Sex-Specific Features of Calcific Aortic Valve Disease
Abstract
:1. Introduction
2. Calcific Aortic Valve Disease: Background
3. Sex-Related Differences of Calcific Aortic Valve Stenosis: Pathobiology, Clinical Phenotypes, and Outcomes
3.1. Development of the Clinical Phenotypes
3.2. Post-Surgery Outcomes
4. The Experimental Evidence Indicating Sex-Related Differences in CAVD and LVH
4.1. Human Studies
4.2. Animal Studies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iung, B.; Vahanian, A. Epidemiology of valvular heart disease in the adult. Nat. Rev. Cardiol. 2011, 8, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.F.; Siscovick, D.; Lind, B.K.; Gardin, J.M.; Gottdiener, J.S.; Smith, V.E.; Kitzman, D.W.; Otto, C.M. Clinical Factors Associated With Calcific Aortic Valve Disease fn1fn1This study was supported in part by Contracts NO1-HC85079 through HC-850086 from the National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland. J. Am. Coll. Cardiol. 1997, 29, 630–634. [Google Scholar] [CrossRef] [Green Version]
- Owens, D.S.; Katz, R.; Takasu, J.; Kronmal, R.; Budoff, M.J.; O’Brien, K.D. Incidence and Progression of Aortic Valve Calcium in the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Cardiol. 2010, 105, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Messika-Zeitoun, D.; Bielak Lawrence, F.; Peyser Patricia, A.; Sheedy Patrick, F.; Turner Stephen, T.; Nkomo Vuyisile, T.; Breen Jerome, F.; Maalouf, J.; Scott, C.; Tajik, A.J.; et al. Aortic Valve Calcification. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 642–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osnabrugge, R.L.J.; Mylotte, D.; Head, S.J.; Van Mieghem, N.M.; Nkomo, V.T.; LeReun, C.M.; Bogers, A.J.J.C.; Piazza, N.; Kappetein, A.P. Aortic Stenosis in the Elderly: Disease Prevalence and Number of Candidates for Transcatheter Aortic Valve Replacement: A Meta-Analysis and Modeling Study. J. Am. Coll. Cardiol. 2013, 62, 1002–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodali, S.K.; Williams, M.R.; Smith, C.R.; Svensson, L.G.; Webb, J.G.; Makkar, R.R.; Fontana, G.P.; Dewey, T.M.; Thourani, V.H.; Pichard, A.D.; et al. Two-Year Outcomes after Transcatheter or Surgical Aortic-Valve Replacement. N. Engl. J. Med. 2012, 366, 1686–1695. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://www.cdc.gov/nchs/nhds.htmNHDS_2010_Documentation.pdf (accessed on 29 April 2020).
- Myasoedova, V.A.; Di Minno, A.; Songia, P.; Massaiu, I.; Alfieri, V.; Valerio, V.; Moschetta, D.; Andreini, D.; Alamanni, F.; Pepi, M.; et al. Sex-specific differences in age-related aortic valve calcium load: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 61, 101077. [Google Scholar] [CrossRef]
- Progression of Aortic Valve Calcification|Circulation. Available online: https://www.ahajournals.org/doi/full/10.1161/hc4101.097527 (accessed on 29 April 2020).
