Systematic Review—The Potential Implications of Different Platelet-Rich Plasma (PRP) Concentrations in Regenerative Medicine for Tissue Repair
Abstract
:1. Introduction
2. Methods
2.1. Regulatory Framework on Clinical PRP Use
- 1 × 106 µL ± 20% final platelet amount;
- Topical and/or infiltrative use exclusively;
- Quality and sterility checks on the sample obtained;
- Not over 55 mL of blood to withdraw for every patient;
- Labeling of every PRP sample;
- Specific Informed consent;
- Side events module;
- Data processing module;
- Patients screening on the basis of exclusion criteria (platelet disorders, thrombocytopenia, anti-aggregating therapy, bone marrow aplasia, uncompensated diabetes, sepsis and cancer).
2.2. Search Strategy
2.2.1. Study Assessment
2.2.2. Study Selection
2.2.3. Data Extraction
2.2.4. Result Measures
3. Results
3.1. The In Vitro Impact of Platelet-Rich Plasma
- The Fixed PRP Concentration Group:
- The Fixed PRP Volume Group:
3.1.1. Platelet-Rich Plasma Impact Modulated by Cell Type
3.1.2. PRP-to-Culture-Media Ratio: A Potential Bias
3.1.3. Platelet-Rich Plasma Concentration Analysis
3.1.4. Cell Density Per Well
3.2. In Vivo Impact of Platelet-Rich Plasma
3.3. Suggested Guidelines for Further Research
- The PRP/media ratio should be kept fixed throughout the experiment to minimize nutritional variations at different PRP concentrations.
- The PRP/media ratio should provide a sufficient nutrition supply to prevent cellular starvation, that is, PRP ≤ 10% (Vol/Vol). This implies that the initial PRP concentration should be high since an increase of concentration by increased volume is not recommended.
- The cell density (cells/mL) should be defined, that is, both the number of cells per well and nutrition volume should be clarified.
3.4. Limitations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PRP | Platelet-Rich Plasma |
PPP | Platelet-poor plasma |
A-PRP | Autologous-Non-activated Platelet-Rich Plasma |
AA-PRP | Autologous-Activated Platelet-Rich-Plasma |
GFs | Growth Factors |
VEGF | Vascular endothelial Growth factors |
PDGF | Platelet Derived Growth factors |
IGF-1 | Insulin like Growth factor-1 |
TGF-ß | Transforming growth factor-beta |
EGF | Epidermal growth factor |
DPCs | Dermal papilla cells |
EC | European Committee |
CAT | Committee for Advanced treatments; |
GMP | Good Manufacturing Practices |
GCP | Good Clinical Practices |
ECM | Extracellular matrix |
SVFs | Stromal vascular Fraction Cells |
AD-MSCs | Adipose-derived Mesenchymal Stem Cells |
RPM | Right per minute |
PRISMA-P | Preferred Reporting for Items for Systematic Reviews and Meta-Analyses-Protocols |
CTGF | Connecting tissue growth factor |
EBM | Evidence Based Medicine |
MRI | Magnetic resonance imaging |
CT | Computed Tomography |
HA | Hyaluronic acid |
OCEBM | Oxford Centre for Evidence-Based Medicine |
WOMAC | Western Ontario and McMaster University’s Osteoarthritis Index scores |
WBCs | White blood cells |
DMEM | Dulbecco’s Modified Eagle Medium |
FBS | Fetal Bovine serum |
PLT | Platelets |
References
- Gentile, P.; Calabrese, C.; De Angelis, B.; Dionisi, L.; Pizzicannella, J.; Kothari, A.; De Fazio, D.; Garcovich, S. Impact of the Different Preparation Methods to Obtain Autologous Non-Activated Platelet-Rich Plasma (A-PRP) and Activated Platelet-Rich Plasma (AA-PRP) in Plastic Surgery: Wound Healing and Hair Regrowth Evaluation. Int. J. Mol. Sci. 2020, 21, 431. [Google Scholar] [CrossRef] [Green Version]
