Genomic Characterization and Expression of Juvenile Hormone Esterase-Like Carboxylesterase Genes in Pacific White Shrimp, Litopenaeus vannamei
Abstract
:1. Introduction
2. Results
2.1. Characterization of CXE Genes in L.vannamei genome
2.2. Structure Analysis of LvCXEs
2.3. Phylogenetic Analysis
2.4. Spatial and Temporal Expression of LvCXEs
2.5. Expression Patterns of LvCXEs during Molting
2.6. OTFP Inhibition
3. Discussion
4. Materials and Methods
4.1. Genome and Transcriptome Data Resources
4.2. The Characterization of CXE Gene Family in L. vannamei
4.3. Phylogenetic Analysis
4.4. Expression Profiles
4.5. OTFP Inhibition
4.6. RNA-Isolation and qRT-PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, X.M.; Xu, B.Y.; Si, F.L.; Li, J.; Yan, Z.T.; Yan, Z.W.; Xiu, H.; Chen, B. Identification of carboxylesterase genes associated with pyrethroid resistance in the malaria vector Anopheles sinensis (Diptera: Culicidae). Pest Manag. Sci. 2017, 74, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.Y.; Cheng, L.; Li, W.L.; Xiang, Z.H.; Zhang, Z. Annotation and expression of carboxylesterases in the silkworm, Bombyx mori. BMC Genom. 2009, 10, 553. [Google Scholar] [CrossRef] [Green Version]
- Hilary, R.; Charles, C.; Federica, O.; Christelle, A.; Janet, H.; Sharakhova, M.V.; Unger, M.F.; Collins, F.H.; René, F. Evolution of supergene families associated with insecticide resistance. Science 2002, 298, 179–181. [Google Scholar]
- Gilbert, L.I.; Granger, N.A.; Roe, R.M. The juvenile hormones: Historical facts and speculations on future research directions. Insect Biochem. Mol. Biol. 2000, 30, 617–644. [Google Scholar] [CrossRef]
- Tobe, S.S.; Bendena, W.G. The Regulation of Juvenile Hormone Production in Arthropods: Functional and Evolutionary Perspectives. Ann. N. Y. Acad. Sci. 2006, 897, 300–310. [Google Scholar] [CrossRef]
- Venkatesh, K.; Roe, R.M.; Apperson, C.S.; Sonenshine, D.E.; Schriefer, M.E.; Boland, L.M. Metabolism of juvenile hormone during adult development of Dermacentor variabilis (Acari: Ixodidae). J. Med. Entomol. 1990, 27, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, G.R.; Davey, K.G. Cellular and molecular actions of juvenile hormone. II. Roles of juvenile hormone in adult insects. Adv. Insect Physiol. 1996, 26, 1–155. [Google Scholar]
- Hirai, M.; Kamimura, M.; Kikuchi, K.; Yasukochi, Y.; Kiuchi, M.; Shinoda, T.; Shiotsuki, T. cDNA cloning and characterization of Bombyx mori juvenile hormone esterase: An inducible gene by the imidazole insect growth regulator KK-42. Insect Biochem. Mol. Biol. 2002, 32, 627–635. [Google Scholar] [CrossRef]
- Yang, H.J.; Zhou, F.; Awquib, S.; Malik, F.A.; Roy, B.; Li, X.H.; Hu, J.B.; Sun, C.G.; Niu, Y.S.; Miao, Y.G. Expression pattern of enzymes related to juvenile hormone metabolism in the silkworm, Bombyx mori L. Mol. Biol. Rep. 2011, 38, 4337–4342. [Google Scholar]
- Kamita, S.G.; Hinton, A.C.; Wheelock, C.E.; Wogulis, M.D.; Wilson, D.K.; Wolf, N.M.; Stok, J.E.; Hock, B.; Hammock, B.D. Juvenile hormone (JH) esterase: Why are you so JH specific? Insect Biochem. Mol. Biol. 2003, 33, 1261–1273. [Google Scholar] [CrossRef]
