Thymus Inception: Molecular Network in the Early Stages of Thymus Organogenesis
Abstract
:1. Introduction
2. Thymus Composition
3. Embryonic Origin of the Thymus
The Common Primordium of the Thymus and Parathyroid Glands
- Thymic Epithelial Marker—Foxn1
- Parathyroid Epithelial Marker—Gcm2
4. Molecular Regulation of Thymus Early-Organogenesis
4.1. Factors Implicated in the Morphogenesis of the Pouch
- Retinoic acid
- T-box 1 and Fibroblast Growth Factor 8
4.2. Factors Implicated in the 3PP Endoderm Patterning and Early T/PT Development
4.2.1. Transcription Factors
- Homeobox Protein A3
- Eyes Absent 1 and Sine Oculis Homeobox 1 and 4
- Paired Box Protein 1, 3, and 9
- Forkhead Boxi3
- Other Transcription Factors and Cytokines
4.2.2. Major Signaling Pathways
- BMP and FGF Pathways
- Wnt pathway
- Notch Signaling
- Hedgehog Signaling
- Eph/ephrin Signaling
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
3D | three-dimensional |
CK | cytokeratin |
HH | Hamburger and Hamilton |
LPCs | lymphoid progenitor cells |
mE | embryonic day of development in the mouse |
MHC | Major Complex of Histocompatibility |
NC | neural crest |
Pth | parathyroid hormone |
PA | pharyngeal arch |
PP | pharyngeal pouch |
PT | parathyroid |
T | thymus |
TE | thymic epithelium |
TECs | thymic epithelial cells |
TFs | transcription factors |
References
- Hess, I.; Boehm, T. Intravital Imaging of Thymopoiesis Reveals Dynamic Lympho-Epithelial Interactions. Immunity 2012, 36, 298–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boehm, T.; Hess, I.; Swann, J.B. Evolution of lymphoid tissues. Trends Immunol. 2012, 33, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, S.P. “Nude”, a new hairless gene with pleiotropic effects in the mouse. Genet. Res. 1966, 8, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, J.A.J.; DiGeorge, A.M. Congenital absence of the thymus. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1968, 103, 32–37. [Google Scholar] [CrossRef]
- Auricchio, L.; Adriani, M.; Frank, J.; Busiello, R.; Christiano, A.; Pignata, C. Nail Dystrophy Associated With a Heterozygous Mutation of the Nude/SCID Human FOXN1 (WHN) Gene. Arch. Dermatol. 2005, 141, 647–648. [Google Scholar] [CrossRef]
- Miller, J.F. Immunological function of the thymus. Lance 1961, 2, 748–749. [Google Scholar] [CrossRef]
- Ohki, H.; Martin, C.; Corbel, C.; Coltey, M.; Le Douarin, N.M. Tolerance Induced by Thymic Epithelial Grafts in Birds. Science 1987, 237, 1032–1035. [Google Scholar] [CrossRef]
- Gordon, J.; Manley, N.R. Mechanisms of thymus organogenesis and morphogenesis. Development 2011, 138, 3865–3878. [Google Scholar] [CrossRef] [Green Version]
- Nowell, C.S.; Farley, A.M.; Blackburn, C.C. Thymus organogenesis and development of the thymic stroma. Methods Mol. Biol. 2007, 380, 125–162. [Google Scholar]
- Takahama, Y. Journey through the Thymus: Stromal Guides for T-Cell Development and Selection. Nat. Rev. Immunol. 2006, 6, 127–135. [Google Scholar] [CrossRef]
- Alves, N.L.; Huntington, N.D.; Rodewald, H.-R.; Di Santo, J.P. Thymic epithelial cells: The multi-tasking framework of the T cell “cradle”. Trends Immunol. 2009, 30, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Luan, R.; Liang, Z.; Zhang, Q.; Sun, L.; Zhao, Y. Molecular regulatory networks of thymic epithelial cell differentiation. Differentiation 2019, 107, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, H.J.; Briones Leon, A.; Blackburn, C.C. FOXN1 in thymus organogenesis and development. Eur. J. Immunol. 2016, 46. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Rodrigues, P.M.; Sousa, L.; Tsuneyama, K.; Matsumoto, M.; Alves, N.L. The Ins and Outs of Thymic Epithelial Cell Differentiation and Function. In Thymus Transcriptome and Cell Biology; Springer International Publishing: Cham, Switzerland, 2019; pp. 35–65. [Google Scholar]
- Takahama, Y.; Ohigashi, I.; Baik, S.; Anderson, G. Generation of diversity in thymic epithelial cells. Nat. Rev. Immunol. 2017, 17, 295–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, G.; Lane, P.J.L.; Jenkinson, E.J. Generating intrathymic microenvironments to establish T-cell tolerance. Nat. Rev. Immunol. 2007, 7, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Manley, N.R.; Richie, E.R.; Blackburn, C.C.; Condie, B.G.; Sage, J. Structure and function of the thymic microenvironment. Front. Biosci. 2011, 16, 2461–2477. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, D.; Chan, S.H.; Waltzinger, C.; Benoist, C.; Mathis, D. The thymic compartment responsible for positive selection of CD4+ T cells. Int. Immunol. 1992, 4, 707–710. [Google Scholar] [CrossRef]