- Gentile, P.; Cole, J.P.; Cole, M.A.; Garcovich, S.; Bielli, A.; Scioli, M.G.; Orlandi, A.; Insalaco, C.; Cervelli, V. Evaluation of Not-Activated and Activated PRP in Hair Loss Treatment: Role of Growth Factor and Cytokine Concentrations Obtained by Different Collection Systems. Int. J. Mol. Sci. 2017, 18, 408. [Google Scholar] [CrossRef]
- De Angelis, B.; D’Autilio, M.F.L.M.; Orlandi, F.; Pepe, G.; Garcovich, S.; Scioli, M.G.; Orlandi, A.; Cervelli, V.; Gentile, P. Wound Healing: In Vitro and In Vivo Evaluation of a Bio-Functionalized Scaffold Based on Hyaluronic Acid and Platelet-Rich Plasma in Chronic Ulcers. J. Clin. Med. 2019, 8, 1486. [Google Scholar] [CrossRef] [Green Version]
- Cervelli, V.; Gentile, P.; Scioli, M.G.; Grimaldi, M.; Casciani, C.U.; Spagnoli, L.G.; Orlandi, A. Application of Platelet-Rich Plasma in Plastic Surgery: Clinical andIn VitroEvaluation. Tissue Eng. Part C Methods 2009, 15, 625–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervelli, V.; Garcovich, S.; Bielli, A.; Curcio, B.C.; Scioli, M.G.; Orlandi, A.; Gentile, P.; Cervelli, G. The Effect of Autologous Activated Platelet Rich Plasma (AA-PRP) Injection on Pattern Hair Loss: Clinical and Histomorphometric Evaluation. BioMed Res. Int. 2014, 2014, 760709. [Google Scholar] [CrossRef] [PubMed]
- Gentile, P.; Garcovich, S.; Scioli, M.; Bielli, A.; Orlandi, A.; Cervelli, V. Mechanical and Controlled PRP Injections in Patients Affected by Androgenetic Alopecia. J. Vis. Exp. 2018, 27, 131. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.P.; Cole, M.A.; Insalaco, C.; Cervelli, V.; Gentile, P. Alopecia and platelet-derived therapies. Stem Cell Investig. 2017, 4, 88. [Google Scholar] [CrossRef] [Green Version]
- Hausauer, A.K.; Humphrey, S. The Physician’s Guide to Platelet-Rich Plasma in Dermatologic Surgery Part I. Dermatol. Surg. 2020, 46, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Hausauer, A.K.; Humphrey, S. The Physician’s Guide to Platelet-Rich Plasma in Dermatologic Surgery Part II: Clinical Evidence. Dermatol. Surg. 2020, 46, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Gentile, P.; Bottini, D.J.; Spallone, D.; Curcio, B.C.; Cervelli, V. Application of Platelet-Rich Plasma in Maxillofacial Surgery. J. Craniofac. Surg. 2010, 21, 900–904. [Google Scholar] [CrossRef]
- Metcalf, K.B.; Mandelbaum, B.R.; McIlwraith, C.W. Application of Platelet-Rich Plasma to Disorders of the Knee Joint. Cartilage 2013, 4, 295–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, P.; Flaumenhaft, R. Platelet α-granules: Basic biology and clinical correlates. Blood Rev. 2009, 23, 177–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumüller, J.; Ellinger, A.; Wagner, T. Transmission Electron Microscopy of Platelets FROM Apheresis and Buffy-Coat-Derived Platelet Concentrates. Transm. Electron Microsc. Theory Appl. 2015, 255–284. [Google Scholar] [CrossRef] [Green Version]
- Dhurat, R.; Sukesh, M. Principles and Methods of Preparation of Platelet-Rich Plasma: A Review and Author’s Perspective. J. Cutan. Aesthet. Surg. 2014, 7, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Schücklenk, U.; Ashcroft, R. International Research Ethics. Bioethics 2000, 14, 158–172. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; the PRISMA Group. Reprint—Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Phys. Ther. 2009, 89, 873–880. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2014. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 19 June 2020).
- Furukawa, T.A.; Barbui, C.; Cipriani, A.; Brambilla, P.; Watanabe, N. Imputing missing standard deviations in meta-analyses can provide accurate results. J. Clin. Epidemiol. 2006, 59, 7–10. [Google Scholar] [CrossRef]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Anitua, E.; Sánchez, M.; Zalduendo, M.M.; De La Fuente, M.; Prado, R.; Orive, G.; Andía, I. Fibroblastic response to treatment with different preparations rich in growth factors. Cell Prolif. 2009, 42, 162–170. [Google Scholar] [CrossRef]
- Jo, C.H.; Kim, J.E.; Yoon, K.S.; Shin, S. Platelet-Rich Plasma Stimulates Cell Proliferation and Enhances Matrix Gene Expression and Synthesis in Tenocytes from Human Rotator Cuff Tendons with Degenerative Tears. Am. J. Sports Med. 2012, 40, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qiu, Y.; Triffitt, J.; Carr, A.; Xia, Z.; Sabokbar, A. Proliferation and differentiation of human tenocytes in response to platelet rich plasma: An in vitro and in vivo study. J. Orthop. Res. 2011, 30, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Giusti, I.; D’Ascenzo, S.; Mancò, A.; Di Stefano, G.; Di Francesco, M.; Rughetti, A.; Mas, A.D.; Properzi, G.; Calvisi, V.; Dolo, V. Platelet Concentration in Platelet-Rich Plasma Affects Tenocyte Behavior In Vitro. BioMed Res. Int. 2014, 2014, 630870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graziani, F.; Ivanovski, S.; Cei, S.; Ducci, F.; Tonetti, M.; Gabriele, M. The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin. Oral Implant. Res. 2006, 17, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, D.R.; Centeno, C.J.; Steinmetz, N.J. Platelet lysates from aged donors promote human tenocyte proliferation and migration in a concentration-dependent manner. Bone Jt. Res. 2019, 8, 32–40. [Google Scholar] [CrossRef]
- Rughetti, A.; Giusti, I.; D’Ascenzo, S.; Leocata, P.; Carta, G.; Pavan, A.; Dell’Orso, L.; Dolo, V. Platelet gel-released supernatant modulates the angiogenic capability of human endothelial cells. Blood Transfus. 2008, 6, 12–17. [Google Scholar]
- Mishra, A.; Tummala, P.; King, A.; Lee, B.; Kraus, M.; Tse, V.; Jacobs, C.R. Buffered Platelet-Rich Plasma Enhances Mesenchymal Stem Cell Proliferation and Chondrogenic Differentiation. Tissue Eng. Part C Methods 2009, 15, 431–435. [Google Scholar] [CrossRef]
- Wang, K.; Li, Z.; Li, J.; Liao, W.; Qin, Y.; Zhang, N.; Huo, X.; Mao, N.; Zhu, H.; Ketao, W.; et al. Optimization of the Platelet-Rich Plasma Concentration for Mesenchymal Stem Cell Applications. Tissue Eng. Part A 2019, 25, 333–351. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Yuan, K.; Tseng, C.-C. The negative effect of platelet-rich plasma on the growth of human cells is associated with secreted thrombospondin-1. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 107, 185–192. [Google Scholar] [CrossRef]
- Tavassoli-Hojjati, S.; Sattari, M.; Ghasemi, T.; Ahmadi, R.; Mashayekhi, A. Effect of platelet-rich plasma concentrations on the proliferation of periodontal cells: An in vitro study. Eur. J. Dent. 2016, 10, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Amable, P.R.; Teixeira, M.V.T.; Carias, R.B.V.; Granjeiro, J.M.; Borojevici, R. Mesenchymal Stromal Cell Proliferation, Gene Expression and Protein Production in Human Platelet-Rich Plasma-Supplemented Media. PLoS ONE 2014, 9, e104662. [Google Scholar] [CrossRef] [PubMed]
- Haynesworth, S.E.; Kadiyala, S.; Liang, L.; Bruder, S.P. Mitogenic Stimulation of Human Mesenchymal Stem Cells by Platelet Releasate suggests a Mechanism for Enhancement of Bone Repair by Platelet Concentrate. In Proceedings of the 48th Annual Meeting of the Orthopaedic Research Society, Dallas, TX, USA, 10–13 February 2002. [Google Scholar]
- Sadoghi, P.; Lohberger, B.; Aigner, B.; Kaltenegger, H.; Friesenbichler, J.; Wolf, M.; Sununu, T.; Leithner, A.; Vavken, P. Effect of platelet-rich plasma on the biologic activity of the human rotator-cuff fibroblasts: A controlled in vitro study. J. Orthop. Res. 2013, 31, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Mazzocca, A.D.; McCarthy, M.B.R.; Chowaniec, D.M.; Dugdale, E.M.; Hansen, D.; Cote, M.; Bradley, J.P.; Romeo, A.A.; Arciero, R.A.; Beitzel, K. The Positive Effects of Different Platelet-Rich Plasma Methods on Human Muscle, Bone, and Tendon Cells. Am. J. Sports Med. 2012, 40, 1742–1749. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.H.; Shin, J.S.; Shin, W.H.; Lee, S.Y.; Yoon, K.S.; Shin, S. Platelet-rich plasma for arthroscopic repair of medium to large rotator cuff tears: A randomized controlled trial. Am. J. Sports Med. 2015, 43, 2102–2110. [Google Scholar] [CrossRef]
- Abate, M.; Silbernagel, K.G.; Siljeholm, C.; Di Iorio, A.; De Amicis, D.; Salini, V.; Werner, S.; Paganelli, R. Pathogenesis of tendinopathies: Inflammation or degeneration? Arthritis Res. Ther. 2009, 11, 235. [Google Scholar] [CrossRef] [Green Version]
- Franchi, M.; Trirè, A.; Quaranta, M.; Orsini, E.; Ottani, V. Collagen Structure of Tendon Relates to Function. Sci. World J. 2007, 7, 404–420. [Google Scholar] [CrossRef]
- Chen, B.; Sun, H.-H.; Wang, H.-G.; Kong, H.; Chen, F.-M.; Yu, Q. The effects of human platelet lysate on dental pulp stem cells derived from impacted human third molars. Biomaterials 2012, 33, 5023–5035. [Google Scholar] [CrossRef]
- Palm, W.; Thompson, C.B. Nutrient acquisition strategies of mammalian cells. Nature 2017, 546, 234–242. [Google Scholar] [CrossRef]
- Heiden, M.G.V.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
- Kiritsy, C.P.; Lynch, S.E. Role of Growth Factors in Cutaneous Wound Healing: A Review. Crit. Rev. Oral Boil. Med. 1993, 4, 729–760. [Google Scholar] [CrossRef] [Green Version]
- Dernek, B.; Kesiktas, F.N.; Duymus, T.M.; Aydin, T.; Isiksacan, N.; Diracoglu, D.; Aksoy, C. Effect of platelet concentration on clinical improvement in treatment of early stage-knee osteoarthritis with platelet-rich plasma concentrations. J. Phys. Ther. Sci. 2017, 29, 896–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervelli, V.; Gentile, P. Use of Platelet Gel in Romberg Syndrome. Plast. Reconstr. Surg. 2009, 123, 22e–23e. [Google Scholar] [CrossRef] [PubMed]