- Capoulade, R.; Chan, K.L.; Yeang, C.; Mathieu, P.; Bossé, Y.; Dumesnil, J.G.; Tam, J.W.; Teo, K.K.; Mahmut, A.; Yang, X.; et al. Oxidized Phospholipids, Lipoprotein(a), and Progression of Calcific Aortic Valve Stenosis. J. Am. Coll. Cardiol. 2015, 66, 1236–1246. [Google Scholar] [CrossRef] [Green Version]
- Valerio, V.; Myasoedova, V.A.; Moschetta, D.; Porro, B.; Perrucci, G.L.; Cavalca, V.; Cavallotti, L.; Songia, P.; Poggio, P. Impact of Oxidative Stress and Protein S-Glutathionylation in Aortic Valve Sclerosis Patients with Overt Atherosclerosis. J. Clin. Med. 2019, 8, 552. [Google Scholar] [CrossRef] [Green Version]
- Rajamannan, N.M.; Evans, F.J.; Aikawa, E.; Grande-Allen, K.J.; Demer, L.L.; Heistad, D.D.; Simmons, C.A.; Masters, K.S.; Mathieu, P.; O’Brien, K.D.; et al. Calcific aortic valve disease: Not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update. Circulation 2011, 124, 1783–1791. [Google Scholar] [CrossRef] [Green Version]
- Towler Dwight, A. Molecular and Cellular Aspects of Calcific Aortic Valve Disease. Circ. Res. 2013, 113, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Gotlieb, A. Molecular Basis of Cardiovascular Disease. Essent. Concepts Mol. Pathol. 2010, 161–173. [Google Scholar] [CrossRef]
- Poggianti, E.; Venneri, L.; Chubuchny, V.; Jambrik, Z.; Baroncini, L.A.; Picano, E. Aortic valve sclerosis is associatedwith systemic endothelial dysfunction. J. Am. Coll. Cardiol. 2003, 41, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Wallby, L.; Janerot-Sjöberg, B.; Steffensen, T.; Broqvist, M. T lymphocyte infiltration in non-rheumatic aortic stenosis: A comparative descriptive study between tricuspid and bicuspid aortic valves. Heart 2002, 88, 348–351. [Google Scholar] [CrossRef] [Green Version]
- Freeman, R.V.; Otto, C.M. Spectrum of calcific aortic valve disease: Pathogenesis, disease progression, and treatment strategies. Circulation 2005, 111, 3316–3326. [Google Scholar] [CrossRef] [Green Version]
- Dweck, M.R.; Boon, N.A.; Newby, D.E. Calcific Aortic Stenosis: A Disease of the Valve and the Myocardium. J. Am. Coll. Cardiol. 2012, 60, 1854–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balachandran, K.; Alford, P.W.; Wylie-Sears, J.; Goss, J.A.; Grosberg, A.; Bischoff, J.; Aikawa, E.; Levine, R.A.; Parker, K.K. Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proc. Natl. Acad. Sci. USA 2011, 108, 19943–19948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajamannan, N.M.; Subramaniam, M.; Rickard, D.; Stock, S.R.; Donovan, J.; Springett, M.; Orszulak, T.; Fullerton, D.A.; Tajik, A.J.; Bonow, R.O.; et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 2003, 107, 2181–2184. [Google Scholar] [CrossRef]
- Kaden, J.J.; Dempfle, C.-E.; Grobholz, R.; Tran, H.-T.; Kılıç, R.; Sarıkoç, A.; Brueckmann, M.; Vahl, C.; Hagl, S.; Haase, K.K.; et al. Interleukin-1 beta promotes matrix metalloproteinase expression and cell proliferation in calcific aortic valve stenosis. Atherosclerosis 2003, 170, 205–211. [Google Scholar] [CrossRef]
- Kaden, J.J.; Dempfle, C.-E.; Grobholz, R.; Fischer, C.S.; Vocke, D.C.; Kılıç, R.; Sarıkoç, A.; Piñol, R.; Hagl, S.; Lang, S.; et al. Inflammatory regulation of extracellular matrix remodeling in calcific aortic valve stenosis. Cardiovasc. Pathol. 2005, 14, 80–87. [Google Scholar] [CrossRef]
- Kaden, J.J.; Bickelhaupt, S.; Grobholz, R.; Haase, K.K.; Sarιkoç, A.; Kιlιç, R.; Brueckmann, M.; Lang, S.; Zahn, I.; Vahl, C.; et al. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulate aortic valve calcification. J. Mol. Cell. Cardiol. 2004, 36, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Caira, F.C.; Stock, S.R.; Gleason, T.G.; McGee, E.C.; Huang, J.; Bonow, R.O.; Spelsberg, T.C.; McCarthy, P.M.; Rahimtoola, S.H.; Rajamannan, N.M. Human Degenerative Valve Disease Is Associated With Up-Regulation of Low-Density Lipoprotein Receptor-Related Protein 5 Receptor-Mediated Bone Formation. J. Am. Coll. Cardiol. 2006, 47, 1707–1712. [Google Scholar] [CrossRef] [Green Version]