- Gotter, J.; Brors, B.; Hergenhahn, M.; Kyewski, B. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J. Exp. Med. 2004, 199, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Klein, L.; Kyewski, B.; Allen, P.M.; Hogquist, K.A. Positive and negative selection of the T cell repertoire: What thymocytes see and don’t see. Nat. Rev. Immunol. 2014, 14, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Hamazaki, Y.; Sekai, M.; Minato, N. Medullary thymic epithelial stem cells: Role in thymic epithelial cell maintenance and thymic involution. Immunol. Rev. 2016, 271, 38–55. [Google Scholar] [CrossRef]
- Irla, M. Thymic Crosstalk: An Overview of the Complex Cellular Interactions That Control the Establishment of T-Cell Tolerance. In Thymus Transcriptome and Cell Biology; Springer International Publishing: Cham, Switzerland, 2019; pp. 149–167. [Google Scholar]
- Le Douarin, N.M.; Jotereau, F.V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J. Exp. Med. 1975, 142, 17–40. [Google Scholar] [CrossRef] [Green Version]
- Neves, H.; Dupin, E.; Parreira, L.; Le Douarin, N.M. Modulation of Bmp4 signalling in the epithelial-mesenchymal interactions that take place in early thymus and parathyroid development in avian embryos. Dev. Biol. 2012, 361, 208–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, J.; Bennett, A.R.; Blackburn, C.C.; Manley, N.R. Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech. Dev. 2001, 103, 141–143. [Google Scholar] [CrossRef]
- Grevellec, A.; Tucker, A.S. The pharyngeal pouches and clefts: Development, evolution, structure and derivatives. Semin. Cell Dev. Biol. 2010, 21, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Okabe, M.; Graham, A. The Origin of the Parathyroid Gland. Proc. Natl. Acad. Sci. USA 2004, 101, 17716–17719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, H.; Zilhão, R. Development of Parathyroid Glands and C-Cells. In Parathyroid Glands: Regulation, Role in Human Disease and Indications for Surgery; Ashford, M., Ed.; Nova Science: Suite N Hauppauge, NY, USA, 2014; pp. 1–34. ISBN 978-1-63117-229-8. [Google Scholar]
- Muñoz, J.J.; Cejalvo, T.; Tobajas, E.; Fanlo, L.; Cortés, A.; Zapata, A.G. 3D immunofluorescence analysis of early thymic morphogenesis and medulla development. Histol. Histopathol. 2015, 30, 589–599. [Google Scholar]
- Auerbach, R. Morphogenetic interactions in the development of the mouse thymus gland. Dev. Biol. 1960, 2, 271–284. [Google Scholar] [CrossRef]
- Bockman, D.E.; Kirby, M.L. Dependence of Thymus Development on Derivatives of the Neural Crest. Science 1984, 223, 498–500. [Google Scholar] [CrossRef]
- Graham, A.; Okabe, M.; Quinlan, R. The role of the endoderm in the development and evolution of the pharyngeal arches. J. Anat. 2005, 207, 479–487. [Google Scholar] [CrossRef]
- Gordon, J.; Wilson, V.A.; Blair, N.F.; Sheridan, J.; Farley, A.; Wilson, L.; Manley, N.R.; Blackburn, C.C. Functional evidence for a single endodermal origin for the thymic epithelium. Nat. Immunol. 2004, 5, 546–553. [Google Scholar] [CrossRef]
- Griffith, A.V.; Cardenas, K.; Carter, C.; Gordon, J.; Iberg, A.; Epstein, J.A.; Manley, N.R.; Richie, E.R. Increased thymus- and decreased parathyroid-fated organ domains in Splotch mutant embryos. Dev Biol. 2009, 327, 216–227. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhao, P.; Wells, L.; Amemiya, C.T.; Condie, B.G.; Manley, N.R. Mouse and zebrafish Hoxa3 Orthologues Have Nonequivalent In Vivo Protein Function. Proc. Natl. Acad. Sci. USA 2010, 107, 10555–10560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chojnowski, J.L.; Masuda, K.; Trau, H.A.; Thomas, K.; Capecchi, M.; Manley, N.R. Multiple roles for HOXA3 in regulating thymus and parathyroid differentiation and morphogenesis in mouse. Development 2014, 141. [Google Scholar] [CrossRef] [Green Version]
- Hamburger, V.; Hamilton, H.L. A series of normal stages in the development of the chick embryo. 1951. Dev. Dyn. 1992, 195, 231–272. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.M.; Stolt, C.C.; Terszowski, G.; Blum, C.; Amagai, T.; Kessaris, N.; Iannarelli, P.; Richardson, W.D.; Wegner, M.; Rodewald, H.-R. Neural Crest Origin of Perivascular Mesenchyme in the Adult Thymus. J. Immunol. 2008, 180, 5344–5351. [Google Scholar] [CrossRef] [Green Version]
- Foster, K.; Sheridan, J.; Veiga-Fernandes, H.; Roderick, K.; Pachnis, V.; Adams, R.; Blackburn, C.; Kioussis, D.; Coles, M. Contribution of Neural Crest-Derived Cells in the Embryonic and Adult Thymus. J. Immunol. 2008, 180, 3183–3189. [Google Scholar] [CrossRef] [Green Version]