- Cervelli, V.; Palla, L.; Pascali, M.; De Angelis, B.; Curcio, B.C.; Gentile, P. Autologous Platelet-Rich Plasma Mixed with Purified Fat Graft in Aesthetic Plastic Surgery. Aesthet. Plast. Surg. 2009, 33, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Cervelli, V.; De Angelis, B.; Lucarini, L.; Spallone, D.; Balzani, A.; Palla, L.; Gentile, P.; Cerulli, P. Tissue Regeneration in Loss of Substance on the Lower Limbs through Use of Platelet-Rich Plasma, Stem Cells from Adipose Tissue, and Hyaluronic Acid. Adv. Ski. Wound Care 2010, 23, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Cervelli, V.; Gentile, P.; De Angelis, B.; Calabrese, C.; Di Stefani, A.; Scioli, M.G.; Curcio, B.C.; Felici, M.; Orlandi, A. Application of enhanced stromal vascular fraction and fat grafting mixed with PRP in post-traumatic lower extremity ulcers. Stem Cell Res. 2011, 6, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Cervelli, V.; Lucarini, L.; Spallone, D.; Palla, L.; Colicchia, G.M.; Gentile, P.; De Angelis, B. Use of Platelet-Rich Plasma and Hyaluronic Acid in the Loss of Substance with Bone Exposure. Adv. Ski. Wound Care 2011, 24, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Cervelli, V.; Scioli, M.G.; Gentile, P.; Doldo, E.; Bonanno, E.; Spagnoli, L.G.; Orlandi, A. Platelet-Rich Plasma Greatly Potentiates Insulin-Induced Adipogenic Differentiation of Human Adipose-Derived Stem Cells Through a Serine/Threonine Kinase Akt-Dependent Mechanism and Promotes Clinical Fat Graft Maintenance. Stem Cells Transl. Med. 2012, 1, 206–220. [Google Scholar] [CrossRef]
- Cervelli, V.; Bocchini, I.; Di Pasquali, C.; De Angelis, B.; Cervelli, G.; Curcio, C.B.; Orlandi, A.; Scioli, M.G.; Tati, E.; Delogu, P.; et al. P.R.L. Platelet Rich Lipotransfert: Our Experience and Current State of Art in the Combined Use of Fat and PRP. BioMed Res. Int. 2013, 2013, 434191. [Google Scholar] [CrossRef] [Green Version]
- Dohan, D.M.; Choukroun, J.; Diss, A.; Dohan, S.L.; Dohan, A.; Mouhyi, J.; Gogly, B. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part I: Technological concepts and evolution. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2006, 101, e37–e44. [Google Scholar] [CrossRef]
- Dohan, D.M.; Choukroun, J.; Diss, A.; Dohan, S.L.; Dohan, A.; Mouhyi, J.; Gogly, B. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part III: Leucocyte activation: A new feature for platelet concentrates? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2006, 101, e51–e55. [Google Scholar] [CrossRef]
- Dohan, D.M.; Choukroun, J.; Diss, A.; Dohan, S.L.; Dohan, A.; Mouhyi, J.; Gogly, B. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part II: Platelet-related biologic features. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2006, 101, e45–e50. [Google Scholar] [CrossRef] [PubMed]
