A Novel Anion Exchange Membrane for Bisulfite Anion Separation by Grafting a Quaternized Moiety through BPPO via Thermal-Induced Phase Separation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proton NMR and FTIR-ATR Spectrum
2.2. Tiny Characters
2.3. Membrane Phenomenon
2.4. Electrodialysis (ED)
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Synthesized Moiety and Quaternization
3.2.2. Thermal-Induced Phase Separation
3.2.3. Membrane Phalanx
3.2.4. Membrane Grafting (DIPS Test)
3.3. Characterization and ED
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DD | Diffusion dialysis |
ED | Electrodialysis |
WU | Water uptake |
TN | Transport number |
AR | Area resistance |
CC | Concentration cell |
DC | Dilute cell |
CA | Contact angle |
DI | Deionized |
AcOEt | Ethyl acetate |
QM | Quaternized moiety |
QA | Quaternized ammonium |
MM | Membrane matrix |
AEM | Anion exchange membrane |
CEM | Cation exchange membrane |
IEC | Ion exchange capacity |
PEM | Polymeric exchangeable membranes |
NMP | n-methyl-2-pyrrolidone |
DMSO | Dimethyl sulfoxide |
AMX | Anion exchange membrane (Neosepta) |
CMX | Cation exchange membrane (Neosepta) |
PPO | Poly (2,6-dimethyl-1,4-phenyleneoxide) |
BPPO | Brominated poly (2,6-dimethyl-1,4-phenyleneoxide) |
FTIR | Fourier transform infrared spectroscopy |
ATR | Attenuated total reflection |
NMR | Nuclear magnetic resonance |
AFM | Atomic force microscope |
FE-SEM | Field emission scanning electron microscope |
FE-HRTEM | Field emission high-resolution transmission electron microscope |
Moiety | 2-[(dimethylamino)methylnaphthalen]-1-ol |
QAGs | Quaternary ammonium groups |
TIPS | Thermal induced phase separation |
DIPS | Diffusion induced phase separation |
BPPO-g-QM | Brominated poly (2,6-dimethyl-1,4-phenyleneoxide)-g-quaternized moiety |
References
- Ran, J.; Wu, L.; He, Y.; Yang, Z.; Wang, Y.; Jiang, C.; Ge, L.; Bakangura, E.; Xu, T. Ion exchange membranes: New developments and applications. J. Membr. Sci. 2017, 522, 267–291. [Google Scholar] [CrossRef]
- Kamcev, J.; Paul, D.R.; Freeman, B.D. Ion activity coefficients in ion exchange polymers: Applicability of Manning’s counterion condensation theory. Macromolecules 2015, 48, 8011–8024. [Google Scholar] [CrossRef]
- Fane, A.G.; Wang, R.; Jia, Y. Membrane and desalination technologies. In Handbook of Environmental Engineering; Wang, L.K., Chen, J., Hung, Y., Shammas, N.K., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 3–45. [Google Scholar]
- Maier, J. Defect chemistry and ion transport in nanostructured materials, Part II. Aspects of nanoionics. Solid State Ionics 2003, 157, 327–334. [Google Scholar] [CrossRef]
- Yan, X.; Gu, S.; He, G.; Wu, X.; Zheng, W.; Ruan, X. Quaternary phosphonium-functionalized poly(ether ether ketone) as highly conductive and alkali-stable hydroxide exchange membrane for fuel cells. J. Membr. Sci. 2014, 466, 220–228. [Google Scholar] [CrossRef]
- Hosseini, S.; Madaeni, S.S.; Heidaria, A.R.; Amirimehr, A. Preparation and characterization of ion-selective polyvinyl chloride based heterogeneous cation exchange membrane modified by magnetic iron–nickel oxide nanoparticles. Desalination 2012, 284, 191–199. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; Ge, Q.; Chen, Y.; Xu, T. High performance anion exchange membranes obtained through graft architecture and rational cross-linking. J. Membr. Sci. 2014, 470, 229–236. [Google Scholar] [CrossRef]
- Shinoda, H.; Miller, P.J.; Matyjaszewski, K. Improving the structural control of graft copolymers by combining ATRP with the macromonomer method. Macromolecules 2001, 34, 3186–3194. [Google Scholar] [CrossRef]