- Kaden, J.; Bickelhaupt, S.; Grobholz, R.; Vahl, C.; Hagl, S.; Brueckmann, M.; Haase, K.; Dempfle, C.-E.; Borggrefe, M. Expression of bone sialoprotein and bone morphoeenetic protein-2 in calcific aortic stenosis. J. Heart Valve Dis. 2004, 13, 560–566. [Google Scholar] [PubMed]
- Aggarwal Shivani, R.; Clavel, M.-A.; Messika-Zeitoun, D.; Cueff, C.; Malouf, J.; Araoz Philip, A.; Mankad, R.; Michelena, H.; Vahanian, A. Enriquez-Sarano Maurice Sex Differences in Aortic Valve Calcification Measured by Multidetector Computed Tomography in Aortic Stenosis. Circ. Cardiovasc. Imaging 2013, 6, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Clavel, M.-A.; Messika-Zeitoun, D.; Pibarot, P.; Aggarwal, S.R.; Malouf, J.; Araoz, P.A.; Michelena, H.I.; Cueff, C.; Larose, E.; Capoulade, R.; et al. The Complex Nature of Discordant Severe Calcified Aortic Valve Disease Grading: New Insights From Combined Doppler Echocardiographic and Computed Tomographic Study. J. Am. Coll. Cardiol. 2013, 62, 2329–2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaden, J.J.; Nkomo, V.T.; Suri, R.M.; Maleszewski, J.J.; Soderberg, D.J.; Clavel, M.-A.; Pislaru, S.V.; Malouf, J.F.; Foley, T.A.; Oh, J.K.; et al. Sex-related differences in calcific aortic stenosis: Correlating clinical and echocardiographic characteristics and computed tomography aortic valve calcium score to excised aortic valve weight. Eur. Heart J. 2016, 37, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Thomassen, H.K.; Cioffi, G.; Gerdts, E.; Einarsen, E.; Midtbø, H.B.; Mancusi, C.; Cramariuc, D. Echocardiographic aortic valve calcification and outcomes in women and men with aortic stenosis. Heart 2017, 103, 1619–1624. [Google Scholar] [CrossRef]
- Nguyen, V.; Cimadevilla, C.; Estellat, C.; Codogno, I.; Huart, V.; Benessiano, J.; Duval, X.; Pibarot, P.; Clavel, M.A.; Enriquez-Sarano, M.; et al. Haemodynamic and anatomic progression of aortic stenosis. Heart 2015, 101, 943–947. [Google Scholar] [CrossRef] [Green Version]
- Simard, L.; Côté, N.; Dagenais, F.; Mathieu, P.; Couture, C.; Trahan, S.; Bossé, Y.; Mohammadi, S.; Pagé, S.; Joubert, P.; et al. Sex-Related Discordance Between Aortic Valve Calcification and Hemodynamic Severity of Aortic Stenosis. Circulation Research 2017, 120, 681–691. [Google Scholar] [CrossRef]
- Martine, V.; Maxime, H.; Mylène, S.; Anne-Julie, B.; Benoît, F.; Mickael, R.; Yohan, B.; Patrick, M.; Nancy, C. Clavel Marie-Annick Age, Sex, and Valve Phenotype Differences in Fibro-Calcific Remodeling of Calcified Aortic Valve. J. Am. Heart Assoc. 2020, 9, e015610. [Google Scholar] [CrossRef]
- Shen, M.; Tastet, L.; Capoulade, R.; Larose, É.; Bédard, É.; Arsenault, M.; Chetaille, P.; Dumesnil, J.G.; Mathieu, P.; Clavel, M.-A.; et al. Effect of age and aortic valve anatomy on calcification and haemodynamic severity of aortic stenosis. Heart 2017, 103, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Torre, M.; Hwang, D.H.; Padera, R.F.; Mitchell, R.N.; VanderLaan, P.A. Osseous and chondromatous metaplasia in calcific aortic valve stenosis. Cardiovasc. Pathol. 2016, 25, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utsunomiya, H.; Yamamoto, H.; Kitagawa, T.; Kunita, E.; Urabe, Y.; Tsushima, H.; Hidaka, T.; Awai, K.; Kihara, Y. Incremental prognostic value of cardiac computed tomography angiography in asymptomatic aortic stenosis: Significance of aortic valve calcium score. Int. J. Cardiol. 2013, 168, 5205–5211. [Google Scholar] [CrossRef] [PubMed]