- Amaral, R.J.F.C.D.; Da Silva, N.P.; Haddad, N.F.; Lopes, L.S.; Ferreira, F.D.; Filho, R.B.; Cappelletti, P.A.; De Mello, W.; Cordeiro-Spinetti, E.; Balduíno, A. Platelet-Rich Plasma Obtained with Different Anticoagulants and Their Effect on Platelet Numbers and Mesenchymal Stromal Cells Behavior In Vitro. Stem Cells Int. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samadi, P.; Sheykhhasan, M.; Khoshinani, H.M. The Use of Platelet-Rich Plasma in Aesthetic and Regenerative Medicine: A Comprehensive Review. Aesthet. Plast. Surg. 2018, 43, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Smith, O.J.; Jell, G.; Mosahebi, A. The use of fat grafting and platelet-rich plasma for wound healing: A review of the current evidence. Int. Wound J. 2018, 16, 275–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Gao, F.; Li, Y.; Ma, J.; Sun, W.; Shi, L.; Wu, X.; Li, T. The Use of Platelet-Rich Plasma for the Treatment of Osteonecrosis of the Femoral Head: A Systematic Review. BioMed Res. Int. 2020, 2020, 2642439. [Google Scholar] [CrossRef] [Green Version]
- Gentile, P.; Garcovich, S. Systematic Review of Platelet-Rich Plasma Use in Androgenetic Alopecia Compared with Minoxidil®, Finasteride®, and Adult Stem Cell-Based Therapy. Int. J. Mol. Sci. 2020, 21, 2702. [Google Scholar] [CrossRef] [Green Version]
- Gentile, P.; Garcovich, S. Autologous activated platelet-rich plasma (AA-PRP) and non-activated (A-PRP) in hair growth: A retrospective, blinded, randomized evaluation in androgenetic alopecia. Expert Opin. Boil. Ther. 2020, 20, 327–337. [Google Scholar] [CrossRef]
- Gentile, P. Autologous Cellular Method Using Micrografts of Human Adipose Tissue Derived Follicle Stem Cells in Androgenic Alopecia. Int. J. Mol. Sci. 2019, 20, 3446. [Google Scholar] [CrossRef] [Green Version]
- Alves, R.; Grimalt, R. Platelet-Rich Plasma and its Use for Cicatricial and Non-Cicatricial Alopecias: A Narrative Review. Dermatol. Ther. 2020, 10, 1–11. [Google Scholar] [CrossRef]
Investigators | PRP Concentration Evaluated (plt/μL or Fold or WB) | Optimal PRP Concentration Cell Proliferation (Vol/Vol and plt/μL or Fold) | Optimal PRP Concentration Cell Motility and Invasion (plt/μL) | Cells Type Evaluated | Fixed PRP Concentration Proliferation/(plt/μL) | Optimal PRP/Media Ratio (Vol/Vol) for Cell Proliferation | Procedure |
---|---|---|---|---|---|---|---|
Wang et al. (2019) [29] | Platelet lysate corresponding to 0.2 × 106, 0.5 × 106, 0.8 × 106, 1.0 × 106, 1.2 × 106, 1.5 × 106, 2.0 × 106, 2.7 × 106 and 3.0 × 106 | 10% of 1.5–3.0 × 106 | Not tested | HMSCs (bone marrow) | 1.55 × 106 | 10% | 1.25, 1.5 and 1.9 × 106 (mean 1.55 × 106) has been added to the culture at a ratio of 1%, 5% and 10% to media (Vol/Vol) |
Hsu et al. (2009) [30] | 1.124 × 106 plt/μL has been added to the wells in concentration of 2%, 5%, 15%, and 30% | 5% of 1.124 × 106 of 5% (Vol/Vol) | Not evaluated | Fibroblast, Osteoblast | 1.124 × 106 | 5% | PRP of 1.124 × 106 plt/μL has been added to the wells in concentration of 2%, 5%, 15% and 30% |
