Phosphoproteomic Analysis of Rat Neutrophils Shows the Effect of Intestinal Ischemia/Reperfusion and Preconditioning on Kinases and Phosphatases
Abstract
:1. Introduction
2. Results
2.1. Phosphoproteome Analysis of Rat Neutrophils
2.2. Kinases and Phosphatases Phosphorylation in Rat Neutrophils
2.3. Motif-x Enrichment Analysis of Phosphopeptides
2.4. Prediction of Kinases Responsible for Regulated Phosphorylation in Domain Regions
2.5. Pathways Analysis of the Proteins with Significantly Regulated Phosphorylation
3. Discussion
3.1. Phosphorylation Events Related to the Ischemia-Reperfusion Injury
3.2. Molecular Events Associated to iIPC
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation of Experimental Subjects and Sample Collection
4.3. Neutrophil Isolation, Protein Digestion and iTRAQ Labelling
4.4. Enrichment of Phosphopeptides (TiO2-SIMAC-HILIC Procedure)
- 1:
- First TiO2 purification
- 2:
- IMAC purification
- 3:
- Second TiO2 purification
4.4.1. First TiO2 Purification
4.4.2. Enzymatic Deglycosylation
4.4.3. IMAC Purification of Multi-Phosphorylated Peptides
4.4.4. Second TiO2 Purification
4.4.5. HILIC Fractionation of Total and Mono-Phosphorylated Peptides
4.5. Nano-Liquid Chromatography Tandem Mass Spectrometry (nLC-MS/MS)
4.6. Database Searching and Bioinformatics Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Study Limitations
Abbreviations
iIR | Intestinal ischemia reperfusion |
iIRI | Intestinal ischemia reperfusion injury |
MOF | Multiple organ failure |
ECs | Endothelial cells |
IR | Ischemia and reperfusion |
IPC | Ischemic preconditioning |
iIPC | Intestinal ischemic preconditioning |
PTM | Post-translational modification |
SMAO | Superior mesenteric artery occlusion |
FMUSP | Medical Faculty of the University of São Paulo |
DTT | Dithiotreitol |
SDC | Sodiu deoxycholate |
iTRAQ | Isobaric tags for relative and absolute quantitation |
SIMAC | Sequential elution from immobilized metal affinity chromatography |
HILIC | Hydrophilic interaction liquid chromatography |
ACN | Acetonitrile |
FT | Flow-through |
TFA | Trifluoroacetic acid |
nLC-MS/MS | Nano-liquid chromatography tandem mass spectrometry |
FDR | False discovery rate |
TiSH | TiO2 SIMAC HILIC fractionation |
LC-MS/MS | Liquid chromatography - tandem mass spectrometry |
CAMK | Ca2+/calmodulin-dependent protein kinase |
CMGC | includes cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAP kinases), glycogen synthase kinases (GSK) and CDK-like kinases |
PMN | Polymorphonuclear leukocytes |
HIF | Hypoxia-inducible factor |
LTQ | Linear trap quadrupole |
TMT | Tandem mass tag |
LPS | Lipopolysaccharides |
EC | Enzyme Commission |
SRM | Selected reaction monitoring |
References
- Guneli, E.; Cavdar, Z.; Islekel, H.; Sarioglu, S.; Erbayraktar, S.; Kiray, M.; Sokmen, S.; Yilmaz, O.; Gokmen, N. Erythropoietin Protects the Intestine Against Ischemia/Reperfusion Injury in Rats. Mol. Med. 2007, 13, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Mojzis, J.; Hviscová, K.; Germanova, D.; Bukovicová, D.; Mirossay, L. Protective effect of quercetin on ischemia/reperfusion-induced gastric mucosal injury in rats. Physiol. Res. 2001, 50, 501–506. [Google Scholar] [PubMed]
- Trompeter, M.; Brazda, T.; Remy, C.T.; Vestring, T.; Reimer, P. Non-occlusive mesenteric ischemia: Etiology, diagnosis, and interventional therapy. Eur. Radiol. 2002, 12, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, A.W.; Brittenden, J.; McBride, K.; Ruckley, C. V Mesenteric ischaemia: A multidisciplinary approach. Br. J. Surg. 1995, 82, 1446–1459. [Google Scholar] [CrossRef]
- Heys, S.D.; Brittenden, J.; Crofts, T.J. Acute mesenteric ischaemia: The continuing difficulty in early diagnosis. Postgrad. Med. J. 1993, 69, 48–51. [Google Scholar] [CrossRef]
- Souza, D.G.; Cara, D.C.; Cassali, G.D.; Coutinho, S.F.; Silveira, M.R.; Andrade, S.P.; Poole, S.P.; Teixeira, M.M. Effects of the PAF receptor antagonist UK74505 on local and remote reperfusion injuries following ischaemia of the superior mesenteric artery in the rat. Br. J. Pharmacol. 2000, 131, 1800–1808. [Google Scholar] [CrossRef] [Green Version]
- Ceppa, E.P.; Fuh, K.C.; Bulkley, G.B. Mesenteric hemodynamic response to circulatory shock. Curr. Opin. Crit. Care 2003, 9, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Fontes, W.; Sousa, M.V.; Aragão, J.B.; Morhy, L. Determination of the amino acid sequence of the plant cytolysin enterolobin. Arch. Biochem. Biophys. 1997, 347, 201–207. [Google Scholar] [CrossRef]
- Massberg, S.; