Investigating the Mullins Effect and Energy Dissipation in Magnetorheological Polyurethane Elastomers
Abstract
:1. Introduction
2. Finite Elasticity
Basic Definitions
3. Stress-Softening Model
4. Comparison with Experimental Data
Numerical Results
5. Material Preparation
5.1. Materials
5.2. Magnetorheological Material Preparation
5.3. Uniaxial Extension Tests
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coquelle, E.; Bossis, G.; Szabo, D.; Giulieri, F. Micromechanical analysis of an elastomer filled with particles organized in chain-like structure. J. Mater. Sci. 2006, 41, 5941–5953. [Google Scholar] [CrossRef]
- Coquelle, E.; Bossis, G. Mullins effect in elastomers filled with particles aligned by a magnetic field. Int. J. Solids Struct. 2006, 43, 7659–7672. [Google Scholar] [CrossRef] [Green Version]
- Melenev, P.; Raikher, Y.; Stepanov, G.; Rusakov, V.; Polygalova, L. Modeling of the Field-Induced Plasticity of Soft Magnetic Elastomers. J. Intel. Mat. Syst. Str. 2011, 22, 531–538. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M.; Bustamante, R. An anisotropic model for the Mullins effect in magnetoactive rubber-like materials. J. Mech. Mater. Struct. 2016, 11, 559–582. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, Y.; Wang, Z.; Wang, W.; Xu, Z.; Wang, Z. Combination of Magnetic and Enhanced Mechanical Properties for Copolymer-Grafted Magnetite Composite Thermoplastic Elastomers. ACS Appl. Mater. Interfaces 2015, 7, 10563–10575. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liao, G.; Zhang, C.; Wan, Q.; Liu, T. The transition from stress softening to stress hardening under cyclic loading induced by magnetic field for magneto-sensitive polymer gels. Appl. Phys. Lett. 2016, 108, 161902. [Google Scholar] [CrossRef]
- Bellelli, A.; Spaggiari, A. Magneto-mechanical characterization of magnetorheological elastomers. J. Intel. Mat. Syst. Str. 2019, 30, 2534–2543. [Google Scholar] [CrossRef] [Green Version]
- Shu, Q.; Ding, L.; Gong, X.; Hu, T.; Xuan, S. High performance magnetorheological elastomers strengthened by perpendicularly interacted flax fiber and carbonyl iron chains. Smart Mater. Struct. 2020, 29, 025010. [Google Scholar] [CrossRef]
- Elías-Zúñíga, A. A phenomenological energy-based model to characterize stress-softening effect in elastomers. Polymer 2005, 46, 3496–3506. [Google Scholar] [CrossRef]
- Beatty, M.F.; Krishnaswamy, S. A theory of stress-softening in incompressible isotropic materials. J. Mech. Phys. Solids 2000, 48, 1931–1965. [Google Scholar] [CrossRef]
- Soria-Hernandez, C.G.; Palacios-Pineda, L.M.; Elias-Zuniga, A.; Perales-Martínez, I.A.; Martínez-Romero, O. Investigation of the Effect of Carbonyl Iron Micro-Particles on the Mechanical and Rheological Properties of isotropic and Anisotropic MREs: Constitutive Magneto-Mechanical Material Model. Polymers 2019, 11, 1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantournet, S.; Boyce, M.C.; Tsou, A.H. Micromechanics and macromechanics of carbon nanotube-enhanced elastomers. J. Mech. Phys. Solids 2007, 55, 1321–1339. [Google Scholar] [CrossRef] [Green Version]
- Elías-Zúñiga, A.; Baylón, K.; Ferrer, I.; Serenó, L.; García-Romeu, M.L.; Bagudanch, I.; Grabalosa, J.; Pérez-Recio, T.; Martínez-Romero, O.; Ortega-Lara, W.; et al. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials. Materials 2014, 7, 441–456. [Google Scholar] [CrossRef] [PubMed]
- Elías-Zúñiga, A.; Beatty, M.F. Constitutive equations for amended non-Gaussian network models of rubber elasticity. Int. J. Engr. Sci. 2002, 40, 2265–2294. [Google Scholar] [CrossRef]
- Ogden, R.W.; Roxburgh, D.G. A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. Lond. A 1999, 455, 2861–2878. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Stadler, M.; Ogden, R.W. Aspects of stress softening in filled rubbers incorporating residual strains. In Constitutive Models for Rubber; Dorfmann, A., Muhr, A., Eds.; Balkema: Rotterdam, The Netherlands, 1999; pp. 189–193. [Google Scholar]
- Thanh-Tam, M.; Morishita, Y.; Urayama, K. Novel features of the Mullins effect in filled elastomers revealed by stretching measurements in various geometries. Soft Matter. 2017, 13, 1966–1977. [Google Scholar]
wt% | Particle Arragmt | f | Particle Arragmt | N/m2 | (m3/J)1/2 | m2/N | J/m3 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
20 | ISO | 0.037 | ISO | 12,989 | 0 | 2.1 | 0.0025 | −210,000 | −80,000 | 0.0031 | 3595.7199 |
20 | ANI | 0.037 | ANI | 10,285 | 0 | 7.5 | 0.0035 | −65,000 | 70,000 | 0.00035 | 3756.6586 |
35 | ISO | 0.076 | ISO | 13,060 | 0 | 2.5 | 0.00275 | 10,000 | 30,000 | 0.0002 | 3798.4371 |
35 | ANI | 0.076 | ANI | 9889 | 0 | 2 | 0.005 | 40,000 | −60,000 | 0.00022 | 2537.1349 |
50 | ISO | 0.132 | ISO | 16,637 | 0 | 2.25 | 0.003 | −15,000 | 10,000 | 0.0002 | 4325.5832 |
50 | ANI | 0.132 | ANI | 16,275 | 0 | 2.5 | 0.005 | −15,000 | 20,000 | 0.0002 | 4446.6251 |
65 | ISO | 0.221 | ISO | 20,763 | 0 | 4.5 | 0.003 | 10,000 | 15,000 | 0.0001 | 5198.5202 |
65 | ANI | 0.221 | ANI | 19,427 | 0 | 4.5 | 0.0035 | 5000 | 45,000 | 0.00015 | 5472.2308 |
80 | ISO | 0.379 | ISO | 66,096 | 0 | 1.2 | 0.0125 | 20,000 | −100,000 | 0.000018 | 1177.5485 |
80 | ANI | 0.379 | ANI | 6374 | 0 | 5.3 | 0.015 | 220000 | −380000 | 0.000026 | 1459.0584 |
wt% | Particle Arragmt | f | N/m2 | (m3/J)1/2 | m2/N | J/m3 | ||||
---|---|---|---|---|---|---|---|---|---|---|
20 | ISO | 0.037 | 13,154 | 1.01 | 1.875 | 0.0025 | −100,000 | −250,000 | 0.00018 | 2234.0156 |
20 | ANI | 0.037 | 16,720 | 1.01 | 1.8 | 0.0035 | −190,000 | −480,000 | 0.00015 | 2961.9939 |
35 | ISO | 0.076 | 14,631 | 1.23 | 2.1 | 0.004 | 18,000 | −30,000 | 0.00013 | 2987.8284 |
35 | ANI | 0.076 | 20,607 | 1.23 | 1.9 | 0.0053 | 40,000 | −275,000 | 0.00006 | 3429.1346 |
50 | ISO | 0.132 | 19,845 | 1.47 | 1.9 | 0.005 | 20,000 | −80,000 | 0.000063 | 3830.2696 |
50 | ANI | 0.132 | 21,695 | 1.47 | 2.1 | 0.006 | 30,000 | −120,000 | 0.000049 | 4661.5804 |
65 | ISO | 0.221 | 32,906 | 1.7 | 1.845 | 0.006 | 20,000 | −160,000 | 0.000019 | 5978.7898 |
65 | ANI | 0.221 | 48,534 | 1.7 | 2.3 | 0.0045 | −40,000 | −160,000 | 0.000017 | 10806 |
80 | ISO | 0.379 | 135,132 | 1.93 | 1.225 | 0.0075 | 170,000 | −4,700,000 | 0.0000019 | 3518.4793 |
80 | ANI | 0.379 | 140,833 | 1.93 | 1.2 | 0.0125 | 100,000 | −4,200,000 | 0.0000035 | 1936.4788 |
wt% | J/m3 | wt% | J/m3 | ||||
---|---|---|---|---|---|---|---|
Isotropic Samples | Anisotropic Samples | ||||||