- Clavel, M.-A.; Pibarot, P.; Messika-Zeitoun, D.; Capoulade, R.; Malouf, J.; Aggarwal, S.R.; Araoz, P.A.; Michelena, H.I.; Cueff, C.; Larose, E.; et al. Impact of Aortic Valve Calcification, as Measured by MDCT, on Survival in Patients With Aortic Stenosis. J. Am. Coll. Cardiol. 2014, 64, 1202–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, J.D.; Carroll, E.P.; Feldman, T.; Ward, D.M.; Lang, R.M.; McGaughey, D.; Karp, R.B. Sex-associated differences in left ventricular function in aortic stenosis of the elderly. Circulation 1992, 86, 1099–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, P.S.; Otto, C.M.; Mickel, M.C.; Labovitz, A.; Reid, C.L. Gender differences in left ventricle geometry and function in patients undergoing balloon dilatation of the aortic valve for isolated aortic stenosis. Heart 1995, 73, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Villari, B.; Campbell, S.E.; Schneider, J.; Vassalli, G.; Chiariello, M.; Hess, O.M. Sex-dependent differences in left ventricular function and structure in chronic pressure overload. Eur. Heart J. 1995, 16, 1410–1419. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Chan, D.C.S.; Greenwood, J.P.; Dawson, D.K.; Sonecki, P.; Hogrefe, K.; Kelly, D.J.; Dhakshinamurthy, V.; Lang, C.C.; Khoo, J.P.; et al. Symptom Onset in Aortic Stenosis: Relation to Sex Differences in Left Ventricular Remodeling. JACC Cardiovasc. Imaging 2019, 12, 96–105. [Google Scholar] [CrossRef]
- Treibel, T.A.; Kozor, R.; Fontana, M.; Torlasco, C.; Reant, P.; Badiani, S.; Espinoza, M.; Yap, J.; Diez, J.; Hughes, A.D.; et al. Sex Dimorphism in the Myocardial Response to Aortic Stenosis. JACC Cardiovasc. Imaging 2018, 11, 962–973. [Google Scholar] [CrossRef]
- Cleland, J.G.F.; Swedberg, K.; Follath, F.; Komajda, M.; Cohen-Solal, A.; Aguilar, J.C.; Dietz, R.; Gavazzi, A.; Hobbs, R.; Korewicki, J.; et al. The EuroHeart Failure survey programme—A survey on the quality of care among patients with heart failure in EuropePart 1: Patient characteristics and diagnosis. Eur. Heart J. 2003, 24, 442–463. [Google Scholar] [CrossRef] [Green Version]
- Kararigas, G.; Dworatzek, E.; Petrov, G.; Summer, H.; Schulze, T.M.; Baczko, I.; Knosalla, C.; Golz, S.; Hetzer, R.; Regitz-Zagrosek, V. Sex-dependent regulation of fibrosis and inflammation in human left ventricular remodelling under pressure overload. Eur. J. Heart Fail. 2014, 16, 1160–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, P.; Vera, R.; Elke, L.; Thomas, K.; Anne, D.; Michael, D.; Elke, D.; Shokoufeh, M.; Carola, S.; Eva, B.; et al. Regression of Myocardial Hypertrophy After Aortic Valve Replacement. Circulation 2010, 122, S23–S28. [Google Scholar] [CrossRef] [Green Version]
- Nordmeyer, J.; Eder, S.; Mahmoodzadeh, S.; Martus, P.; Fielitz, J.; Bass, J.; Bethke, N.; Zurbrügg, H.R.; Pregla, R.; Hetzer, R.; et al. Upregulation of Myocardial Estrogen Receptors in Human Aortic Stenosis. Circulation 2004, 110, 3270–3275. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodzadeh, S.; Eder, S.; Nordmeyer, J.; Ehler, E.; Huber, O.; Martus, P.; Weiske, J.; Pregla, R.; Hetzer, R.; Regitz-Zagrosek, V. Estrogen receptor alpha up-regulation and redistribution in human heart failure. FASEB J. 2006, 20, 926–934. [Google Scholar] [CrossRef] [Green Version]
- Iorga, A.; Cunningham, C.M.; Moazeni, S.; Ruffenach, G.; Umar, S.; Eghbali, M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol. Sex Differ. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Hayward, C.S.; Kelly, R.P.; Collins, P. The roles of gender, the menopause and hormone replacement on cardiovascular function. Cardiovasc. Res. 2000, 46, 28–49. [Google Scholar] [CrossRef] [Green Version]
- Wake, R.; Yoshiyama, M. Gender differences in ischemic heart disease. Recent Pat. Cardiovasc. Drug Discov. 2009, 4, 234–240. [Google Scholar] [CrossRef]
- Parker, W.H.; Jacoby, V.; Shoupe, D.; Rocca, W. Effect of bilateral oophorectomy on women’s long-term health. Womens Health (Lond.) 2009, 5, 565–576. [Google Scholar] [CrossRef]