- Chojnowski, J.L.; Trau, H.A.; Masuda, K.; Manley, N.R. Temporal and spatial requirements for Hoxa3 in mouse embryonic development. Dev. Biol. 2016, 415, 33–45. [Google Scholar] [CrossRef]
- Foster, K.E.; Gordon, J.; Cardenas, K.; Veiga-Fernandes, H.; Makinen, T.; Grigorieva, E.; Wilkinson, D.G.; Clare Blackburng, C.; Richie, E.; Manley, N.R.; et al. EphB-Ephrin-B2 Interactions are Required for Thymus Migration during Organogenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 13414–13419. [Google Scholar] [CrossRef] [Green Version]
- Van Ewijk, W.; Shores, E.W.; Singer, A. Crosstalk in the mouse thymus. Trends Immunol. 1994, 15, 214–217. [Google Scholar] [CrossRef] [Green Version]
- Klug, D.B.; Carter, C.; Crouch, E.; Roop, D.; Conti, C.J.; Richie, E.R. Interdependence of Cortical Thymic Epithelial Cell Differentiation and T-Lineage Commitment. Proc. Natl. Acad. Sci. USA 1998, 95, 11822–11827. [Google Scholar] [CrossRef] [Green Version]
- Van Ewijk, W.; Holländer, G.; Terhorst, C.; Wang, B. Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets. Development 2000, 127, 1583–1591. [Google Scholar] [PubMed]
- Anderson, G.; Jenkinson, W.E.; Jones, T.; Parnell, S.M.; Kinsella, F.A.M.; White, A.J.; Pongrac’z, J.E.; Rossi, S.W.; Jenkinson, E.J. Establishment and functioning of intrathymic microenvironments. Immunol. Rev. 2006, 209, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.; Anderson, G. Thymic Epithelial Cells. Annu. Rev. Immunol. 2017, 35, 85–118. [Google Scholar] [CrossRef] [PubMed]
- Brunk, F.; Michel, C.; Holland-Letz, T.; Slynko, A.; Kopp-Schneider, A.; Kyewski, B.; Pinto, S. Dissecting and modeling the emergent murine TEC compartment during ontogeny. Eur. J. Immunol. 2017, 47, 1153–1159. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yu, S.; Manley, N.R. Gcm2 is required for the differentiation and survival of parathyroid precursor cells in the parathyroid/thymus primordia. Dev. Biol. 2007, 305, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Nehls, M.; Kyewski, B.; Messerle, M.; Waldschütz, R.; Schüddekopf, K.; Smith, A.J.; Boehm, T. Two genetically separable steps in the differentiation of thymic epithelium. Science 1996, 272, 886–889. [Google Scholar] [CrossRef]
- Muñoz, J.J.; Zapata, A.G. Thymus Ontogeny and Development. In Thymus Transcriptome and Cell Biology; Springer International Publishing: Cham, Switzerland, 2019; pp. 19–34. [Google Scholar]
- Nehls, M.; Pfeifer, D.; Schorpp, M.; Hedrich, H.; Boehm, T. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 1994, 372, 103–107. [Google Scholar] [CrossRef]
- Itoi, M.; Kawamoto, H.; Katsura, Y.; Amagai, T. Two distinct steps of immigration of hematopoietic progenitors into the early thymus anlage. Int. Immunol. 2001, 13, 1203–1211. [Google Scholar] [CrossRef] [Green Version]
- Bleul, C.C.; Corbeaux, T.; Reuter, A.; Fisch, P.; Mönting, J.S.; Boehm, T. Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 2006, 441, 992–996. [Google Scholar] [CrossRef]
- Vroegindeweij, E.; Crobach, S.; Itoi, M.; Satoh, R.; Zuklys, S.; Happe, C.; Germeraad, W.T.V.; Cornelissen, J.J.; Cupedo, T.; Holländer, G.A.; et al. Thymic cysts originate from Foxn1 positive thymic medullary epithelium. Mol. Immunol. 2010, 47, 1106–1113. [Google Scholar] [CrossRef]
- Muñoz, J.J.; Tobajas, E.; Juara, S.; Montero, S.; Zapata, A.G. FoxN1 mediates thymic cortex–medulla differentiation through modifying a developmental pattern based on epithelial tubulogenesis. Histochem. Cell Biol. 2019, 152, 397–413. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, Y.; Hosoya, T.; Poole, A.M.; Hotta, Y. The Gcm-Motif: A Novel DNA-Binding Motif Conserved in Drosophila and Mammals. Proc. Natl. Acad. Sci. USA 1996, 93, 14912–14916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Günther, T.; Chen, Z.F.; Kim, J.; Priemel, M.; Rueger, J.M.; Amling, M.; Moseley, J.M.; Martin, T.J.; Anderson, D.J.; Karsenty, G. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 2000, 406, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Jerome-Majewska, L.A.; Papaioannou, V.E.; Ohnemus, S.; Boehm, T. Aortic arch and pharyngeal phenotype in the absence of BMP-dependent neural crest in the mouse. Mech. Dev. 2002, 119, 127–135. [Google Scholar]
- Bleul, C.C.; Boehm, T. BMP signaling is required for normal thymus development. J. Immunol. 2005, 175, 5213–5221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.R.; Gordon, J.; Mahbub, F.; Blackburn, C.C.; Manley, N.R. Bmp4 and Noggin Expression during Early Thymus and Parathyroid Organogenesis. Gene Expr. Patterns GEP 2006, 6, 794–799. [Google Scholar] [CrossRef]