20 | 1.66 | 1.16 | 4171.9537 | 20 | 1.66 | 1.1 | 4143.3076 |
20 | 1.43 | 1.07 | 3652.761 | 20 | 1.43 | 1.07 | 3668.8424 |
20 | 1.2 | 1.05 | 3507.3879 | 20 | 1.2 | 1.05 | 3585.467 |
35 | 1.65 | 1.1 | 4879.1067 | 35 | 1.65 | 1.1 | 3662.2473 |
35 | 1.45 | 1.07 | 4054.7228 | 35 | 1.44 | 1.07 | 2764.5743 |
35 | 1.22 | 1.05 | 3691.0305 | 35 | 1.22 | 1.05 | 2400.5812 |
50 | 1.65 | 1.1 | 5369.6776 | 50 | 1.67 | 1.1 | 5550.4437 |
50 | 1.44 | 1.07 | 4464.056 | 50 | 1.44 | 1.07 | 4325.2313 |
50 | 1.21 | 1.05 | 4149.4913 | 50 | 1.22 | 1.05 | 4056.1777 |
65 | 1.64 | 1.1 | 6612.4138 | 65 | 1.66 | 1.1 | 6608.6042 |
65 | 1.43 | 1.07 | 5406.081 | 65 | 1.43 | 1.07 | 5237.3154 |
65 | 1.2 | 1.05 | 4933.1887 | 65 | 1.2 | 1.05 | 4959.4039 |
80 | 1.16 | 1.07 | 1793.3486 | 80 | 1.16 | 1.04 | 1793.3486 |
80 | 1.08 | 1.03 | 1349.649 | 80 | 1.08 | 1.02 | 1349.649 |
wt% | J/m3 | wt% | J/m3 | ||||
---|---|---|---|---|---|---|---|
Isotropic Samples | Anisotropic Samples | ||||||
20 | 1.68 | 1.17 | 3146.7057 | 20 | 1.66 | 1.17 | 3773.2832 |
20 | 1.43 | 1.12 | 2402.4987 | 20 | 1.43 | 1.12 | 3017.1163 |
20 | 1.2 | 1.07 | 2147.5641 | 20 | 1.2 | 1.07 | 2774.2649 |
35 | 1.67 | 1.15 | 4490.2521 | 35 | 1.67 | 1.22 | 5849.0836 |
35 | 1.43 | 1.07 | 3173.61 | 35 | 1.44 | 1.17 | 4008.5378 |
35 | 1.21 | 1.05 | 2768.8979 | 35 | 1.22 | 1.11 | 3235.8117 |
50 | 1.67 | 1.19 | 6242.5993 | 50 | 1.67 | 1.21 | 7623.528 |
50 | 1.44 | 1.12 | 4375.9 | 50 | 1.44 | 1.15 | 5141.7377 |
50 | 1.22 | 1.06 | 3533.2046 | 50 | 1.22 | 1.07 | 4151.7441 |
65 | 1.66 | 1.32 | 11338.1253 | 65 | 1.67 | 1.32 | 15975.7794 |
65 | 1.43 | 1.2 | 7412.05 | 65 | 1.44 | 1.2 | 11790.501 |
65 | 1.21 | 1.1 | 5567.3315 | 65 | 1.21 | 1.09 | 9928.1565 |
80 | 1.16 | 1.12 | 5419.9761 | 80 | 1.16 | 1.1 | 3773.2833 |
80 | 1.08 | 1.05 | 3590.1389 | 80 | 1.09 | 1.04 | 3017.1163 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elías-Zúñiga, A.; Palacios-Pineda, L.M.; Perales-Martínez, I.A.; Martínez-Romero, O.; Olvera-Trejo, D.; Jiménez-Cedeño, I.H. Investigating the Mullins Effect and Energy Dissipation in Magnetorheological Polyurethane Elastomers. Int. J. Mol. Sci. 2020, 21, 5318. https://doi.org/10.3390/ijms21155318
Elías-Zúñiga A, Palacios-Pineda LM, Perales-Martínez IA, Martínez-Romero O, Olvera-Trejo D, Jiménez-Cedeño IH. Investigating the Mullins Effect and Energy Dissipation in Magnetorheological Polyurethane Elastomers. International Journal of Molecular Sciences. 2020; 21(15):5318. https://doi.org/10.3390/ijms21155318
Chicago/Turabian StyleElías-Zúñiga, Alex, Luis M. Palacios-Pineda, Imperio A. Perales-Martínez, Oscar Martínez-Romero, Daniel Olvera-Trejo, and Isaac H. Jiménez-Cedeño. 2020. "Investigating the Mullins Effect and Energy Dissipation in Magnetorheological Polyurethane Elastomers" International Journal of Molecular Sciences 21, no. 15: 5318. https://doi.org/10.3390/ijms21155318
APA StyleElías-Zúñiga, A., Palacios-Pineda, L. M., Perales-Martínez, I. A., Martínez-Romero, O., Olvera-Trejo, D., & Jiménez-Cedeño, I. H. (2020). Investigating the Mullins Effect and Energy Dissipation in Magnetorheological Polyurethane Elastomers. International Journal of Molecular Sciences, 21(15), 5318. https://doi.org/10.3390/ijms21155318