Bio-inspired Surface Texture Modification as a Viable Feature of Future Aquatic Antifouling Strategies: A Review
Abstract
:1. Introduction
2. Surface Modification
2.1. Production Methods
2.2. Surface Roughness
2.3. Surface Wettability
2.4. Hydrodynamics
2.5. Surface Topography
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chapman, J.; Hellio, C.; Sullivan, T.; Brown, R.; Russell, S.; Kiterringham, E.; Le Nor, L.; Regan, F. Bioinspired synthetic macroalgae: Examples from nature for antifouling applications. Int. Biodeterior. Biodegrad. 2014, 86, 6–13. [Google Scholar] [CrossRef]
- Piazza, V.; Dragić, I.; Sepečić, K.; Faimali, M.; Garaventa, F.; Turk, T.; Berne, S. Antifouling activity of synthetic alkylpyridinium polymers using the barnacle model. Mar. Drugs 2014, 12, 1959–1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirschner, C.M.; Brennan, A.B. Bio-Inspired antifouling strategies. Annu. Rev. Mater. Res. 2012, 42, 211–229. [Google Scholar] [CrossRef]
- Maréchal, J.P.; Hellio, C. Challenges for the development of new Non-Toxic antifouling solutions. Int. J. Mol. Sci. 2009, 10, 4623–4637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callow, J.A.; Callow, M.E. Advanced nanostructured surfaces for the control of marine biofouling: The AMBIO project. In Advances in Marine Antifouling Coatings and Technologies; Woodhead Publishing: Birmingham, UK, 2009; pp. 647–663. [Google Scholar]
- Rosenhahn, A.; Schilp, S.; Kreuzer Jurgen, H.; Grunze, M. The role of “inert” surface chemistry in marine biofouling prevention. Phys. Chem. Chem. Phys. 2010, 12, 4275–4286. [Google Scholar] [CrossRef] [PubMed]
- Schmelmer, U.; Paul, A.; Küller, A.; Steenackers, M.; Ulman, A.; Grunze, M.; Gçlzhäuser, A.; Jordan, R. Nanostructured polymer brushes. Small 2007, 3, 459–465. [Google Scholar] [CrossRef]
- Bowen, J.; Pettitt, M.E.; Kendall, K.; Leggett, G.J.; Preece, J.A.; Callow, M.E.; Callow, J.A. The influence of surface lubricity on the adhesion of navicula perminuta and ulva linza to alkanethiol self-assembled monolayers. J. R. Soc. Interface 2007, 4, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Marmur, A. Super-Hydrophobicity fundamentals: Implications to biofouling prevention. Biofouling 2006, 22, 107–115. [Google Scholar] [CrossRef]
- Heydt, M.; Rosenhahn, A.; Grunze, M.; Pettitt, M.; Callow, M.E.; Callow, J.A. Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces. J. Adhes. 2007, 83, 417–430. [Google Scholar] [CrossRef]
- Schilp, S.; Kueller, A.; Rosenhahn, A.; Grunze, M.; Pettitt, M.E.; Callow, M.E.; Callow, J.A. Settlement and adhesion of algal cells to hexa(ethylene glycol)-containing self-assembled monolayers with systematically changed wetting properties. Biointerphases 2007, 2, 143–150. [Google Scholar] [CrossRef]
- Rosenhahn, A.; Finlay, J.A.; Pettit, M.E.; Ward, A.; Wirges, W.; Gerhard, R.; Callow, M.E.; Grunze, M.; Callow, J.A. Zeta potential of motile spores of the green alga ulva linza and the influence of electrostatic interactions on spore settlement and adhesion strength. Biointerphases 2009, 4, 7–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Pettit, M.E.; Conlan, S.L.; Wagner, W.; Ho, A.D.; Clare, A.S.; Callow, J.A.; Callow, M.E.; Grunze, M.; Rosenhahn, A. Resistance of polysaccharide coatings to proteins, hematopoietic cells, and marine organisms. Biomacromolecules 2009, 10, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Aldred, N.; Scardino, A.; Cavaco, A.; de Nys, R.; Clare, A.S. Attachment strength is a key factor in the selection of surfaces by barnacle cyprids (balanus amphitrite) during settlement. Biofouling 2010, 26, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Anselme, K.; Davidson, P.; Popa, A.M.; Giazzon, M.; Liley, M.; Ploux, L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater. 2010, 6, 3824–3846. [Google Scholar] [CrossRef] [PubMed]
- Crawford, R.J.; Webb, H.K.; Truong, V.K.; Hasan, J.; Ivanova, E.P. Surface topographical factors influencing bacterial attachment. Adv. Colloid Interface Sci. 2012, 179–182, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Emerson, R.J., IV; Bergstrom, T.S.; Liu, Y.; Soto, E.R.; Brown, C.A.; McGimpsey, W.G.; Camesano, T.A. Microscale correlation between surface chemistry, texture, and the adhesive strength of staphylococcus epidermidis. Langmuir 2006, 22, 11311–11321. [Google Scholar] [CrossRef] [PubMed]
- Mitik-Dineva, N.; Wang, J.; Mocanasu, R.C.; Stoddart, P.R.; Crawford, R.J.; Ivanova, E.P. Impact of nano-topography on bacterial attachment. Biotechnol. J. 2008, 3, 536–544. [Google Scholar] [CrossRef]
- Verran, J.; Redfern, J.; Smith, L.A.; Whitehead, K.A. A Critical Evaluation of sampling methods used for assessing microorganisms on surfaces. Food Bioprod. Process. 2010, 88, 335–340. [Google Scholar] [CrossRef]
- Dalby, M.J.; Gadegaard, N.; Oreffo, R.O.C. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat. Mater. 2014, 13, 558–569. [Google Scholar] [CrossRef]
- Chambers, L.D.; Stokes, K.R.; Walsh, F.C.; Wood, R.J.K. Modern approaches to marine antifouling coatings. Surf. Coatings Technol. 2006, 201, 3642–3652. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.C.; Fang, J.; Borca-Tasciuc, D.A.; Worobo, R.W.; Moraru, C.I. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl. Environ. Microbiol. 2013, 79, 2703–7212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumacher, J.F.; Long, C.J.; Callow, M.E.; Finlay, J.A.; Callow, J.A.; Brennan, A.B. Engineered nanoforce gradients for inhibition of settlement (attachment) of swimming algal spores. Langmuir 2008, 24, 4931–4937. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.; Regan, F. Nanofunctionalized Superhydrophobic Antifouling coatings for environmental sensor applications-advancing deployment with answers from nature. Adv. Eng. Mater. 2012, 14, 175–184. [Google Scholar] [CrossRef]
- Valle, J.; Burgui, S.; Langheinrich, D.; Gil, C.; Solano, C.; Toledo-Arana, A.; Helbig, R.; Lasagni, A.; Lasa, I. Evaluation of surface microtopography engineered by direct laser interference for bacterial anti-biofouling. Macromol. Biosci. 2015, 15, 1060–1069. [Google Scholar] [CrossRef] [Green Version]
- Baum, C.; Meyer, W.; Stelzer, R.; Fleishcher, L.G.; Siebers, D. Average nanorough skin surface of the pilot whale (globicephala melas, delphinidae): Considerations on the self-cleaning abilities based on nanoroughness. Mar. Biol. 2002, 140, 653–657. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.; Ozkan, A.; Berberoglu, H. Adhesion of algal cells to surfaces. Biofouling 2013, 29, 469–482. [Google Scholar] [CrossRef]
- Achinas, S.; Charalampogiannis, N.; Jan, G.; Euverink, W. A brief recap of microbial adhesion and biofilms. Appl. Sci. 2019, 9, 2801. [Google Scholar] [CrossRef] [Green Version]
- Hermansson, M. The DLVO theory in microbial adhesion. Colloids Surf. B Biointerfaces 1999, 14, 105–119. [Google Scholar] [CrossRef]
- Bers, A.V.; Wahl, M. The influence of natural surface microtopographies on fouling. Biofouling 2004, 20, 43–51. [Google Scholar] [CrossRef]
- Callow, M.E.; Jennings, A.R.; Brennan, A.B.; Wilson, L.; Feinberg, A.; Baney, R.; Callow, J.A. Microtopographic cues for settlement of zoospores of the green fouling alga enteromorpha. Biofouling 2002, 18, 237–245. [Google Scholar] [CrossRef]
- Scardino, A.J.; Harvey, E.; De Nys, R. Testing attachment point theory: Diatom attachment on microtextured polyimide biomimics. Biofouling 2006, 22, 55–60. [Google Scholar] [CrossRef]
- Lorenzetti, M.; Dogša, I.; Stošicki, T.; Stopar, D.; Kalin, M.; Kobe, S.; Novak, S. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl. Mater. Interfaces 2015, 7, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.V.; Cady, N.C. Nano and microscale topographies for the prevention of bacterial surface fouling. Coatings 2014, 4, 37–59. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Ji, J.; Shen, L.; Ku, A.; Rosenhahn, A.; Shen, J.; Grunze, M. PH-Amplified exponential growth multilayers: A facile method to develop hierarchical micro- and nanostructured surfaces. Langmuir 2009, 25, 672–675. [Google Scholar] [CrossRef]
- Steenackers, M.; Ku, A.; Stoycheva, S.; Grunze, M.; Jordan, R. Structured and gradient polymer brushes from biphenylthiol self-assembled monolayers by self-initiated photografting and photopolymerization (SIPGP). Langmuir 2009, 25, 2225–2231. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Yang, H.; Xue, W.; He, A.; Zhu, D.; Liu, W.; Adeyemi, K.; Cao, Y. Anti-Biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel. Appl. Surf. Sci. 2018, 436, 263–267. [Google Scholar] [CrossRef]
- Ermis, M.; Antmen, E.; Hasirci, V. Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact. Mater. 2018, 3, 355–369. [Google Scholar] [CrossRef]
- Cirelli, R.A.; Watson, G.P.; Nalamasu, O. Encyclopedia of Materials: Science and Technology, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2001; pp. 6441–6448. [Google Scholar]
- Murad, R.; Xichun, H. Promising lithography techniques for next-generation logic devices. Nanomanuf. Metrol. 2018, 1, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Watt, F.; Bettiol, A.A.; Van Kan, J.A.; Teo, E.J.; Breese, M.B.H. Ion beam lithography and nanofabrication: A review. Int. J. Nanosci. 2005, 4, 269–286. [Google Scholar] [CrossRef] [Green Version]
- Tocce, E.J.; Liliensiek, S.J.; Wilson, M.J.; Yanez-Soto, B.; Nealey, P.F.; Murphy, C.J. Comprehensive Biomaterials; Elsevier Ltd.: Amsterdam, The Netherlands, 2011; pp. 527–546. [Google Scholar]
- Charlton, M.D.B. Photonic Crystal Nitride LEDs. In Nitride Semiconductor Light-Emitting Diodes (LEDs), 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; pp. 327–376. [Google Scholar]
- Baglin, J.E.E. Ion beam nanoscale fabrication and lithography-A review. Appl. Surf. Sci. 2012, 258, 4103–4111. [Google Scholar] [CrossRef]
- Martinex-Chapa, S.O.; Salazar, A.; Madou, M.J. Two-Photon Polymerization as a Component of Desktop Integrated Manufacturing Platforms. In Three-Dimensional Microfabrication Using Two-Photon Polymerization; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 374–416. [Google Scholar]
- Steck, J.G.; Afshar-Mohajer, M.; Sun, Q.; Meng, X.; Zou, M. Fabrication and tribological characterization of deformation-resistant nano-textured surfaces produced by two-photon lithography and atomic layer deposition. Tribol. Int. 2019, 132, 75–84. [Google Scholar] [CrossRef]
- Dharmalingam, S.; Bhaskaran, B. Need & Overview of electrochemical micro machining. Int. J. ChemTech Res. 2017, 10, 35–45. [Google Scholar]
- Bhattacharyya, B.Ã.; Munda, J.; Malapati, M. Advancement in electrochemical micro-machining. Int. J. Mach. Tools Manuf. 2004, 44, 1577–1589. [Google Scholar] [CrossRef]
- Hao, X.; Wang, L.; Wang, Q.; Guo, F.; Tang, Y.; Ding, Y.; Lu, B. Surface micro-texturing of metallic cylindrical surface with proximity rolling-exposure lithography and electrochemical micromachining. Appl. Surf. Sci. 2011, 257, 8906–8911. [Google Scholar] [CrossRef]
- Huang, L.; Xiong, Z.; Zeng, X.; Zhao, Z.; Cao, Y.; Xia, Y. The synthesis and characterizations of water-soluble two- photon polymerization photoinitiator and its applications for 3D Hydrogel Microfabrication. J. Appl. Sci. Eng. Innov. 2020, 7, 8–12. [Google Scholar]
- Farsari, M.; Chichkov, B.N. Two-Photon fabrication. Mater. Process. 2009, 3, 450–452. [Google Scholar] [CrossRef]
- Rogers, J.A.; Nuzzo, R.G. Recent progress in soft lithography. Mater. Today 2005, 8, 50–56. [Google Scholar] [CrossRef]
- Qin, D.; Xia, Y.; Whitesides, G.M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Fu, Y.; Yu, X.-Y. Physical Chemistry of Gas-Liquid Interfaces; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; pp. 245–270. [Google Scholar]
- Fink, J.K. Reactive Polymers Fundamentals and Applications; A Concise Guide to Industrial Polymers; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; pp. 49–93. [Google Scholar]
- Harvey, E.; Ghantasala, M. Nanostructure Control of Materials; Elsevier Ltd.: Amsterdam, The Netherlands, 2006; pp. 303–330. [Google Scholar]
- Chen, Y. Applications of nanoimprint lithography/hot embossing: A review. Appl. Phys. A Mater. Sci. Process. 2015, 121, 451–465. [Google Scholar] [CrossRef]
- Peng, L.; Deng, Y.; Yi, P.; Lai, X. Micro hot embossing of thermoplastic polymers: A review. J. Micromechanics Microengineering 2014, 24, 013001. [Google Scholar] [CrossRef]
- Sequeiros, E.W.; Emadinia, O.; Vieira, M.T.; Vieira, M.F. Development of metal powder hot embossing: A new method for micromanufacturing. Metals 2020, 10, 388. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; An, J.; Chua, C.K. Fundamentals and applications of 3D Printing for novel materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Richards, C.; Barrett, A.; Maguire, I.; Kwiatkowska, S.; Regan, F. Marine Inspired textured materials for reduction of biofouling on surfaces. In Proceedings of the IEEE Conference Proceedings, OCEANS 2019, Marseille, France, 17–20 June 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Xian, J.; Wang, X.; Fu, X.; Zhang, Z.; Liu, L.; Kang, M. A simple model to predict machined depth and surface profile for picosecond laser surface texturing. Appl. Sci. 2018, 8, 2111. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, K.A.; Colligon, J.; Verran, J. Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions. Colloids Surf. B Biointerfaces 2005, 41, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Kohler, J.; Hansen, P.; Wahl, M. Colonization patterns at the substratum-water interface: How does surface microtopography influence recruitment patterns of sessile organisms? Biofouling 1999, 14, 237–248. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Murthy, P.S.; Venkatesan, R.; Cooksey, K.E. Marine and Industrial Biofouling; Springer Ltd.: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Ferrari, M.; Benedetti, A. Superhydrophobic surfaces for applications in seawater. Adv. Colloid Interface Sci. 2015, 222, 291–304. [Google Scholar] [CrossRef]
- Hansson, P.M.; Swerin, A.; Schoelkopf, J.; Gane, P.A.C.; Thormann, E. Influence of surface topography on the interactions between nanostructured hydrophobic surfaces. Langmuir 2012, 28, 8026–8034. [Google Scholar] [CrossRef]
- Ogihara, H.; Xie, J.; Saji, T. Controlling surface energy of glass substrates to prepare superhydrophobic and transparent films from silica nanoparticle suspensions. J. Colloid Interface Sci. 2015, 437, 24–27. [Google Scholar] [CrossRef]
- Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1804, 95, 65–87. [Google Scholar]
- Cassie, B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Wenzel, R.N. Surface roughness and contact angle. J. Phys. Chem. 1949, 53, 1466–1467. [Google Scholar] [CrossRef]
- Dodiuk, H.; Rios, P.F.; Dotan, A.; Kenig, S. Hydrophobic and self-cleaning coatings. Polym. Adv. Technol. 2007, 18, 560–568. [Google Scholar] [CrossRef]
- Rahmawan, Y.; Xu, L.; Yang, S. Self-Assembly of nanostructures towards transparent, superhydrophobic surfaces. J. Mater. Chem. A 2013, 1, 2955. [Google Scholar] [CrossRef]
- McHale, G.; Shirtcliffe, N.J.; Newton, M.I. Super-Hydrophobic and super-wetting surfaces: Analytical potential? Analyst 2004, 129, 284–287. [Google Scholar] [CrossRef]
- Huber, D.; Oskooei, A.; Casadevall, X.; Kaigala, G.V. Hydrodynamics in cell studies. Chem. Rev. 2018, 118, 2042–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salta, M.; Wharton, J.A.; Stoodley, P.; Dennington, S.P.; Goodes, L.R.; Werwinski, S.; Mart, U.; Wood, R.J.K.; Stokes, K.R. Designing biomimetic antifouling surfaces. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 4729–4754. [Google Scholar] [CrossRef] [Green Version]
- Donnell, M.J.O.; Denny, M.W. Hydrodynamic forces and surface topography: Centimeter-Scale Spatial variation in wave forces. Limnol. Oceanogr. 2008, 53, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Denny, M.W.; Daniel, T.L.; Koehl, M.A.R. Mechanical limits to size in wave-swept organisms. Ecol. Monogr. 2012, 55, 69–102. [Google Scholar] [CrossRef]
- Magin, C.M.; Long, C.J.; Cooper, S.P.; Ista, L.K.; Gabriel, P.; Brennan, A.B. Engineered antifouling microtopographies: The role of reynolds number in a model that predicts attachment of zoospores of ulva and cells of cobetia marina. Biofouling 2010, 26, 719–727. [Google Scholar] [CrossRef]
- Hills, J.M.; Thomason, J.C.; Muhl, J. A precise and accurate technique for the manufacture of complex three-dimensional surfaces. Biofouling 2009, 13, 37–41. [Google Scholar] [CrossRef]
- Sullivan, T.; McGuinness, K.; O’ Connor, N.; Regan, F. Characterization and Anti-Settlement aspects of surface micro-structures from cancer pagurus. Bioinspir. Biomim. 2014, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Munther, M.; Palma, T.; Angeron, I.A.; Salari, S.; Ghassemi, H.; Vasefi, M.; Beheshti, A.; Davami, K. Microfabricated biomimetic placoid scale-inspired surfaces for antifouling applications. Appl. Surf. Sci. 2018, 453, 166–172. [Google Scholar] [CrossRef]