- Soza-Ried, C.; Bleul, C.C.; Schorpp, M.; Boehm, T. Maintenance of Thymic Epithelial Phenotype Requires Extrinsic Signals in Mouse and Zebrafish. J. Immunol. 2008, 181, 5272–5277. [Google Scholar] [CrossRef] [Green Version]
- Gordon, J.; Patel, S.R.; Mishina, Y.; Manley, N.R. Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev. Biol. 2010, 339, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Swann, J.B.; Krauth, B.; Happe, C.; Boehm, T. Cooperative interaction of BMP signalling and Foxn1 gene dosage determines the size of the functionally active thymic epithelial compartment. Sci. Rep. 2017, 7, 8492. [Google Scholar] [CrossRef]
- Xu, P.X.; Zheng, W.; Laclef, C.; Maire, P.; Maas, R.L.; Peters, H.; Xu, X. Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 2002, 129, 3033–3044. [Google Scholar]
- Zou, D.; Silvius, D.; Davenport, J.; Grifone, R.; Maire, P.; Xu, P.X. Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1. Dev. Biol. 2006, 293, 499–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Issa, R.; Smyth, G.; Smoak, I.; Yamamura, K.; Meyers, E.N. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 2002, 129, 4613–4625. [Google Scholar] [PubMed]
- Frank, D.U.; Fotheringham, L.K.; Brewer, J.A.; Muglia, L.J.; Tristani-Firouzi, M.; Capecchi, M.R.; Moon, A.M. An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 2002, 129, 4591–4603. [Google Scholar] [PubMed]
- Macatee, T.; Hammond, B.; Arenkiel, B. Ablation of Specific Expression Domains Reveals Discrete Functions of Ectoderm-And Endoderm-Derived FGF8 during Cardiovascular and Pharyngeal Development. Development 2003, 130, 6361–6374. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, J.R.; Jackson, A.L.; Gordon, J.; Lickert, H.; Manley, N.R.; Basson, M.A. Localised inhibition of FGF signalling in the third pharyngeal pouch is required for normal thymus and parathyroid organogenesis. Development 2012, 139, 3456–3466. [Google Scholar] [CrossRef] [Green Version]
- Hasten, E.; Morrow, B.E. Tbx1 and Foxi3 genetically interact in the pharyngeal pouch endoderm in a mouse model for 22q11.2 deletion syndrome. PLoS Genet. 2019, 15, e1008301. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, C.C.; Augustine, C.L.; Li, R.; Harvey, R.P.; Malin, M.A.; Boyd, R.L.; Miller, J.F.; Morahan, G. The Nu Gene Acts Cell-Autonomously and Is Required for Differentiation of Thymic Epithelial Progenitors. Proc. Natl. Acad. Sci. USA 1996, 93, 5742–5746. [Google Scholar] [CrossRef] [Green Version]
- Su, D.M.; Navarre, S.; Oh, W.J.; Condie, B.G.; Manley, N.R. A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation. Nat. Immunol. 2003, 4, 1128–1135. [Google Scholar] [CrossRef]
- Grigorieva, I.V.; Mirczuk, S.; Gaynor, K.U.; Nesbit, M.A.; Grigorieva, E.F.; Wei, Q.; Ali, A.; Fairclough, R.J.; Stacey, J.M.; Stechman, M.J.; et al. Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. J. Clin. Investig. 2010, 120, 2144–2155. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Condie, B.G. A focused In Situ Hybridization Screen Identifies Candidate Transcriptional Regulators of Thymic Epithelial Cell Development and Function. PLoS ONE 2011, 6, e26795. [Google Scholar] [CrossRef]
- Figueiredo, M.; Silva, J.C.; Santos, A.S.; Proa, V.; Alcobia, I.; Zilhão, R.; Cidadão, A.; Neves, H. Notch and Hedgehog in the thymus/parathyroid common primordium: Crosstalk in organ formation. Dev. Biol. 2016, 418, 268–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manley, N.R.; Capecchi, M.R. The role of Hoxa-3 in mouse thymus and thyroid development. Development 1995, 121, 1989–2003. [Google Scholar] [PubMed]
- Manley, N.R.; Capecchi, M.R. Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev. Biol. 1998, 195, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, D.; Ellis, S.; Napier, A.; Lee, K.; Manley, N.R. Hoxa3 and pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev. Biol. 2001, 236, 316–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallin, J.; Eibel, H.; Neubüser, A.; Wilting, J.; Koseki, H.; Balling, R. Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation. Development 1996, 122, 23–30. [Google Scholar]
- Peters, H.; Neubüser, A.; Kratochwil, K.; Balling, R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 1998, 12, 2735–2747. [Google Scholar] [CrossRef] [Green Version]