- Chen, S.; Leu, H.; Chang, H.; Chen, I.; Chen, P.; Lin, S.; Chen, Y. Women had favourable reverse left ventricle remodelling after TAVR. Eur. J. Clin. Investig. 2020, 50, e13183. [Google Scholar] [CrossRef]
- Williams, M.; Kodali, S.K.; Hahn, R.T.; Humphries, K.H.; Nkomo, V.T.; Cohen, D.J.; Douglas, P.S.; Mack, M.; McAndrew, T.C.; Svensson, L.; et al. Sex-Related Differences in Outcomes After Transcatheter or Surgical Aortic Valve Replacement in Patients With Severe Aortic Stenosis. J. Am. Coll. Cardiol. 2014, 63, 1522–1528. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Fleisher, L.A.; Jneid, H.; Mack, M.J.; McLeod, C.J.; O’Gara, P.T.; et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease. J. Am. Coll. Cardiol. 2017, 70, 252–289. [Google Scholar] [CrossRef] [PubMed]
- Rieck Åshild, E.; Dana, C.; Kurt, B.; Christa, G.; Staal Eva, M.; Lønnebakken, M.T.; Rossebø Anne, B.; Gerdts, E. Hypertension in Aortic Stenosis. Hypertension 2012, 60, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fragão-Marques, M.; Mancio, J.; Oliveira, J.; Falcão-Pires, I.; Leite-Moreira, A. Gender Differences in Predictors and Long-Term Mortality of New-Onset Postoperative Atrial Fibrillation Following Isolated Aortic Valve Replacement Surgery. Ann. Thorac. Cardiovasc. Surg. 2020. advpub. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, S.A.; Morice, M.-C.; Gilard, M.; Leon, M.B.; Webb, J.G.; Dvir, D.; Rodés-Cabau, J.; Tamburino, C.; Capodanno, D.; D’Ascenzo, F.; et al. Revisiting Sex Equality With Transcatheter Aortic Valve Replacement Outcomes: A Collaborative, Patient-Level Meta-Analysis of 11,310 Patients. J. Am. Coll. Cardiol. 2015, 66, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Ferrante, G.; Pagnotta, P.; Petronio, A.S.; Bedogni, F.; Brambilla, N.; Fiorina, C.; Giannini, C.; Mennuni, M.; Marco, F.D.; Klugmann, S.; et al. Sex differences in postprocedural aortic regurgitation and mid-term mortality after transcatheter aortic valve implantation. Catheter. Cardiovasc. Interv. 2014, 84, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Al-Lamee, R.; Broyd, C.; Parker, J.; Davies, J.E.; Mayet, J.; Sutaria, N.; Ariff, B.; Unsworth, B.; Cousins, J.; Bicknell, C.; et al. Influence of Gender on Clinical Outcomes Following Transcatheter Aortic Valve Implantation from the UK Transcatheter Aortic Valve Implantation Registry and the National Institute for Cardiovascular Outcomes Research. Am. J. Cardiol. 2014, 113, 522–528. [Google Scholar] [CrossRef]
- Guzzetti, E.; Poulin, A.; Annabi, M.-S.; Zhang, B.; Kalavrouziotis, D.; Couture, C.; Dagenais, F.; Pibarot, P.; Clavel, M.-A. Transvalvular Flow, Sex, and Survival After Valve Replacement Surgery in Patients With Severe Aortic Stenosis. J. Am. Coll. Cardiol. 2020, 75, 1897–1909. [Google Scholar] [CrossRef]
- Fuchs, C.; Mascherbauer, J.; Rosenhek, R.; Pernicka, E.; Klaar, U.; Scholten, C.; Heger, M.; Wollenek, G.; Czerny, M.; Maurer, G.; et al. Gender differences in clinical presentation and surgical outcome of aortic stenosis. Heart 2010, 96, 539–545. [Google Scholar] [CrossRef]
- Chaker, Z.; Badhwar, V.; Alqahtani, F.; Aljohani, S.; Zack, C.J.; Holmes, D.R.; Rihal, C.S.; Alkhouli, M. Sex Differences in the Utilization and Outcomes of Surgical Aortic Valve Replacement for Severe Aortic Stenosis. JAHA 2017, 6. [Google Scholar] [CrossRef]
- Conrotto, F.; D’Ascenzo, F.; Salizzoni, S.; Presbitero, P.; Agostoni, P.; Tamburino, C.; Tarantini, G.; Bedogni, F.; Nijhoff, F.; Gasparetto, V.; et al. A Gender Based Analysis of Predictors of All Cause Death After Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2014, 114, 1269–1274. [Google Scholar] [CrossRef]