- Abdel-Aal, Y.A.; Hammock, B.D. Transition state analogs as ligands for affinity purification of juvenile hormone esterase. Science 1986, 233, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, G.P.C. Is methyl farnesoate a crustacean hormone? Aquaculture 2007, 272, 39–54. [Google Scholar] [CrossRef]
- Xie, X.; Tao, T.; Liu, M.; Zhou, Y.; Liu, Z.; Zhu, D. The potential role of juvenile hormone acid methyltransferase in methyl farnesoate (MF) biosynthesis in the swimming crab, Portunus trituberculatus. Anim. Reprod. Sci. 2016, 168, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Friesen, J.A.; Holford, K.C.; Borst, D.W. Methyl farnesoate synthesis in the lobster mandibular organ: The roles of HMG-CoA reductase and farnesoic acid O-methyltransferase. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 155, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Laufer, H.; Demir, N.; Pan, X.; Stuart, J.D.; Ahl, J.S. Methyl farnesoate controls adult male morphogenesis in the crayfish, Procambarus clarkii. J. Insect Physiol. 2005, 51, 379–384. [Google Scholar] [CrossRef]
- Borst, D.W.; Laufer, H.; Landau, M.; Chang, E.S.; Hertz, W.A.; Baker, F.C.; Schooley, D.A. Methyl farnesoate and its role in crustacean reproduction and development. Insect Biochem. 1987, 17, 1123–1127. [Google Scholar] [CrossRef]
- Abdu, U.; Takac, P.; Laufer, H.; Sagi, A. Effect of Methyl Farnesoate on Late Larval Development and Metamorphosis in the Prawn Macrobrachium rosenbergii (Decapoda, Palaemonidae): A Juvenoid-Like Effect? Biol. Bull. 1998, 195, 112–119. [Google Scholar] [CrossRef]
- Abdu, U.; Barki, A.; Karplus, I.; Barel, S.; Takac, P.; Yehezkel, G.; Laufer, H.; Sagi, A. Physiological effects of methyl farnesoate and pyriproxyfen on wintering female crayfish Cherax quadricarinatus. Aquaculture 2001, 202, 163–175. [Google Scholar] [CrossRef]
- Ahl, J.S.B.; Brown, J.J. Salt-dependent effects of juvenile hormone and related compounds in larvae of the brine shrimp, Artemia. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1990, 95, 491–496. [Google Scholar] [CrossRef]
- Wang, C.J.; Zhu, D.F.; Qi, Y.Z.; Hu, Z.H.; Shen, J. Molt-inhibiting hormone levels and ecdysteroid titer during a molt cycle of Portunus trituberculatus. Acta Hydrobiol. Sin. 2013, 37, 22–28. [Google Scholar]
- Xu, Y.; Jian, L.; Yanting, C.; Li, M. Changes in Immunity-Related Enzymes, Chitinase Activity, and Molting Ecdysteroid Concentration of Exopalaemon carinicauda during Different Molting Stages. Prog. Fish. Sci. 2018, 39, 120–125. [Google Scholar]
- Lee, K.J. Molt-inhibiting hormone mRNA levels and ecdysteroid titer during a molt cycle of the blue crab, Callinectes sapidus. Biochem. Biophys. Res. Commun. 1998, 249, 624–627. [Google Scholar] [CrossRef]
- Chang, E.S.; Mykles, D.L. Regulation of crustacean molting: A review and our perspectives. Gen. Comp. Endocrinol. 2011, 172, 323–330. [Google Scholar] [CrossRef]
- Qu, Z.; Kenny, N.J.; Lam, H.M.; Chan, T.F.; Chu, K.H.; Bendena, W.G.; Tobe, S.S.; Hui, J.H.L. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes. Genome Biol. Evol. 2015, 7, 1951–1959. [Google Scholar]
- Song, Y.; Villeneuve, D.L.; Toyota, K.; Iguchi, T.; Tollefsen, K.E. Ecdysone Receptor Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse Outcome Pathway Development. Environ. Sci. Technol. 2017, 51, 4142–4157. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.-H.; Chang, E.S. Ecdysteroid treatment delays ecdysis in the lobster, Homarus americanus. Biol. Bull. 1991, 181, 169–174. [Google Scholar] [CrossRef]