Mishra et al. (2009) [28] | 1 × 106 plt/μL (not-activated) has been added to the media at ratio of 1%, 5%, 10% and 20% (Vol/Vol) | 10% of 1 × 106 | Not evaluated | Fibroblast, HMSCs | 1 × 106 | 10% | A standardized PRP containing 1 × 106 plt/μL has been added to the culture at a ratio of 0.1%, 1%, 5%, 10% and 20% (Vol/Vol) |
Chen et al. (2012) [39] | Lysate from PRP of 1. × 106 has been added to the media at ratio of 0%, 1%, 5%, 10%, lysate (Vol/Vol) | 5% of 1 × 106 | Not evaluated | Dental Pulp Stem Cells | 1. × 106 plt/μL | 5% | PRP of 1. × 106 plt/μL has been added to the media (α-MEM) at ratio of 0%, 1%, 5%, 10%, (Vol/Vol) |
Tavassoli-Hojjati et al. (2016) [31] | 1.194 × 106 plt/μL diluted in DMEM resulting in concentration of 0.1%, 5% and 50% | 5% of 1.194 × 106 | Not evaluated | Fibroblast | 1.194 × 106 | 5% | Initial PRP contained an average of 1.194.000 plt/μL |
Giusti et al. (2014) [24] | 0.5 × 106, 1 × 106, 2 × 106, 3 × 106 and 5 × 106 plt/μL | 0.5 × 106 (PRP/media ratio unclear) | 0.5 × 106, at 46 h (PRP/media ratio unclear) | Tenocyte | 4.5 × 106 to 6 × 106 | Not displayed | Initial PRP contained 4.5 × 106 to 6 × 106 plt/μL. The cells have been treated with PRP-lysate which was diluted in culture medium + 1% FDS to obtain 0.5 × 106, 1 × 106, 2 × 106, 3 × 106 and 5 × 106 plt/μL |
Amable et al. (2014) [32] | 2.94 +/− 1.9 × 106 plt/μL has been mixed with culture media (α-MEM) to obtain the following PRP concentration: 1%, 2.5%, 5%, 10%, 20%, 30%, 40% and 50% (Vol/Vol) | 10% of 2.94 +/− 1.9 × 106 | Not evaluated | HMSC (bone marrow, adipose tissue and Wharton’s Jelly) | 2.94 +/− 1.9 × 106 | 10% | PRP of 2.94 +/− 1.9 × 106 plt/μL has been mixed with culture media (α-MEM) to obtain the following PRP concentration: 1%, 2.5%, 5%, 10%, 20%, 30%, 40% and 50% (Vol/Vol) |
Haynesworth et al. (2002) [33] | 0.625-fold, 1.25-fold, 2.5-fold and 5-fold | 10% of 1.6 × 106 (5-folds over baseline) | Not evaluated | HMSCs, Fibroblast | 1.6 × 106 | 10% | The initial PRP contained 1.6 × 103 plt/μL (5-fold). PRP-lysates corresponding to PRP concentrations of 0.625, 1.25 and 2.5 has been made by diluting the lysate in DMEM. Each concentration has been added to the media in a ratio of 10%/90% (Vol/Vol) |
Graziani et al. (2006) [25] | 2.5-fold, 3.5-fold and 4.2–5.5-fold (PRP Max) | 33.3% of 2.5 ≈ 0.570 × 106 | 33.3% of 2.5 × Ca 0.570 × 106 | Osteoblast, Fibroblast | 2.5 × 0.570 × 106 (Osteoblast); 1 × 0.228 × 106 (Fibroblast) | 33% | Initial PRP contained 800.000–1.370.000 plt/μL. Maximum PRP-lysate (PRP-Max) has been diluted in DMEM to obtain PRP-lysate containing 250%, 350% over WB baseline |
Rughetti et al. (2008) [27] | 0.3 × 106, 0.5 × 106, 0.75 × 106, 1.25 × 106, 1.75 × 106, 2.25 × 106, 2.75 × 106, 3.25 × 106, 4 ×106, 5 × 106 and 7 × 106 | 1.25 × 106 | 1.5 × 106 | Endothelial cell | 1.25 × 106 | Not displayed | Initial PRP has been activated and diluted in DMEM + 2.5% FCS (proliferation) or in DMEM only (motility and invasion). Platelet concentration at 3 × 105, 5 × 105, 7.5 × 105, 1.25 × 106, 1.75 × 106, 2.25 x106, 2.75 × 106, 3.25 × 106, 4 × 106, 5 × 106 and 7 × 106 plt/μL has been added to the medium |