- Buchanan, G.L.; Chieffo, A.; Montorfano, M.; Maisano, F.; Latib, A.; Godino, C.; Cioni, M.; Gullace, M.A.; Franco, A.; Gerli, C.; et al. The role of sex on VARC outcomes following transcatheter aortic valve implantation with both Edwards SAPIENTM and Medtronic CoreValve ReValving System® devices: The Milan registry. EuroIntervention 2011, 7, 556–563. [Google Scholar] [CrossRef] [PubMed]
- deAlmeida, A.C.; Oort, R.J.v.; Wehrens, X.H.T. Transverse Aortic Constriction in Mice. J. Vis. Exp. 2010, e1729. [Google Scholar] [CrossRef] [PubMed]
- Parra-Izquierdo, I.; Castaños-Mollor, I.; López, J.; Gómez, C.; San Román, J.A.; Sánchez Crespo, M.; García-Rodríguez, C. Calcification Induced by Type I Interferon in Human Aortic Valve Interstitial Cells Is Larger in Males and Blunted by a Janus Kinase Inhibitor. ATVB 2018, 38, 2148–2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra-Izquierdo, I.; Castaños-Mollor, I.; López, J.; Gómez, C.; San Román, J.A.; Sánchez Crespo, M.; García-Rodríguez, C. Lipopolysaccharide and interferon-γ team up to activate HIF-1α via STAT1 in normoxia and exhibit sex differences in human aortic valve interstitial cells. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 2168–2179. [Google Scholar] [CrossRef] [PubMed]
- McCoy, C.M.; Nicholas, D.Q.; Masters, K.S. Sex-Related Differences in Gene Expression by Porcine Aortic Valvular Interstitial Cells. PLoS ONE 2012, 7, e39980. [Google Scholar] [CrossRef] [PubMed]
- Bossé, Y.; Miqdad, A.; Fournier, D.; Pépin, A.; Pibarot, P.; Mathieu, P. Refining molecular pathways leading to calcific aortic valve stenosis by studying gene expression profile of normal and calcified stenotic human aortic valves. Circ. Cardiovasc. Genet. 2009, 2, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Liu, W.-Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.-F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 2015, 35, 600–604. [Google Scholar] [CrossRef]
- Gu, X.; Masters, K.S. Role of the MAPK/ERK pathway in valvular interstitial cell calcification. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1748–H1757. [Google Scholar] [CrossRef] [Green Version]
- Kono, S.; Oshima, Y.; Hoshi, K.; Bonewald, L.F.; Oda, H.; Nakamura, K.; Kawaguchi, H.; Tanaka, S. Erk pathways negatively regulate matrix mineralization. Bone 2007, 40, 68–74. [Google Scholar] [CrossRef]
- Anger, T.; El-Chafchak, J.; Habib, A.; Stumpf, C.; Weyand, M.; Daniel, W.G.; Hombach, V.; Hoeher, M.; Garlichs, C.D. Statins stimulate RGS-regulated ERK 1/2 activation in human calcified and stenotic aortic valves. Exp. Mol. Pathol. 2008, 85, 101–111. [Google Scholar] [CrossRef]
- Masjedi, S.; Lei, Y.; Patel, J.; Ferdous, Z. Sex-related differences in matrix remodeling and early osteogenic markers in aortic valvular interstitial cells. Heart Vessel. 2017, 32, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Osman, L.; Yacoub, M.H.; Latif, N.; Amrani, M.; Chester, A.H. Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation 2006, 114, I547–I552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witt, H.; Schubert, C.; Jaekel, J.; Fliegner, D.; Penkalla, A.; Tiemann, K.; Stypmann, J.; Roepcke, S.; Brokat, S.; Mahmoodzadeh, S.; et al. Sex-specific pathways in early cardiac response to pressure overload in mice. J. Mol. Med. 2008, 86, 1013. [Google Scholar] [CrossRef] [Green Version]
- Martínez, M.S.; García, A.; Luzardo, E.; Chávez-Castillo, M.; Olivar, L.C.; Salazar, J.; Velasco, M.; Quintero, J.J.R.; Bermúdez, V. Energetic metabolism in cardiomyocytes: Molecular basis of heart ischemia and arrhythmogenesis. VP 2017, 1. [Google Scholar] [CrossRef]
- Prévilon, M.; Pezet, M.; Vinet, L.; Mercadier, J.-J.; Rouet-Benzineb, P. Gender-Specific Potential Inhibitory Role of Ca2+/Calmodulin Dependent Protein Kinase Phosphatase (CaMKP) in Pressure-Overloaded Mouse Heart. PLoS ONE 2014, 9, e90822. [Google Scholar] [CrossRef]