- Schafellner, C.; Eizaguirre, M.; López, C.; Sehnal, F. Juvenile hormone esterase activity in the pupating and diapausing larvae of Sesamia nonagrioides. J. Insect Physiol. 2008, 54, 916–921. [Google Scholar] [CrossRef]
- Elayidam, U.G.; Muraleedharan, D. Juvenile hormone activity in Dysdercus cingulatus Fabr by juvenile hormone esterase inhibitor, OTFP. Indian J. Exp. Biol. 2007, 45, 901–906. [Google Scholar]
- Takac, P.; Ahl, J.S.B.; Laufer, H. Seasonal differences in methyl farnesoate esterase activity in tissues of the spider crab Libinia emarginata. Int. J. Invertebr. Reprod. Dev. 1997, 31, 211–216. [Google Scholar] [CrossRef]
- Tao, T.; Xie, X.; Liu, M.; Jiang, Q.; Zhu, D. Cloning of two carboxylesterase cDNAs from the swimming crab Portunus trituberculatus: Molecular evidences for their putative roles in methyl farnesotae degradation. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2017, 203, 100–107. [Google Scholar] [CrossRef]
- Zhu, X.J.; Xiong, Y.; He, W.; Jin, Y.; Qian, Y.Q.; Liu, J.; Dai, Z.M. Molecular cloning and expression analysis of a prawn (Macrobrachium rosenbergii) juvenile hormone esterase-like carboxylesterase following immune challenge. Fish Shellfish Immunol. 2018, 80, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhao, M.; Deng, Y.; Yang, Y.; Li, X.; Lu, Q.; Ge, J.; Pan, J.; Xu, Z. Molecular cloning, characterization and expression analysis of two juvenile hormone esterase-like carboxylesterase cDNAs in Chinese mitten crab, Eriocheir sinensis. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2017, 205, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.O.; Jeon, J.M.; Oh, C.W.; Kim, Y.M.; Kang, C.K.; Lee, D.S.; Mykles, D.L.; Kim, H.W. Two juvenile hormone esterase-like carboxylesterase cDNAs from a Pandalus shrimp (Pandalopsis japonica): Cloning, tissue expression, and effects of eyestalk ablation. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2011, 159, 148–156. [Google Scholar] [CrossRef]
- Godin, D.M.; Carr, W.H.; Hagino, G.; Segura, F.; Sweeney, J.N.; Blankenship, L. Evaluation of a fluorescent elastomer internal tag in juvenile and adult shrimp Penaeus vannamei. Aquaculture 1996, 139, 243–248. [Google Scholar] [CrossRef]
- Gao, Y.; Wei, J.; Yuan, J.; Zhang, X.; Li, F.; Xiang, J. Transcriptome analysis on the exoskeleton formation in early developmetal stages and reconstruction scenario in growth-moulting in Litopenaeus vannamei. Sci. Rep. 2017, 7, 1098. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, J.; Sun, Y.; Li, S.; Gao, Y.; Yu, Y.; Liu, C.; Wang, Q.; Lv, X.; Zhang, X.; et al. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat. Commun. 2019, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Fang, X.; Guo, X.; Li, L.; Luo, R.; Xu, F.; Yang, P.; Zhang, L.; Wang, X.; Qi, H. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012, 490, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, D.; Zheng, R.; Lin, S.; Chen, Y.; Tian, H.; Zhao, J.; Tian, S.; Wei, H.; Gu, X. Modulation of Juvenile Hormone Esterase Gene Expression Against Development of Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 2016, 109, 865–872. [Google Scholar] [CrossRef]