- Chen, P.-Y.; McKittrick, J.; Meyers, M.A. Biological materials: Functional adaptations and bioinspired designs. J. Mech. Behav. Biomed. Mater. 2012, 57, 1492–1704. [Google Scholar] [CrossRef]
- Vrolijk, N.H.; Targett, N.M.; Baier, R.E.; Meyer, A.E. Surface characterisation of two gorgonian coral species: Implications for a natural antifouling defence. Biofouling 1990, 2, 39–54. [Google Scholar] [CrossRef]
- Baier, R.E. Influence of the initial surface condition of materials on bioadhesion. In Proceedings of the Third International Congress on Marine Corrosion and Fouling, National Bureau of Standards, Gaithersburg, MD, USA, 2–6 October 1973; pp. 633–639. [Google Scholar]
- Guenther, J.; De Nys, R. Surface microtopographies of tropical sea stars: Lack of an efficient physical defence mechanism against fouling. Biofouling 2007, 23, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Bers, A.V.; Prendergast, G.S.; Zürn, C.M.; Hansson, L.; Head, R.M.; Thomason, J.C. A comparative study of the anti-settlement properties of mytilid shells. Biol. Lett. 2006, 2, 88–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bers, A.V.; Díaz, E.R.; da Gama, B.A.; Vieira-Silva, F.; Dobretsov, S.; Valdivia, N.; Thiel, M.; Scardino, A.J.; McQuaid, C.D.; Sudgen, H.E.; et al. Relevance of mytilid shell microtopographies for fouling defence-a global comparison. Biofouling 2010, 26, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Scardino, A.; De Nys, R.; Ison, O.; O’Connor, W.; Steinberg, P. Microtopography and antifouling properties of the shell surface of the bivalve molluscs mytilus galloprovincialis and pinctada imbricata. Biofouling 2003, 19, 221–230. [Google Scholar] [CrossRef]
- Scardino, A.J.; de Nys, R. Mini review: Biomimetic models and bioinspired surfaces for fouling control. Biofouling 2011, 27, 73–86. [Google Scholar] [CrossRef]
- Guenther, J.; De Nys, R. Differential community development of fouling species on the pearl oysters pinctada fucata, pteria penguin and pteria chinensis (Bivalvia, Pteriidae). Biofouling 2006, 22, 151–159. [Google Scholar] [CrossRef]
- Bai, X.Q.; Xie, G.T.; Fan, H.; Peng, Z.X.; Yuan, C.Q.; Yan, X.P. Study on biomimetic preparation of shell surface microstructure for ship antifouling. Wear 2013, 306, 285–295. [Google Scholar] [CrossRef]
- Wang, J.; Qu, B.; Su, Y.M.; Pan, C.; Cai, W.G. Artifical fish flocked surface as a possible anti-biofoulant. In Proceedings of the 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, China, 5–8 January 2009; pp. 323–326. [Google Scholar] [CrossRef]
- Carman, M.L.; Estes, T.G.; Feinberg, A.W.; Schumacher, J.F.; Wilkerson, W.; Wilson, L.H.; Callow, M.E.; Callow, J.A.; Brennan, A.B. Engineered antifouling microtopographies-correlating wettability with cell attachment. Biofouling 2006, 22, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.K.; Schumacher, J.F.; Sampson, E.M.; Burne, R.A.; Antonelli, P.J.; Brennan, A.B. Impact of engineered surface microtopography on biofilm formation of staphylococcus aureus. Biointerphases 2007, 2, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, C.J.; Schumacher, J.F.; Robinson, P.A.C.; Finlay, J.A.; Callow, M.E.; Callow, J.A.; Brennan, A.B. A model that predicts the attachment behavior of ulva linza zoospores on surface topography. Biofouling 2010, 26, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Thomason, J.C.; Marrs, S.J.; Davenport, J. Antibacterial and Antisettlement Activity of the Dogfish (Scyliorhinus Canicula ) Eggcase. J. Mar. Biol. Assoc. UK 1996, 76, 777–792. [Google Scholar] [CrossRef]
- Gucinski, H.; Baier, R. Surface-Properties of porpoise and killer whale skin in vivo. Am. Zool. 1983, 23, 959. [Google Scholar]
- Cao, B.X.; Pettitt, M.E.; Wode, F.; Pilar, M.; Sancet, A.; Fu, J.; Ji, J.; Callow, M.E.; Callow, J.A.; Rosenhahn, A.; et al. Interaction of zoospores of the green alga ulva with bioinspired micro- and nanostructured surfaces prepared by polyelectrolyte layer-by-layer self-assembly. Adv. Funct. Mater. 2010, 20, 1984–1993. [Google Scholar] [CrossRef]