- Loyer, X.; Oliviero, P.; Damy, T.; Robidel, E.; Marotte, F.; Heymes, C.; Samuel, J.-L. Effects of sex differences on constitutive nitric oxide synthase expression and activity in response to pressure overload in rats. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H2650–H2658. [Google Scholar] [CrossRef]
- Cross, H.R.; Murphy, E.; Koch, W.J.; Steenbergen, C. Male and female mice overexpressing the β2-adrenergic receptor exhibit differences in ischemia/reperfusion injury: Role of nitric oxide. Cardiovasc. Res. 2002, 53, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.M.; MacCarthy, P.A. Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol. Ther. 2000, 86, 49–86. [Google Scholar] [CrossRef]
- García, R.; Salido-Medina, A.B.; Gil, A.; Merino, D.; Gómez, J.; Villar, A.V.; González-Vílchez, F.; Hurlé, M.A.; Nistal, J.F. Sex-Specific Regulation of miR-29b in the Myocardium Under Pressure Overload is Associated with Differential Molecular, Structural and Functional Remodeling Patterns in Mice and Patients with Aortic Stenosis. Cells 2020, 9, 833. [Google Scholar] [CrossRef] [Green Version]
- Gošev, I.; Zeljko, M.; Đurić, Ž.; Nikolić, I.; Gošev, M.; Ivčević, S.; Bešić, D.; Legčević, Z.; Paić, F. Epigenome alterations in aortic valve stenosis and its related left ventricular hypertrophy. Clin. Epigenet. 2017, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, E.O.; Thienelt, C.D.; Katz, S.E.; Bartunek, J.; Tajima, M.; Rohrbach, S.; Douglas, P.S.; Lorell, B.H. Gender differences in molecular remodeling in pressure overload hypertrophy. J. Am. Coll. Cardiol. 1999, 34, 264–273. [Google Scholar] [CrossRef] [Green Version]
- van Eickels, M.; Grohé, C.; Cleutjens, J.P.; Janssen, B.J.; Wellens, H.J.; Doevendans, P.A. 17beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 2001, 104, 1419–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babiker Fawzi, A.; De Windt Leon, J.; van Eickels, M.; Thijssen, V.; Bronsaer Ronald, J.P.; Grohé, C.; van Bilsen, M.; Doevendans, P.A. 17β-Estradiol Antagonizes Cardiomyocyte Hypertrophy by Autocrine/Paracrine Stimulation of a Guanylyl Cyclase A Receptor-Cyclic Guanosine Monophosphate-Dependent Protein Kinase Pathway. Circulation 2004, 109, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haines, C.D.; Harvey, P.A.; Leinwand, L.A. Estrogens Mediate Cardiac Hypertrophy in a Stimulus-Dependent Manner. Endocrinology 2012, 153, 4480–4490. [Google Scholar] [CrossRef] [PubMed]
- Dreama, C.; Sara, W.; Angela, W.; Isao, S.; Setchell Kenneth, D.R.; Erik, S.; Jan, K.; Piero, A.; Mark, S.A. Myocardial Akt Activation and Gender. Circ. Res. 2001, 88, 1020–1027. [Google Scholar] [CrossRef] [Green Version]
- Novotny, J.L.; Simpson, A.M.; Tomicek, N.J.; Lancaster, T.S.; Korzick, D.H. Rapid Estrogen Receptor-α Activation Improves Ischemic Tolerance in Aged Female Rats through a Novel Protein Kinase Cε-Dependent Mechanism. Endocrinology 2009, 150, 889–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babiker Fawzi, A.; Lips, D.; Meyer, R.; Delvaux, E.; Zandberg, P.; Janssen, B.; van Eys, G.; Grohé, C.; Doevendans Pieter, A. Estrogen Receptor β Protects the Murine Heart Against Left Ventricular Hypertrophy. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1524–1530. [Google Scholar] [CrossRef] [PubMed]
- Skavdahl, M.; Steenbergen, C.; Clark, J.; Myers, P.; Demianenko, T.; Mao, L.; Rockman, H.A.; Korach, K.S.; Murphy, E. Estrogen receptor-β mediates male-female differences in the development of pressure overload hypertrophy. Am. J. Physiol.-Heart Circ. Physiol. 2005, 288, H469–H476. [Google Scholar] [CrossRef]
- Fliegner, D.; Schubert, C.; Penkalla, A.; Witt, H.; Kararigas, G.; Dworatzek, E.; Staub, E.; Martus, P.; Noppinger, P.R.; Kintscher, U.; et al. Female sex and estrogen receptor-β attenuate cardiac remodeling and apoptosis in pressure overload. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2010, 298, R1597–R1606. [Google Scholar] [CrossRef]