- Hetzer-Egger, C.; Schorpp, M.; Haas-Assenbaum, A.; Balling, R.; Peters, H.; Boehm, T. Thymopoiesis requires Pax9 function in thymic epithelial cells. Eur. J. Immunol. 2002, 32, 1175–1181. [Google Scholar] [CrossRef]
- Wendling, O.; Dennefeld, C.; Chambon, P.; Mark, M. Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches. Development 2000, 127, 1553–1562. [Google Scholar]
- Quinlan, R.; Gale, E.; Maden, M.; Graham, A. Deficits in the posterior pharyngeal endoderm in the absence of retinoids. Dev. Dyn. 2002, 225, 54–60. [Google Scholar] [CrossRef]
- Niederreither, K.; Vermot, J.; Le Roux, I.; Schuhbaur, B.; Chambon, P.; Dolle, P. The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development 2003, 130, 2525–2534. [Google Scholar] [CrossRef] [Green Version]
- Blentic, A.; Gale, E.; Maden, M. Retinoic acid signalling centres in the avian embryo identified by sites of expression of synthesising and catabolising enzymes. Dev. Dyn. 2003, 227, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.K.; Hager-Theodorides, A.L.; Outram, S.V.; Ross, S.E.; Varas, A.; Crompton, T. Reduced Thymocyte Development in Sonic Hedgehog Knockout Embryos. J. Immunol. (Baltim. MD 1950) 2004, 172, 2296–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore-Scott, B.A.; Manley, N.R. Differential expression of Sonic hedgehog along the anterior-posterior axis regulates patterning of pharyngeal pouch endoderm and pharyngeal endoderm-derived organs. Dev. Biol. 2005, 278, 323–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grevellec, A.; Graham, A.; Tucker, A.S. Shh signalling restricts the expression of Gcm2 and controls the position of the developing parathyroids. Dev. Biol. 2011, 353, 194–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bain, V.E.; Gordon, J.; O’Neil, J.D.; Ramos, I.; Richie, E.R.; Manley, N.R. Tissue-specific roles for sonic hedgehog signaling in establishing thymus and parathyroid organ fate. Development 2016, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerome, L.A.; Papaioannou, V.E. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat. Genet. 2001, 27, 286–291. [Google Scholar] [CrossRef]
- Roberts, C.; Ivins, S.M.; James, C.T.; Scambler, P.J. Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Dev. Dyn. 2005, 232, 928–938. [Google Scholar] [CrossRef]
- Balciunaite, G.; Keller, M.P.; Balciunaite, E.; Piali, L.; Zuklys, S.; Mathieu, Y.D.; Gill, J.; Boyd, R.; Sussman, D.J.; Holländer, G.A. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat. Immunol. 2002, 3, 1102–1108. [Google Scholar] [CrossRef]
- Kopinke, D.; Sasine, J.; Swift, J.; Stephens, W.Z.; Piotrowski, T. Retinoic acid is required for endodermal pouch morphogenesis and not for pharyngeal endoderm specification. Dev. Dyn. 2006, 235, 2695–2709. [Google Scholar] [CrossRef]
- Diman, N.Y.S.G.; Remacle, S.; Bertrand, N.; Picard, J.J.; Zaffran, S.; Rezsohazy, R. A retinoic acid responsive Hoxa3 transgene expressed in embryonic pharyngeal endoderm, cardiac neural crest and a subdomain of the second heart field. PLoS ONE 2011, 6, e27624. [Google Scholar] [CrossRef] [Green Version]
- Dupé, V.; Ghyselinck, N.B.; Wendling, O.; Chambon, P.; Mark, M. Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. Development 1999, 126, 5051–5059. [Google Scholar] [PubMed]
- Naiche, L.A.; Harrelson, Z.; Kelly, R.G.; Papaioannou, V.E. T-Box Genes in Vertebrate Development. Annu. Rev. Genet. 2005, 39, 219–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, E.A.; Vitelli, F.; Su, H.; Morishima, M.; Huynh, T.; Pramparo, T.; Jurecic, V.; Ogunrinu, G.; Sutherland, H.F.; Scambler, P.J.; et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001, 410, 97–101. [Google Scholar] [CrossRef]
- Baldini, A. Dissecting contiguous gene defects: TBX1. Curr. Opin. Genet. Dev. 2005, 15, 279–284. [Google Scholar] [CrossRef]
- Vitelli, F.; Morishima, M.; Taddei, I.; Lindsay, E.A.; Baldini, A. Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum. Mol. Genet. 2002, 11, 915–922. [Google Scholar] [CrossRef] [Green Version]
- Garg, V.; Yamagishi, C.; Hu, T.; Kathiriya, I.S.; Yamagishi, H.; Srivastava, D. Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev. Biol. 2001, 235, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Cerrato, F.; Xu, H.; Vitelli, F.; Morishima, M.; Vincentz, J.; Furuta, Y.; Ma, L.; Martin, J.F.; Baldini, A.; et al. Tbx1 expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development 2005, 132, 5307–5315. [Google Scholar] [CrossRef] [Green Version]