- Beyer, C.D.; Reback, M.L.; Gopal, S.M.; Nolte, K.A.; Finlay, J.A.; Clare, A.S.; Schäfer, L.V.; Metzler-Nolte, N.; Rosenhahn, A. α-Aminoisobutyric acid-stabilized peptide sams with low nonspecific protein adsorption and resistance against marine biofouling. ACS Sustain. Chem. Eng. 2020, 8, 2665–2671. [Google Scholar] [CrossRef]
Method | Description | References |
---|---|---|
Photolithography * | Formation of a pattern in a layer of photoresist which can be transferred by etching into an underlying film (Figure 2a). | [38,39,40] |
Electron beam lithography * | Produces surface patterning between 3–5 nm following exposure to electron beam (Figure 2b). | [41,42,43] |
Ion beam lithography * | Produces surface patterning of <100 nm due to the nature of the ion. | [41,44,45] |
Proximity rolling-exposure lithography (PREL) and electrochemical micromachining (EMM) * | Produces surface patterning over a large surface area, with the ability to produce texturing of various shapes that are otherwise impossible with some of the other techniques. | [46,47,48,49] |
Two-photon lithography and atomic layer deposition (ALD) * | Two-photon lithography produces 3-D complex surface topographies with resolutions of around 150 nm, however, requires a photosensitive polymer resin, preventing its use with metallic materials. ALD produces accurate uniform films, offering controllability at atomic level, wafer-scale substrates and high-aspect ratio models. The combination of the two offer a promising tribological solution in small-scale systems. | [50,51] |
Soft lithography | Produces topographies at the micro- and nano-scale, using PDMS as a master template (Figure 2c). | [38,52,53,54] |
Micro-contact printing * | Involves the fabrication of a “stamp” from PDMS by replica molding, the stamp is covered in ink, pressed and the solvent is left to evaporate, leaving the molecules to be transferred on to the substrate (Figure 2d,e). | [38,55,56] |
Hot embossing * | Involves the use of thermoplastic polymers to create micro-patterned surfaces, involving softening the polymer, pressing the template onto the warm polymer and revealing the micro-patterned surface after cooling (Figure 2f). | [38,57,58,59] |
3-D printing * | A relatively new technique offering low-cost, efficiency and fast prototyping—requires more in-depth examination. | [38,41,60,61] |
Picosecond laser texturing * | Involves the texturing of stainless steel to create an AF superhydrophobic surface. Results indicated a 50% decrease in the mean microbial attachment area ratio—a significant effect in comparison to the untextured stainless steel. | [62,63] |
Scale | Description |
---|---|
Macrotopography; Ra > 10 µm | Surface finishes from cutting tools (i.e., grinding, turning or milling). |
Microtopography; Ra ~1 µm | Important in hygienic surfaces. |
Nanotopography; Ra < 1 µm | A shiny surface that appears smooth to the eye yet retains nanoscale features on the surface. |
Angstrom-scale topography; 1–10 nm | Functional groups on the surface affecting the ability of a cell to sense the surface (i.e., polymer brushes, self-assembled monolayers (SAMs). |
Molecular topography; molecules | Influential in surface charge and affects cell-surface binding. |
Reynolds Number | Speed (Approx. ms−1) | Organism |
---|---|---|
10−5–101 | 10−5–10−3 | Bacteria, plankton, ciliate |
10 | 10−3–10−1 | Small fish |
103 | 10−3–10−1 | Large fish |
105–107 | 10−1–10 | Human swimwear, large fish |
107–109 | 10−1–10 | Blue whale, large ships |
Species | Type of Study | Performance | Visual | Reference |
---|---|---|---|---|
Sea fan: Pseudopterogorgia acerosa Dimension: Spicules, 2–4 µm | Characterization | Antifouling effect: “Release of fouling” at an ideal surface energy range of 20–30 dyn cm−1. AF mechanism: Surface chemistry. | [84] | |
Brittle star: Ophiura texturata Dimension: Knobs, 10 µm in diameter | Field | Antifouling effect: Deterrent effects on microfoulers. AF mechanism: Surface topography. | [30] | |
Sea star: Linckia laevigata Dimension: Paxillae 100µm (h), 116 µm (d), 17 µm (spacing) | Field | Antifouling effect: No effect on the fouling composition, community and percentage cover during dry season. AF mechanism: Surface topography. | [86] | |