- Pearce, E.M. New commercial polymers 2, by Hans-George Elias and Friedrich Vohwinkel, Gordon and Breach. J. Polym. Sci. Part C Polym. Lett. 1987, 25, 233–234. [Google Scholar] [CrossRef]
- Bavendamm, W.; Bellmann, H. Chlornaphthalin-Präparate. Eur. J. Wood Wood Prod. 1953, 11, 81–84. [Google Scholar] [CrossRef]
- Lalia, B.S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013, 326, 77–95. [Google Scholar] [CrossRef]
- Strathmann, H. Fundamentals in Electromembrane Separation Processes in Operations: Innovative Separations and Transformations; Drioli, E., Giorno, L., Eds.; Membrane, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 83–119. [Google Scholar]
- Sreekanth, R.; Prasanthkumar, K.P.; Paul, M.M.S.; Aravind, U.K.; Aravindakumar, C.T. Oxidation reactions of 1-and 2-naphthols: An experimental and theoretical study. J. Phys. Chem. A 2013, 117, 11261–11270. [Google Scholar] [CrossRef] [PubMed]
- Mowery, D.C.; Sampat, B.N. University patents and patent policy debates in the USA. Ind. Corp. Chang. 2001, 10, 781–814. [Google Scholar] [CrossRef]
- Chaudhury, S.; Bhattacharyya, A.; Goswami, A. Electrodriven ion transport through crown ether–nafion composite membrane: Enhanced selectivity of Cs+ over Na+ by ion gating at the surface. Ind. Eng. Chem. Res. 2014, 53, 8804–8809. [Google Scholar] [CrossRef]
- Izatt, R.M.; Pawlak, K.; Bradshaw, J.S.; Bruening, R.L. Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem. Rev. 1991, 91, 1721–2085. [Google Scholar] [CrossRef]
- Lin, M.; Shapiro, M.J. Mixture analysis in combinatorial chemistry. Application of diffusion-resolved NMR spectroscopy. J. Org. Chem. 1996, 61, 7617–7619. [Google Scholar] [CrossRef]
- Babler, J.H. Process for Preparing Tertiary Alkynols. US Patent 5349071, 20 September 1994. [Google Scholar]
- Mukerji, S.; Yang, S. Phosphoenolpyruvate carboxylase from spinach leaf tissue: Inhibition by sulfite ion. Plant Physiol. 1974, 53, 829–834. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Liu, L.; Jin, B.; Bai, R. A novel poly(2,6-dimethyl-1,4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes. Chem. Commun. 2014, 50, 2791–2793. [Google Scholar] [CrossRef]
- Ge, Q.; Ning, Y.; Wu, L.; Ge, L.; Liu, X.; Yang, Z.; Xu, T. Enhancing acid recovery efficiency by implementing oligomer ionic bridge in the membrane matrix. J. Membr. Sci. 2016, 518, 263–272. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; Varcoe, J.R.; Ong, A.L.; Poynton, S.D.; Xu, T. Development of imidazolium-type alkaline anion exchange membranes for fuel cell application. J. Membr. Sci. 2012, 415, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Gavach, C.; Bribes, J.; Chapotot, A.; Maillols, J.; Pourcelly, G. Improvements of the selectivity of ionic transport through electrodialysis membranes in relation with the performances of separation electromembrane processes. J. Physique IV 1994, 4, C1–C233. [Google Scholar] [CrossRef]
- Jorissen, J.; Simmrock, K. The behaviour of ion exchange membranes in electrolysis and electrodialysis of sodium sulphate. J. Appl. Electrochem. 1991, 21, 869–876. [Google Scholar] [CrossRef]
- Wang, J.; Gu, S.; Xiong, R.; Zhang, B.; Xu, B.; Yan, Y. Structure–property relationships in hydroxide-exchange membranes with cation strings and high ion-exchange capacity. ChemSusChem 2015, 8, 4229–4234. [Google Scholar] [CrossRef]
- Pan, J.; Ding, J.; Tan, R.; Chen, G.; Zhao, Y.; Cao, C.; van der Bruggen, B. Preparation of a monovalent selective anion exchange membrane through constructing a covalently crosslinked interface by electro-deposition of polyethyleneimine. J. Membr. Sci. 2017, 539, 263–272. [Google Scholar] [CrossRef]