- Choe, C.P.; Crump, J.G. Tbx1 controls the morphogenesis of pharyngeal pouch epithelia through mesodermal Wnt11r and Fgf8a. Development 2014, 141, 3583–3593. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Cerrato, F.; Baldini, A. Timed mutation and cell-fate mapping reveal reiterated roles of Tbx1 during embryogenesis, and a crucial function during segmentation of the pharyngeal system via regulation of endoderm expansion. Development 2005, 132, 4387–4395. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.S.; Werling, U.; Braunstein, E.M.; Liao, J.; Nowotschin, S.; Edelmann, W.; Hebert, J.M.; Morrow, B.E. Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations. Development 2006, 133, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.; Kasah, S.; Mansour, S.L.; Morrow, B.; Basson, M.A. Endoderm-specific deletion of Tbx1 reveals an FGF-independent role for Tbx1 in pharyngeal apparatus morphogenesis. Dev. Dyn. 2014, 243, 1143–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z. Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 2006, 133, 3587–3595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeh, K.A.G.; Cardenas, K.T.; Bain, V.E.; Liu, Z.; Laurent, M.; Manley, N.R.; Richie, E.R. Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus organogenesis. Development 2014, 141, 2950–2958. [Google Scholar] [CrossRef] [Green Version]
- Dorey, K.; Amaya, E. FGF signalling: Diverse roles during early vertebrate embryogenesis. Development 2010, 137, 3731–3742. [Google Scholar] [CrossRef] [Green Version]
- Crossley, P.H.; Martin, G.R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 1995, 121, 439–451. [Google Scholar]
- Meyers, E.N.; Lewandoski, M.; Martin, G.R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat. Genet. 1998, 18, 136–141. [Google Scholar] [CrossRef]
- Park, E.J.; Ogden, L.A.; Talbot, A.; Evans, S.; Cai, C.L.; Black, B.L.; Frank, D.U.; Moon, A.M. Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 2006, 133, 2419–2433. [Google Scholar] [CrossRef] [Green Version]
- Gordon, J. Hox genes in the pharyngeal region: How Hoxa3 controls early embryonic development of the pharyngeal organs. Int. J. Dev. Biol. 2018, 62, 775–783. [Google Scholar] [CrossRef]
- Zamisch, M.; Moore-Scott, B.; Su, D.; Lucas, P.J.; Manley, N.; Richie, E.R. Ontogeny and regulation of IL-7-expressing thymic epithelial cells. J. Immunol. 2005, 174, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Krumlauf, R. Hox genes in vertebrate development. Cell 1994, 78, 191–201. [Google Scholar] [CrossRef]
- Alexander, T.; Nolte, C.; Krumlauf, R. Hox Genes and Segmentation of the Hindbrain and Axial Skeleton. Annu. Rev. Cell Dev. Biol. 2009, 25, 431–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manley, N.R.; Condie, B.G. Transcriptional regulation of thymus organogenesis and thymic epithelial cell differentiation. In Progress in Molecular Biology and Translational Science; Elsevier B.V.: Amsterdam, The Netherlands, 2010; Volume 92, pp. 103–120. [Google Scholar]
- Bonini, N.M.; Leiserson, W.M.; Benzer, S. The eyes absent gene: Genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 1993, 72, 379–395. [Google Scholar] [CrossRef]
- Li, X.; Oghi, K.A.; Zhang, J.; Krones, A.; Bush, K.T.; Glass, C.K.; Nigam, S.K.; Aggarwal, A.K.; Maas, R.; Rose, D.W.; et al. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 2003, 426, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Serikaku, M.A.; O’Tousa, J.E. Sine oculis is a homeobox gene required for Drosophila visual system development. Genetics 1994, 138, 1137–1150. [Google Scholar] [PubMed]
- Dahl, E.; Koseki, H.; Balling, R. Pax genes and organogenesis. Bioessays 1997, 19, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Neubüser, A.; Koseki, H.; Balling, R. Characterization and developmental expression of Pax9, a paired-box-containing gene related to Pax1. Dev. Biol. 1995, 170, 701–716. [Google Scholar]
- Maret, A.; Ding, C.; Kornfield, S.L.; Levine, M.A. Analysis of the GCM2 gene in isolated hypoparathyroidism: A molecular and biochemical study. J. Clin. Endocrinol. Metab. 2008, 93, 1426–1432. [Google Scholar] [CrossRef]
- Peters, H.; Wilm, B.; Sakai, N.; Imai, K.; Maas, R.; Balling, R. Pax1 and Pax9 synergistically regulate vertebral column development. Development 1999, 126, 5399–5408. [Google Scholar]
- Kelly, M. Molecular Regulation of Thymic Epithelial Lineage Specification. Ph.D. Thesis, University of Edinburgh, Edinburgh, Scotland, 2012. [Google Scholar]
- Ohyama, T.; Groves, A.K. Expression of mouse Foxi class genes in early craniofacial development. Dev. Dyn. 2004, 231, 640–646. [Google Scholar] [CrossRef]