- Wogulis, M.; Wheelock, C.E.; Kamita, S.G.; Hinton, A.C.; Whetstone, P.A.; Hammock, B.D.; Wilson, D.K. Structural Studies of a Potent Insect Maturation Inhibitor Bound to the Juvenile Hormone Esterase of Manduca sexta. Biochemistry 2006, 45, 4045–4057. [Google Scholar] [CrossRef] [Green Version]
- Homola, E.; Chang, E.S. Methyl Farnesoate: Crustacean Juvenile Hormone in Search of Functions. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1997, 117, 347–356. [Google Scholar] [CrossRef]
- Homola, E.; Chang, E.S. Distribution and regulation of esterases that hydrolyze methyl farnesoate in Homarus americanus and other crustaceans. Gen. Comp. Endocrinol. 1997, 106, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.-R.; Lin, H.-C. Functional anatomy and ion regulatory mechanisms of the antennal gland in a semi-terrestrial crab, Ocypode stimpsoni. Biol. Open 2014, 3, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilder, M.N.; Okada, S.; Fusetani, N.; Aida, K. Hemolymph Profiles of Juvenoid Substances in the Giant Freshwater Prawn Macrobrachium rosenbergii in Relation to Reproduction and Molting. Fish. Sci. 1995, 61, 175–176. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Zhang, X.; Yu, Y.; Huang, H.; Li, F.; Xiang, J. Comparative Transcriptomic Characterization of the Early Development in Pacific White Shrimp Litopenaeus vannamei. PLoS ONE 2014, 9, e106201. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhang, X.; Wei, J.; Sun, X.; Yuan, J.; Li, F.; Xiang, J. Whole Transcriptome Analysis Provides Insights into Molecular Mechanisms for Molting in Litopenaeus vannamei. PLoS ONE 2015, 10, e0144350. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, X.; Yuan, J.; Du, J.; Li, F.; Xiang, J. Actin genes and their expression in pacific white shrimp, Litopenaeus vannamei. Mol. Genet. Genom. 2018, 293, 479–493. [Google Scholar] [CrossRef]
- Huang, X.; Madan, A. CAP3: A DNA sequence assembly program. Genome Res. 1999, 9, 868–877. [Google Scholar] [CrossRef] [Green Version]
- Wilm, A.; Higgins, D.G.; Valentin, F.; Blackshields, G.; McWilliam, H.; Wallace, I.M.; Thompson, J.D.; Larkin, M.A.; Brown, N.P.; McGettigan, P.A.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar]
- Waterhouse, A.M.; Martin, D.M.A.; Barton, G.J.; Procter, J.B.; Clamp, M. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Bailey, T.L.; Williams, N.; Misleh, C.; Li, W.W. MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006, 34, 369–373. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools—An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abascal, F.; Zardoya, R.; Posada, D. ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 2005, 21, 2104–2105. [Google Scholar] [CrossRef] [Green Version]
- Alexandros, S. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Gene ID | Amino Acids | Mw (kD) | pI | Location |
---|---|---|---|---|
LvCXE1 | 564 | 61.4 | 5.07 | LVANscaffold_866: 18624–23041 |
LvCXE2 | 488 | 54.3 | 6.55 | LVANscaffold_883: 576355–581238 |
LvCXE3 | 574 | 64.0 | 5.69 | LVANscaffold_883: 575275–603536 |
LvCXE4 | 577 | 64.7 | 5.58 | LVANscaffold_962: 831167–839422 |