Anitua et al. (2009) [21] | 0.16 +/− 1 x106, 0.404 +/− 39 x106, 0.767 +/− 95 × 106 plt/μL (2× and 4× of baseline) | 20% of 0.767 +/− 95 × 106 and 0.404 +/− 39 × 106 | Not evaluated | Fibroblast | 0.767 +/− 95 × 106 | 20% | 200% and 400% of WB baseline. Platelet concentration of 404 +/− 39 × 103 and 767 +/− 95 × 103 added to media in a 20%/80% ratio |
Mazzocca, (2012) [35] | PRPLP: 382.0 +/− 111.6 × 103 plt/μL: PRPDS: 472.6 +/− 224.2 x103 plt/μL; PRPHP: 940.1 +/− 425.8 × 103 plt/μL | 10% of PRPLP: 382.0 +/− 111.6 × 103 plt/μL; 10% of PRPDS: 472.6 +/− 224.2 × 103 plt/μL; No significance between PRPLP PRPDS and PRPHP | Not evaluated | Myocytes, Osteoblast, Tenocyte | 382.0 +/− 111.6 × 103 (PRPLP) − Myocytes 472.6 +/− 224.2 × 103 (PRPDS)-Osteoblast; 382.0 +/− 111.6 × 103 (PRPLP)-Tenocytes | 10% | PRPLP: 382.0 +/− 111.6 × 103 plt/μL: PRPDS: 472.6 +/− 224.2 × 103 plt/μL; PRPHP: 940.1 +/− 425.8 × 103 plt/μL |
Wang et al. (2011) [23] | 1.2–1.9 × 106/μL, 1%, 5% and 10% (Vol/Vol) | 10% of 1.5 × 1.9 × 106 (4×) | Not evaluated | Tenocyte | 1.55 × 106 | 10% | 1.25, 1.5 and 1.9 × 106 (mean 1.55 × 106) has been added to the culture at a ratio of, 1%, 5% and 10% to media (Vol/Vol) |
Sadoghi et al. (2013) [34] | 1-, 5- and 10 fold PRP has been obtained by diluting initial PRP in PPP. The PRP/media ratio is unclear | 5-fold ≈ 1.25 × 106 | Not evaluated | Fibroblast | 5-fold | Not evaluated | 1-, 5- and 10 fold PRP has been obtained by diluting initial PRP in PPP. The PRP/media ratio is unclear |
Berger et al. (2019) [26] | Platelet lysate corresponding to platelet levels of 14×, 7×, 3.5×, 1.75× and 0.9× of WB | 20% of 0.875 × 106 (Young group); 20% of 3.5 × 106 (Old group) | Old group: 3.5 × 106 | Fibroblast | Young group: 0.875 × 106 Old group: 3.5 × 106 | 20% | Platelet lysate (PL) has been diluted in PPP to obtain lysates corresponding to platelet levels of 14×, 7×, 3.5×, 1.75× and 0.9× of WB |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentile, P.; Garcovich, S. Systematic Review—The Potential Implications of Different Platelet-Rich Plasma (PRP) Concentrations in Regenerative Medicine for Tissue Repair. Int. J. Mol. Sci. 2020, 21, 5702. https://doi.org/10.3390/ijms21165702
Gentile P, Garcovich S. Systematic Review—The Potential Implications of Different Platelet-Rich Plasma (PRP) Concentrations in Regenerative Medicine for Tissue Repair. International Journal of Molecular Sciences. 2020; 21(16):5702. https://doi.org/10.3390/ijms21165702
Chicago/Turabian StyleGentile, Pietro, and Simone Garcovich. 2020. "Systematic Review—The Potential Implications of Different Platelet-Rich Plasma (PRP) Concentrations in Regenerative Medicine for Tissue Repair" International Journal of Molecular Sciences 21, no. 16: 5702. https://doi.org/10.3390/ijms21165702
APA StyleGentile, P., & Garcovich, S. (2020). Systematic Review—The Potential Implications of Different Platelet-Rich Plasma (PRP) Concentrations in Regenerative Medicine for Tissue Repair. International Journal of Molecular Sciences, 21(16), 5702. https://doi.org/10.3390/ijms21165702