- Von Freeden-Jeffry, U.; Vieira, P.; Lucian, L.A.; McNeil, T.; Burdach, S.E.; Murray, R. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 1995, 181, 1519–1526. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Yamasaki, N.; Izumo, S. Phenotypic characterization of the murine Nkx2.6 homeobox gene by gene targeting. Mol. Cell. Biol. 2000, 20, 2874–2879. [Google Scholar] [CrossRef] [Green Version]
- Jenkinson, W.E.; Jenkinson, E.J.; Anderson, G. Differential requirement for mesenchyme in the proliferation and maturation of thymic epithelial progenitors. J. Exp. Med. 2003, 198, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Dooley, J.; Erickson, M.; Larochelle, W.J.; Gillard, G.O.; Farr, A.G. FGFR2IIIb signaling regulates thymic epithelial differentiation. Dev. Dyn. 2007, 236, 3459–3471. [Google Scholar] [CrossRef]
- Revest, J.M.; Suniara, R.K.; Kerr, K.; Owen, J.J.; Dickson, C. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J. Immunol. 2001, 167, 1954–1961. [Google Scholar] [CrossRef] [Green Version]
- Kameda, Y.; Saitoh, T.; Nemoto, N.; Katoh, T.; Iseki, S.; Fujimura, T. Hes1 is required for the development of pharyngeal organs and survival of neural crest-derived mesenchymal cells in pharyngeal arches. Cell Tissue Res. 2013, 353, 9–25. [Google Scholar] [CrossRef]
- Wang, R.N.; Green, J.; Wang, Z.; Deng, Y.; Qiao, M.; Peabody, M.; Zhang, Q.; Ye, J.; Yan, Z.; Denduluri, S.; et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 2014, 1, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Tsai, P.T.; Lee, R.A.; Wu, H. BMP4 acts upstream of FGF in modulating thymic stroma and regulating thymopoiesis. Blood 2003, 102, 3947–3953. [Google Scholar] [CrossRef]
- Hu, B.; Lefort, K.; Qiu, W.; Nguyen, B.C.; Rajaram, R.D.; Castillo, E.; He, F.; Chen, Y.; Angel, P.; Brisken, C.; et al. Control of hair follicle cell fate by underlying mesenchyme through a CSL-Wnt5a-FoxN1 regulatory axis. Genes Dev. 2010, 24, 1519–1532. [Google Scholar] [CrossRef] [Green Version]
- Kulessa, H.; Turk, G.; Hogan, B.L.M. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J. 2000, 19, 6664–6674. [Google Scholar] [CrossRef] [Green Version]
- Lai, E.C. Notch signaling: Control of cell communication and cell fate. Development 2004, 131, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Bray, S. Notch signalling: A simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 2006, 7, 678–689. [Google Scholar] [CrossRef]
- Hurlbut, G.D.; Kankel, M.W.; Lake, R.J.; Artavanis-Tsakonas, S. Crossing paths with Notch in the hyper-network. Curr. Opin. Cell Biol. 2007, 19, 166–175. [Google Scholar] [CrossRef]
- Hori, K.; Sen, A.; Artavanis-Tsakonas, S. Notch signaling at a glance. J. Cell Sci. 2013, 126, 2135–2140. [Google Scholar] [CrossRef] [Green Version]
- Shida, H.; Mende, M.; Takano-Yamamoto, T.; Osumi, N.; Streit, A.; Wakamatsu, Y. Otic placode cell specification and proliferation are regulated by Notch signaling in avian development. Dev. Dyn. 2015, 244, 839–851. [Google Scholar] [CrossRef]
- Jaleco, A.C.; Neves, H.; Hooijberg, E.; Gameiro, P.; Clode, N.; Haury, M.; Henrique, D.; Parreira, L. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J. Exp. Med. 2001, 194, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Maillard, I.; Fang, T.; Pear, W.S. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu. Rev. Immunol. 2005, 23, 945–974. [Google Scholar] [CrossRef]
- Radtke, F.; Fasnacht, N.; Macdonald, H.R. Notch signaling in the immune system. Immunity 2010, 32, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.K.; Zuniga-Pflucker, J.C. An Overview of the Intrathymic Intricacies of T Cell Development. J. Immunol. 2014, 192, 4017–4023. [Google Scholar] [CrossRef]
- Van Bueren, K.L.; Papangeli, I.; Rochais, F.; Pearce, K.; Roberts, C.; Calmont, A.; Szumska, D.; Kelly, R.G.; Bhattacharya, S.; Scambler, P.J. Hes1 expression is reduced in Tbx1 null cells and is required for the development of structures affected in 22q11 deletion syndrome. Dev. Biol. 2010, 340, 369–380. [Google Scholar] [CrossRef]
- Hicks, C.; Johnston, S.H.; DiSibio, G.; Collazo, A.; Vogt, T.F.; Weinmaster, G. Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat. Cell Biol. 2000, 2, 515–520. [Google Scholar] [CrossRef]
- Lee, R.T.H.; Zhao, Z.; Ingham, P.W. Hedgehog signalling. Development 2016, 143, 367–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shifley, E.T.; Vanhorn, K.M.; Perez-Balaguer, A.; Franklin, J.D.; Weinstein, M.; Cole, S.E. Oscillatory lunatic fringe activity is crucial for segmentation of the anterior but not posterior skeleton. Development 2008, 135, 899–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haworth, K.E.; Wilson, J.M.; Grevellec, A.; Cobourne, M.T.; Healy, C.; Helms, J.A.; Sharpe, P.T.; Tucker, A.S. Sonic hedgehog in the pharyngeal endoderm controls arch pattern via regulation of Fgf8 in head ectoderm. Dev. Biol. 2007, 303, 244–258. [Google Scholar] [CrossRef] [Green Version]