Sea star: Fromia indica Dimension: Paxillae 52 µm (h), 172 µm (d), 108 µm (spacing) | Field | Antifouling effect: No effect on the fouling composition, community and percentage cover during dry season. AF mechanism: Surface topography (requires a combination of behavioral, mechanical and/or chemical antifouling mechanisms). | [86] | |
Sea star: Cryptasterina pentagonia Dimension: Paxillae 50 µm (h), 108 µm (d), 103 µm (spacing) | Field | Antifouling effect: No effect during the dry season. Transitory effects on the fouling community composition during wet season. AF mechanism: Surface topography (requires a combination of behavioral, mechanical and/or chemical antifouling mechanisms). | [86] | |
Sea star: Archaster typicus Dimension: Paxillae 379 µm (h), 204 µm (d), 98 µm (spacing) | Field | Antifouling effect: No effect during the dry season. Transitory effects on the fouling community composition during wet season. AF mechanism: Surface topography (requires a combination of behavioral, mechanical and/or chemical antifouling mechanisms). | [86] | |
Mussel: Perna perna Dimension: Ripples, 1.5–2 µm | Field | Antifouling effect: Replicas with intact isotropic topographies and smooth controls were much less fouled than roughened anisotropic surfaces [87]. Some deterrent effects observed in weeks 3 and 6. However, the microtopographies were not able to prevent fouling in later stages [88]. AF mechanism: Surface chemistry and topography. | [87,88] | |
Blue mussel: Mytilus edulis Dimension: Micro-ripples, 1–1.5 µm | Field | Antifouling effect: Initial reduction of barnacle settlement [30]. Some deterrent effects observed in weeks 3 and 6. However, the microtopographies were not able to prevent fouling in later stages [88]. AF mechanism: Surface topography. | [30,88] | |
Blue mussel: Mytilus galloprovincialis Dimension: Ridges, 1–2 µm (width) and 1.5 µm (depth) | Field | Antifouling effect: Less than 10% across all size classes were fouled [89]. Some deterrent effects observed in weeks 3 and 6. However, the microtopographies were not able to prevent fouling in later stages [88] AF mechanism: Surface chemistry, microtopography and Attachment Point Theory. | [88,89] | |
Pearl oyster: Pinctada impricata Dimension: Non-repeating pattern | Field | Antifouling effect: High levels of fouling. AF mechanism: Surface chemistry and Attachment Point Theory. | [89] | |
Bivalve: Tellina plicanta Dimension: Projections, 2–4 µm | Laboratory | Antifouling effect: Reduced number of attachment points results in reduced adhesion of diatom species. AF mechanism: Attachment Point Theory. | [32] | |
Mussel: P. viridis Dimension: Not disclosed in study | Field | Antifouling effect: Some deterrent effects observed in weeks 3 and 6. However, the microtopographies were not able to prevent fouling in later stages. AF mechanism: Surface topography. | [88] | |
Bottlenose dolphin: Tursiops truncatus Dimension: Ridges, 0.41–2.35 mm (width), 7–114 mm (height) | Laboratory | Antifouling effect: Surface tensions in the range for minimal biofouling attachment (20–30 mN m−1), low drag, micro-topographical features contributing to a fouling-free surface. AF mechanism: Surface energy. | − | [90] |
Killer whale: Orcinus orca Dimension: Ridges, 0.41–2.35 mm (width), 7–114 mm (height) | Laboratory | Antifouling effect: Surface tensions in the range for minimal biofouling attachment (20–30 mN m−1), low drag, micro-topographical features contributing to a fouling-free surface. AF mechanism: Surface energy. | − | [90] |
Pearl oyster: Pinctada fucata Dimension: Non-regular | Field | Antifouling effect: No significant difference in fouling communities after 12 weeks and during the 16-week sampling period. AF mechanism: Combination; physical, chemical and/or environmental. | [91] | |
Pearl oyster: Pteria penguin Dimension: Ripples, 0.8 µm | Field | Antifouling effect: Fouling communities found were significantly different both after 12 weeks and during the 16-week sampling period. AF mechanism: Combination; physical, chemical and/or environmental. | [91] | |
Pearl oyster: Pteria chinensis Dimension: Ripples, 0.6 µm | Field | Antifouling effect: Fouling communities found were significantly different both after 12 weeks and during the 16-week sampling period. AF mechanism: Combination; physical, chemical and/or environmental. | [91] | |
