CrossRef]
- Zhu, Z.; Tan, L.; Fu, Y.; Liu, F.; Cai, H.; Xie, D.; Wu, F.; Wu, J.; Matsumoto, T.; Sun, C. Genetic control of inflorescence architecture during rice domestication. Nat. Commun. 2013, 4, 2200. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, L.; Chen, J.; Li, X.; Li, Y.; Cheng, H.; Huang, R.; Zhou, B.; Li, Z.; Wang, J.; et al. Genomic dissection of leaf angle in maize (Zea mays L.) using a four-way cross mapping population. PLoS ONE 2015, 10, e0141619. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, Y.; Shi, Y.; Song, Y.; Zhang, D.; Buckler, E.S.; Zhang, Z.; Wang, T.; Li, Y. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS ONE 2015, 10, e0121624. [Google Scholar] [CrossRef]
- Tian, F.; Bradbury, P.J.; Brown, P.J.; Hung, H.; Sun, Q.; Flint-Garcia, S.; Rocheford, T.R.; McMullen, M.D.; Holland, J.B.; Buckler, E.S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet. 2011, 43, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, J.; Deng, D.; Ding, H.; Bian, Y.; Yin, Z.; Wu, Y.; Zhou, B.; Zhao, Y. A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.). Planta 2015, 243, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, C.; Qi, X.; Wu, Y.; Fei, X.; Mao, L.; Cheng, B.; Li, X.; Xie, C. RNA-guided Cas9 as an in vivo desired-target mutator in maize. Plant Biotechnol. J. 2017, 15, 1566–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pathway | Arabidopsis | Maize/Rice | Functions in Leaf Angle 1 | Refs |
---|---|---|---|---|
BR | AtCYP90D1 (AT3G13730) | OsCYP90D2 (LOC_Os01g10040) | Positively regulating leaf angle and related to the BR biosynthesis in rice. | [11,24,25,26] |
AtDWARF4 (AT3G50660) | OsDWARF4 (LOC_Os03g12660) | Positively regulating leaf angle and catalyzing C-22 hydroxylation in BR biosynthesis pathway. | [11,24] | |
AtCYP724A1 (AT5G14400) | OsDWARF11 (LOC_Os04g39430) | Positively regulating leaf angle and catalyzing C-22 hydroxylation in BR biosynthesis pathway. | [23,25] | |
AtBR6OX2 (AT3G30180) | OsBRD1 (LOC_Os03g40540) | Positively regulating leaf angle and catalyzing BR biosynthesis. | [27,28] | |
AtBR6OX2 (AT3G30180) | ZmBRD1 (GRMZM2G103773) | Positively regulating leaf angle and catalyzing C-6 oxidation in BR biosynthesis. | [49] | |
AtDWARF1 (AT3G19820) | OsBRD2 (LOC_Os10g25780) | Positively regulating leaf angle and participating in the complementary pathway of BR synthesis. | [64,66] | |
AtSERK2 (AT1G34210) | OsBAK1 (LOC_Os08g07760) | Positively regulating leaf angle and mediating BR signal transduction. | [34] | |
AtBRI1 (AT4G39400) | OsBRI1/OsDWARF61 (LOC_Os01g52050) | Positively regulating leaf angle and stimulating BR signal cascade to regulate organ development by controlling cell division and elongation, but is not necessary for organ initiation. | [71] | |
AtBRI1 (AT4G39400) | ZmBRI1a (GRMZM2G048294) | Positively regulating leaf angle. | [46] | |
AtBRI1 (AT4G39400) | ZmBRI1b (GRMZM2G449830) | |||
AtBZR2 (AT1G19350) | OsBZR1 (LOC_Os07g39220) | Positively regulating leaf angle and acting downstream of BR signaling. | [35] | |
AT1G75340 (AT1G75340) | OsLIC1 (LOC_Os06g49080) | A direct target of OsBZR1 and negatively modulating leaf inclination. | [36] | |
AT2G41710 (AT2G41710) | OsRLA1/OsSMOS1 (LOC_Os05g32270) | Positively regulating leaf angle and direct downstream of GSK2. | [37,38] | |
AtIBH1 (AT2G43060) | OsIBH1 (LOC_Os04g56500) | Interacting with OsILI1 and negatively regulating leaf angle. | [40] | |