- Pedram, A.; Razandi, M.; Narayanan, R.; Levin, E.R. Estrogen receptor beta signals to inhibition of cardiac fibrosis. Mol. Cell. Endocrinol. 2016, 434, 57–68. [Google Scholar] [CrossRef]
Experimental Model | Experiment Description/Molecular Pathway | Tested in Females | Tested in Males | References | ||
---|---|---|---|---|---|---|
In Vitro | Ex Vivo | Animal Model | ||||
Human aortic VICs | IFN-α–mediated inflammation and calcification | Observed to a higher degree | [65] | |||
Human aortic VICs | PI3K/Akt/cell signaling survival pathway matrix-Gla protein expression BCL-2 gene expression | Upregulated | [65] | |||
Human aortic VICs | IFN-γ-mediated pro-angiogenic, inflammatory, and calcific effects | Upregulated | [66] | |||
Human lateral LV wall tissue | JAK-STAT pathway | Downregulated | [43] | |||
Human lateral LV wall tissue | TGF-β expression | Downregulated | [43] | |||
TAC mice | LVH and heart failure | Induced | Induced | [64] | ||
Porcine aortic VICs | Angiogenesis Lipid accumulation MAPK/ERK-1/2 pathway Inflammation | Upregulated | [67] | |||
Rat and porcine aortic VICs | Osteogenic differentiation Calcification | Upregulated | [73] | |||
LV of TAC mice | Expression of genes encoding mitochondrial function and fatty acid oxidation | Upregulated | [75] | |||
LV of TAC mice | Expression of genes encoding ribosomal protein synthesis and extracellular matrix remodeling | Upregulated | [75] | |||
TAC B6D1/F1 mice | CaMKII-MEF2 pathway mediating cardiac response to PO | Upregulated | [77] | |||
TAC Wistar rats | LVH | Induced | [78] | |||
TAC Wistar rats | Cardiac dysfunction | Observed | [78] | |||
Whole LV extracts obtained from TAC Wistar rats | Cardiac NOS1 expression and activity associated with LVH caused by PO | Delayed | Rapidly induced | [78] | ||
LV fragments obtained from TAC Wistar rats | Caveolin-1 expression associated with LVH caused by PO | Downregulated | [78] | |||
LV samples obtained from TAC mice | miR-29b expression associated with LV remodeling pattern | Upregulated | [81] | |||
Isolated heart of TAC Wistar rats | Sarcoplasmic reticulum Ca++-adenosine triphosphatase expression (cardiac reserve in PO hypertrophy) | Downregulated | [83] | |||
Isolated heart of TAC Wistar rats | Expression of β-cardiac myosin heavy chain and ANF (cardiac reserve in PO hypertrophy | Upregulated | [83] | |||
Ovariectomized TAC mice | Estrogen-mediated anti-hypertrophic effect on PO hypertrophy via blocking of increased p38-MAPK phosphorylation and increasing ANF expression | Observed | [84] | |||
Cardiomyocytes and fibroblasts obtained from hearts of Wistar–Kyoto rats | Estrogen-mediated anti-hypertrophic effect by inducing the ANF gene expression | Observed | [85] | |||
ArKO mice | Estrogen-mediated anti-hypertrophic effect through multiple signaling pathways | Observed | [86] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Summerhill, V.I.; Moschetta, D.; Orekhov, A.N.; Poggio, P.; Myasoedova, V.A. Sex-Specific Features of Calcific Aortic Valve Disease. Int. J. Mol. Sci. 2020, 21, 5620. https://doi.org/10.3390/ijms21165620
Summerhill VI, Moschetta D, Orekhov AN, Poggio P, Myasoedova VA. Sex-Specific Features of Calcific Aortic Valve Disease. International Journal of Molecular Sciences. 2020; 21(16):5620. https://doi.org/10.3390/ijms21165620
Chicago/Turabian StyleSummerhill, Volha I., Donato Moschetta, Alexander N. Orekhov, Paolo Poggio, and Veronika A. Myasoedova. 2020. "Sex-Specific Features of Calcific Aortic Valve Disease" International Journal of Molecular Sciences 21, no. 16: 5620. https://doi.org/10.3390/ijms21165620
APA StyleSummerhill, V. I., Moschetta, D., Orekhov, A. N., Poggio, P., & Myasoedova, V. A. (2020). Sex-Specific Features of Calcific Aortic Valve Disease. International Journal of Molecular Sciences, 21(16), 5620. https://doi.org/10.3390/ijms21165620