Bivalve: Dosinia japonica Dimension: Ribs, 300–800 nm | Laboratory | Antifouling effect: Topography can prevent the attachment of N. closterium cells. AF mechanism: Surface topography. | [92] | |
Bivalve: Mimachlamys nobilis Dimension: Pinholes, few microns | Laboratory | Antifouling effect: Topography prone to attachment of N. closterium cells. AF mechanism: Surface topography. | [92] | |
Yellowfish leatherjacket: Triacanthus blochii Dimension: Needles, 100 µm (spacing), 300 µm (height) and 10–40 µm (diameter) | Laboratory | Antifouling effect: First reported replication of Triacanthus blochii (yellowfin leatherjacket) using PDMS nanocasting. AF mechanism: Not tested in this study. | [93] | |
Brill: Scophthalmus rhombus Dimension: Micro-ridges, 74.84 µm (length), 11.7 µm (slope), 16. 6 µm (spacing) | Laboratory | Antifouling effect: First reported replication of Scophthalmus rhombus using 3-D printing. AF mechanism: Attachment Point Theory (requires further exploration). | [61] | |
Crab: Cancer pagurus Dimension: Circular elevations, 200 µm and spicules, 2–2.5 µm | Field + Laboratory | Antifouling effect: Repellent to macrofoulers (barnacles) [30]. Settlement of fouling organisms was affected in different ways from the surface microtopographies [81]. AF mechanism: Attachment Point Theory. | [30,81] | |
Dogfish egg case: Scyliorhinus canicula Dimension: Ridges, 30–50 µm | Field | Antifouling effect: Deterrent effects on microfoulers. Initial reduction of barnacle settlement. No effects of the surface structure of the egg case. AF mechanism: Surface topography. | [30] | |
Shark: Sharklet AF Dimension: Ribs, 2 µm, 2 µm, 4–16 µm (width, spacing, length) | Laboratory (Commercialized) | Antifouling effect: Reduced spore settlement density by 86%. S. aureus biofilm percentage cover on Sharklet AF covered surface was 7 % compared to 54 % for smooth PDMS control. AF mechanism: Attachment Point Theory. | [94,95,96] | |
Shark: Recessed Sharklet AF Dimension: Ribs, 2 µm, 2 µm, 4–16 µm (width, spacing, length) | Laboratory (Commercialized) | Antifouling effect: Ulva spore attachment independent of the area fraction of feature tops and number of features—spores attached in lower numbers here. AF mechanism: Attachment Point Theory. | [96] | |
Shark: Placoid scale Dimension: 2 µm, 1.5 µm, 2 µm (width, height, spacing) | Laboratory | Antifouling effect: Decrease in E. coli attachment by 75% when measuring pristine patterns and up to 56% when measuring patterns undergoing extreme mechanical wear. AF mechanism: Attachment Point Theory. | [82] | |
Pilot whale: Globicephala melas Dimension: Ridges, 2 µm and pores, 0.20 µm | Characterization | Antifouling effect: Average pore size (0.20 µm2) below that of most biofouling organisms—low numbers of organisms and salt crystals. AF mechanism: Attachment Point Theory. | [26] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richards, C.; Slaimi, A.; O’Connor, N.E.; Barrett, A.; Kwiatkowska, S.; Regan, F. Bio-inspired Surface Texture Modification as a Viable Feature of Future Aquatic Antifouling Strategies: A Review. Int. J. Mol. Sci. 2020, 21, 5063. https://doi.org/10.3390/ijms21145063
Richards C, Slaimi A, O’Connor NE, Barrett A, Kwiatkowska S, Regan F. Bio-inspired Surface Texture Modification as a Viable Feature of Future Aquatic Antifouling Strategies: A Review. International Journal of Molecular Sciences. 2020; 21(14):5063. https://doi.org/10.3390/ijms21145063
Chicago/Turabian StyleRichards, Chloe, Asma Slaimi, Noel E. O’Connor, Alan Barrett, Sandra Kwiatkowska, and Fiona Regan. 2020. "Bio-inspired Surface Texture Modification as a Viable Feature of Future Aquatic Antifouling Strategies: A Review" International Journal of Molecular Sciences 21, no. 14: 5063. https://doi.org/10.3390/ijms21145063
APA StyleRichards, C., Slaimi, A., O’Connor, N. E., Barrett, A., Kwiatkowska, S., & Regan, F. (2020). Bio-inspired Surface Texture Modification as a Viable Feature of Future Aquatic Antifouling Strategies: A Review. International Journal of Molecular Sciences, 21(14), 5063. https://doi.org/10.3390/ijms21145063