AtIBH1 (AT2G43060) | ZmIBH1-1 (GRMZM2G388823) | Negative regulator of LA by modulating cell wall lignification and cell elongation in the ligular region. | [85] | |
NA NA | ZmDIL1 (NA) | Positively regulating leaf angle. | [45] | |
AtPRE5 (AT3G28857) | OsILI1 (LOC_Os04g54900) | Positive control of leaf angle. | [40] | |
AtBS1 (AT1G74500) | ZmILI1 (GRMZM2G072820) | Positively regulating leaf angle. | [51] | |
AtSPL8 (AT1G02065) | ZmLG1 (GRMZM2G036297) | Positively regulating leaf angle and directly activating ZmBRD1 expression, leading to increased BR and leaf angle. | [49] | |
AtNGA1 (AT2G46870) | ZmRAVL1 (GRMZM2G102059) | Positively regulating leaf angle by regulating ZmBRD1. | [49] | |
AtPGP1 (AT2G36910) | ZmPGP1/ZmBR2 (GRMZM2G315375) | Positively regulating leaf angle and being involved in the polar transport of auxin. | [62] | |
AtGPA1 (AT2G26300) | OsD1/OsRGA1 (LOC_Os05g26890) | Positively regulating leaf angle by interacting with OsTUD1 to induce OsBU1, leading to increasing leaf inclination. | [73,74] | |
AtPUB30 (AT3G49810) | OsTUD1 (LOC_Os03g13010) | Positively regulating leaf angle. | [73,74] | |
AtKDR (AT1G26945) | OsBU1 (LOC_Os06g12210) | Positively regulating leaf angle. | [73,74] | |
AtBIN2 (AT4G18710) | OsGSK1 (LOC_Os01g10840) | Negatively regulating leaf angle and BR. | [36] | |
AtGSK1 (AT1G06390) | OsGSK2 (LOC_Os05g11730) | Negatively regulating leaf angle and the expression of downstream BR response genes. | [83] | |
AT1G63100 (AT1G63100) | OsSMOS2/OsGS6 (LOC_Os06g03710) | Positively regulating leaf angle and BR-mediated signaling pathway. | [83] | |
AtDCL3 (AT3G43920) | OsDCL3a (LOC_Os01g68120) | Negatively regulating leaf angle. | [67] | |
IAA | AtGH3.6 (AT5G54510) | OsGH3.1/OsLC1 (LOC_Os01g57610) | Positively regulating leaf angle and maintaining auxin homeostasis by catalyzing excess IAA binding to various amino acids. | [58] |
AtGH3.2 (AT4G37390) | OsGH3.2 (LOC_Os01g55940) | Positively regulating leaf angle and auxin signal transduction and auxin homeostasis. | [61] | |
AT-MIR393A (AT2G39885) | OsmiR393a (GQ419313.2) | Positively regulating leaf angle but negatively regulating OsTIR1 and OsAFB2. | [59] | |
AT-MIR393B (AT3G55734) | OsmiR393b (LOC_Os04g58400) | Positively regulating leaf angle but negatively regulating OsTIR1 and OsAFB2. | [59] | |
AtTIR1 (AT3G62980) | OsTIR1 (LOC_Os05g05800) | Negatively regulating leaf angle and being the target of OsmiR393. | [59] | |
AtAFB2 (AT3G26810) | OsAFB2 (LOC_Os04g32460) | Negatively regulating leaf angle and being the OsmiR393 target. | [59] | |
AtIAA17 (AT1G04250) | OsIAA1 (LOC_Os01g08320) | Positively regulating leaf angle and inhibiting OsARF11 and OsARF19 | [60] | |
AtIAA3 (AT1G04240) | OsIAA12 (LOC_Os03g43410) | Positively regulating leaf angle and auxin signal transduction and homeostasis. | [61] | |
AT5G11430 (AT5G11430) | OsLC3 (LOC_Os06g39480) | Negatively regulating leaf angle and inhibiting expressions of OsIAA12 and OsGH3.2. | [61] | |
AT5G63830 (AT5G63830) | OsLIP1 (LOC_Os10g37640) | Negatively regulating leaf angle and interacting with LC3 to inhibit OsIAA12 and OsGH3.2. | [61] | |
AtARF2 (AT5G62000) | OsARF1 (LOC_Os11g32110) | Negatively regulating leaf angle and inhibited by OsIAA1 in the absence of auxin. | [69,70] | |
AtARF5 (AT1G19850) | OsARF11 (LOC_Os04g56850) | Positively regulating leaf angle and suppressed by OsIAA1. | [60] | |
AtARF19 (AT1G19220) | OsARF19 (LOC_Os06g48950) | Positively regulating leaf angle and OsGH3-5 and OsBRI1, and affecting the elongation of rice basal internodes and leaves by regulating cell elongation. | [60] | |