- Yamagishi, H.; Maeda, J.; Hu, T.; McAnally, J.; Conway, S.J.; Kume, T.; Meyers, E.N.; Yamagishi, C.; Srivastava, D. Tbx1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. Genes Dev. 2003, 17, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Manley, N.R.; Selleri, L.; Brendolan, A.; Gordon, J.; Cleary, M.L. Abnormalities of caudal pharyngeal pouch development in Pbx1 knockout mice mimic loss of Hox3 paralogs. Dev. Biol. 2004, 276, 301–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darling, T.K.; Lamb, T.J. Emerging roles for Eph receptors and ephrin ligands in immunity. Front. Immunol. 2019, 10, 1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, J.J.; Cejalvo, T.; Alonso-Colmenar, L.M.; Alfaro, D.; Garcia-Ceca, J.; Zapata, A. Eph/ephrin-mediated interactions in the thymus. Neuroimmunomodulation 2011, 18, 271–280. [Google Scholar] [CrossRef]
- Cejalvo, T.; Munoz, J.J.; Tobajas, E.; Alfaro, D.; García-Ceca, J.; Zapata, A. Conditioned deletion of ephrinB1 and/or ephrinB2 in either thymocytes or thymic epithelial cells alters the organization of thymic medulla and favors the appearance of thymic epithelial cysts. Histochem. Cell Biol. 2015, 143, 517–529. [Google Scholar] [CrossRef]
Gene | Relevant Expression Pattern | Relevant Role | Reference (s) |
---|---|---|---|
Bmp4 | T presumptive domain; NC-derived mesenchyme, surface ectoderm. | PP patterning; early T/PT development; organs separation and migration; regulation of Foxn1 expression. | [24,58,59,60,61,62,63] |
Eya1 | PP endoderm; NC-derived mesenchyme; Surface ectoderm. | PP patterning and outgrowth. | [64,65] |
Fgf8 | PP and pharyngeal endoderm; non-NC-derived mesoderm; Surface ectoderm. | PP formation and patterning, possible role in guiding pouch epithelial outpocketing. | [66,67,68,69] |
Foxi3 | PP endoderm; surface ectoderm | PA segmentation; T/PT development | [70] |
Foxn1 | T rudiment. | TEC differentiation. | [25,49,71,72] |
Gata3 | PP endoderm; organ rudiments | Possible role in PP patterning and survival; PT differentiation and survival | [73,74,75] |
Gcm2 | PT rudiment. | PT differentiation. | [48,57] |
Hoxa3 | PP endoderm; NC-derived mesenchyme | PP specification, T/PT primordium formation and survival | [76,77,78] |
Noggin | PT rudiment; Mesenchyme | PP patterning, opposing Bmp signaling | [24,60] |
Pax1 | PP endoderm | Early T/PT development, possible regulation of Foxn1 expression | [78,79] |
Pax3 | NC-derive mesenchyme | Organs boundary formation | [34] |
Pax9 | PP endoderm | PP development, T/PT primordium formation and separation; possible regulation of Foxn1 expression. | [80,81] |
RA | Mesenchyme surrounding the pharyngeal endoderm | Posterior PP segmentation and formation | [82,83,84,85] |
Six1/4 | Surface ectoderm, PP endoderm, NC-derived mesenchyme | Early T/PT formation and survival | [65] |
Shh | Pharyngeal endoderm, but excluded from PP endoderm | PP patterning and early PT development | [75,86,87,88,89] |
Tbx1 | Pharyngeal endoderm and presumptive PT domain; non-NC-derived mesenchyme; surface ectoderm. | Pharyngeal region segmentation; PP formation; possible involvement in promoting PT fate/suppressing T fate | [48,90,91] |
Wnt4 | PP endoderm; mesenchyme | Possible regulation of Foxn1 expression | [92] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueiredo, M.; Zilhão, R.; Neves, H. Thymus Inception: Molecular Network in the Early Stages of Thymus Organogenesis. Int. J. Mol. Sci. 2020, 21, 5765. https://doi.org/10.3390/ijms21165765
Figueiredo M, Zilhão R, Neves H. Thymus Inception: Molecular Network in the Early Stages of Thymus Organogenesis. International Journal of Molecular Sciences. 2020; 21(16):5765. https://doi.org/10.3390/ijms21165765
Chicago/Turabian StyleFigueiredo, Marta, Rita Zilhão, and Hélia Neves. 2020. "Thymus Inception: Molecular Network in the Early Stages of Thymus Organogenesis" International Journal of Molecular Sciences 21, no. 16: 5765. https://doi.org/10.3390/ijms21165765
APA StyleFigueiredo, M., Zilhão, R., & Neves, H. (2020). Thymus Inception: Molecular Network in the Early Stages of Thymus Organogenesis. International Journal of Molecular Sciences, 21(16), 5765. https://doi.org/10.3390/ijms21165765