LvCXE5 | 575 | 63.5 | 6.03 | LVANscaffold_962: 839832–855606 |
LvCXE6 | 544 | 60.0 | 4.78 | LVANscaffold_1108: 73812–101034 |
LvCXE7 | 569 | 63.2 | 4.88 | LVANscaffold_1123: 580276–596930 |
LvCXE8 | 585 | 64.3 | 5.79 | LVANscaffold_1168: 597704–610937 |
LvCXE9 | 581 | 65.1 | 5.34 | LVANscaffold_1839: 157651–172084 |
LvCXE10 | 573 | 63.3 | 5.13 | LVANscaffold_1839: 184142–188709 |
LvCXE11 | 585 | 64.8 | 5.60 | LVANscaffold_1907: 1025753–1038397 |
LvCXE12 | >605 | 66.6 | 5.75 | LVANscaffold_2316: 553488–572600 |
LvCXE13 | 669 | 74.5 | 4.95 | LVANscaffold_2381: 397192–408701 |
LvCXE14 | 572 | 64.1 | 8.98 | LVANscaffold_2639: 313127–321369 |
LvCXE15 | 561 | 62.1 | 5.77 | LVANscaffold_2654: 959807–971335 |
LvCXE16 | 565 | 62.2 | 4.97 | LVANscaffold_2937: 352862–369967 |
LvCXE17 | 621 | 69.8 | 4.53 | LVANscaffold_2938: 299225–309403 |
LvCXE18 | 627 | 68.1 | 6.45 | LVANscaffold_3071: 91750–98940 |
LvCXE19 | 561 | 62.1 | 6.40 | LVANscaffold_3486: 45723–66803 |
LvCXE20 | 592 | 65.7 | 6.10 | LVANscaffold_199: 131030–134929 |
LvCXE21 | 583 | 65.3 | 6.08 | LVANscaffold_2382: 54122–66300 |
Gene ID | Signal Peptide | RF | DQ | GxSxG | E/D | H |
---|---|---|---|---|---|---|
LvCXE1 | + | RL | DQ | GESAG | D | H |
LvCXE2 | + | RL | DQ | GESAG | E | / |
LvCXE3 | + | RL | DQ | GESAG | D | H |
LvCXE4 | + | RF | DQ | GESAG | E | H |
LvCXE5 | + | RL | DQ | GQSAG | E | H |
LvCXE6 | + | RF | DQ | GGSAG | E | H |
LvCXE7 | + | RF | DQ | GESAG | D | H |
LvCXE8 | + | RL | DQ | GESAG | E | H |
LvCXE9 | + | KL | DQ | GESAG | E | H |
LvCXE10 | + | RL | DQ | GESAG | D | H |
LvCXE11 | + | RF | DQ | GESAG | E | H |
LvCXE12 | − | RF | DQ | GESAG | E | H |
LvCXE13 | + | RF | DQ | GESAG | E | H |
LvCXE14 | + | RF | DQ | GLSAG | E | H |
LvCXE15 | + | RF | DQ | GVSAG | E | H |
LvCXE16 | + | RF | DQ | GESAG | E | H |
LvCXE17 | + | RL | DQ | GESAG | E | H |
LvCXE18 | + | RW | DQ | GFSAG | E | H |
LvCXE19 | + | RF | DQ | GVSSG | E | H |
LvCXE20 | + | RF | DQ | GISAG | D | H |
LvCXE21 | + | RF | DQ | GESAG | E | H |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yuan, J.; Zhang, X.; Xiang, J.; Li, F. Genomic Characterization and Expression of Juvenile Hormone Esterase-Like Carboxylesterase Genes in Pacific White Shrimp, Litopenaeus vannamei. Int. J. Mol. Sci. 2020, 21, 5444. https://doi.org/10.3390/ijms21155444
Zhang X, Yuan J, Zhang X, Xiang J, Li F. Genomic Characterization and Expression of Juvenile Hormone Esterase-Like Carboxylesterase Genes in Pacific White Shrimp, Litopenaeus vannamei. International Journal of Molecular Sciences. 2020; 21(15):5444. https://doi.org/10.3390/ijms21155444
Chicago/Turabian StyleZhang, Xiaoxi, Jianbo Yuan, Xiaojun Zhang, Jianhai Xiang, and Fuhua Li. 2020. "Genomic Characterization and Expression of Juvenile Hormone Esterase-Like Carboxylesterase Genes in Pacific White Shrimp, Litopenaeus vannamei" International Journal of Molecular Sciences 21, no. 15: 5444. https://doi.org/10.3390/ijms21155444
APA StyleZhang, X., Yuan, J., Zhang, X., Xiang, J., & Li, F. (2020). Genomic Characterization and Expression of Juvenile Hormone Esterase-Like Carboxylesterase Genes in Pacific White Shrimp, Litopenaeus vannamei. International Journal of Molecular Sciences, 21(15), 5444. https://doi.org/10.3390/ijms21155444