GA | AtSPY (AT3G11540) | OsSPY (LOC_Os08g44510) | Negatively regulating leaf angle and GA. Involving in BR signal transduction and control of the suppression of SLR1. | [64] |
AtGAI (AT1G14920) | OsSLR1 (LOC_Os03g49990) | Negatively regulating leaf angle and GA signal transduction. | [64,66] | |
AtGASA4 (AT5G15230) | OsGSR1 (LOC_Os06g15620) | Positively regulating leaf angle and induced by OsSLR1. Directly binding to OsBRD2 to enhance the BR biosynthesis. | [64,66] | |
miR396 (AT2G10606) | OsmiR396d (LOC_Os04g57830) | Positively regulating leaf angle and BR-mediated signaling pathway. | [68] | |
AtARF5 (AT3G13960) | OsGRF4 (LOC_Os02g47280) | Negatively regulating leaf angle and cell enlargement and number, and being the OsmiR396 target | [68] | |
AtGFP1 (AT2G22840) | OsGRF6 (LOC_Os03g51970) | Negatively regulating leaf angle and being the OsmiR396 target. | [68] | |
AtGID1C (AT5G27320) | OsGID1 (LOC_Os05g33730) | Positively regulating leaf angle and mediating GA signaling in rice. | [89] | |
JA | AtJAR1/AtGH3.11 (AT2G46370) | OsGH3.5/OsJAR1 (LOC_Os05g50890) | Positively regulating leaf angle and being regulated by OsARF19. Redundant with other OsGH3. | [71] |
Ethylene | AtACS6 (AT4G11280) | ZmACS7 (GRMZM5G894619) | Positively regulating leaf angle. | [76] |
CK | AtBBC1 (AT3G49010) | ZmBBC1 (GRMZM2G145280) | Positively regulating leaf angle and cell division. | [85] |
AtAPS3 (AT4G14680) | ZmAS1 (GRMZM2G149952) | Positively regulating leaf angle and cell division. | [85] | |
SLs | AtMAX2 (AT2G42620) | OsD3 (LOC_Os06g06050) | Negatively regulating leaf angle and related to the SL signaling in rice. | [9] |
AtD14 (AT3G03990) | OsD14 (LOC_Os03g10620) | Negatively regulating leaf angle and dual function as a receptor and deactivator of bioactive SLs, related to the SL signaling in rice. | [78] | |
AtCCD8 (AT4G32810) | OsD10 (LOC_Os01g54270) | Negatively regulating leaf angle and encode carotenoid cleavage dioxygenase (CCD) 8 related to the SL biosynthesis in rice. | [78] | |
AtCCD7 (AT2G44990) | OsD17 (LOC_Os04g46470) | Negatively regulating leaf angle and encode carotenoid cleavage dioxygenase (CCD) 7 related to the SL biosynthesis in rice. | [78] | |
AtD27 (AT1G03055) | OsD27 (Os11g0587000) | Negatively regulating leaf angle and encode β-carotene isomerase, related to the SL biosynthesis in rice. | [78] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wu, P.; Lu, Y.; Guo, S.; Zhong, Z.; Shen, R.; Xie, Q. Synergistic Interaction of Phytohormones in Determining Leaf Angle in Crops. Int. J. Mol. Sci. 2020, 21, 5052. https://doi.org/10.3390/ijms21145052
Li X, Wu P, Lu Y, Guo S, Zhong Z, Shen R, Xie Q. Synergistic Interaction of Phytohormones in Determining Leaf Angle in Crops. International Journal of Molecular Sciences. 2020; 21(14):5052. https://doi.org/10.3390/ijms21145052
Chicago/Turabian StyleLi, Xi, Pingfan Wu, Ying Lu, Shaoying Guo, Zhuojun Zhong, Rongxin Shen, and Qingjun Xie. 2020. "Synergistic Interaction of Phytohormones in Determining Leaf Angle in Crops" International Journal of Molecular Sciences 21, no. 14: 5052. https://doi.org/10.3390/ijms21145052
APA StyleLi, X., Wu, P., Lu, Y., Guo, S., Zhong, Z., Shen, R., & Xie, Q. (2020). Synergistic Interaction of Phytohormones in Determining Leaf Angle in Crops. International Journal of Molecular Sciences, 21(14), 5052. https://doi.org/10.3390/ijms21145052