- Simons, R. Water splitting in ion exchange membranes. Electrochim. Acta. 1985, 30, 275–282. [Google Scholar] [CrossRef]
- Tanaka, Y.; Seno, M. Concentration polarization and water dissociation in ion-exchange membrane electrodialysis. Mechanism of water dissociation. J. Chem. Soc. Faraday Trans. 1986, 82, 2065–2077. [Google Scholar] [CrossRef]
- Tanaka, Y. Concentration polarization in ion exchange membrane electrodialysis. J. Membr. Sci. 1991, 57, 217–235. [Google Scholar] [CrossRef]
- Fujiwara, M.; Sakamoto, M.; Komeyama, K.; Yoshida, H.; Takakiet, K. Convenient Synthesis of 2-Amino-4H-chromenes from photochemically generated o-quinone methides and malononitrile. J. Hetero. Chem. 2015, 52, 59–66. [Google Scholar] [CrossRef]
- Modica, E.; Zanaletti, R.; Freccero, M.; Mella, M. Alkylation of amino acids and glutathione in water by o-quinone methide. Reactivity and selectivity. J. Org. Chem. 2001, 66, 41–52. [Google Scholar] [CrossRef]
- Hossain, M.M.; Hou, J.; Wu, L.; Ge, Q.; Liang, X.; Mondal, A.N.; Xu, T. Anion exchange membranes with clusters of alkyl ammonium group for mitigating water swelling but not ionic conductivity. J. Membr. Sci. 2018, 550, 101–109. [Google Scholar] [CrossRef]
- Xu, T.; Wu, D.; Wu, L. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)—A versatile starting polymer for proton conductive membranes (PCMs). Progr. Polym. Sci. 2008, 33, 894–915. [Google Scholar] [CrossRef]
- Zhou, H.; Tao, F.; Liu, Q.; Zong, C.; Yang, W.; Chao, X.; Jin, W.; Xu, N. Microporous polyamide membranes for molecular sieving of nitrogen from volatile organic compounds. Angew. Chem. Int. Ed. 2017, 56, 5755–5759. [Google Scholar] [CrossRef] [PubMed]
Membrane 1 | AMX | BPPO-g-QM (1:0.30) | BPPO-g-QM (1:0.60) | BPPO-g-QM (1:0.86) |
---|---|---|---|---|
WU (%) | 16 | 31.04 | 25.83 | 22.55 |
Thickness (µm) | 134 | 58 | 110 | 100 |
IEC (mmol·g−1) | 1.25 | 0.88 | 1.38 | 1.60 |
CA (±2) | - | 75.08 | 81.10 | 82.60 |
AR (Ω·cm2) | 2.35 | 8.19 | 3.08 | 2.14 |
TN | 0.98 | 0.75 | 0.81 | 0.72 |
Ion Flux (mol·cm−2·s−1) | 8.39 × 10−12 | - | 3.87 × 10−11 | - |
Current Efficiency (%) | 16.20 | - | 37.36 | - |
Desalination rate (%) | 1.40 | - | 3.4 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.M.; Wang, Y.; Jiang, C.; Xu, T.; Liu, Y.; Xu, T. A Novel Anion Exchange Membrane for Bisulfite Anion Separation by Grafting a Quaternized Moiety through BPPO via Thermal-Induced Phase Separation. Int. J. Mol. Sci. 2020, 21, 5782. https://doi.org/10.3390/ijms21165782
Alam MM, Wang Y, Jiang C, Xu T, Liu Y, Xu T. A Novel Anion Exchange Membrane for Bisulfite Anion Separation by Grafting a Quaternized Moiety through BPPO via Thermal-Induced Phase Separation. International Journal of Molecular Sciences. 2020; 21(16):5782. https://doi.org/10.3390/ijms21165782
Chicago/Turabian StyleAlam, Md Mofasserul, Yaoming Wang, Chenxiao Jiang, Tingting Xu, Yahua Liu, and Tongwen Xu. 2020. "A Novel Anion Exchange Membrane for Bisulfite Anion Separation by Grafting a Quaternized Moiety through BPPO via Thermal-Induced Phase Separation" International Journal of Molecular Sciences 21, no. 16: 5782. https://doi.org/10.3390/ijms21165782
APA StyleAlam, M. M., Wang, Y., Jiang, C., Xu, T., Liu, Y., & Xu, T. (2020). A Novel Anion Exchange Membrane for Bisulfite Anion Separation by Grafting a Quaternized Moiety through BPPO via Thermal-Induced Phase Separation. International Journal of Molecular Sciences, 21(16), 5782. https://doi.org/10.3390/ijms21165782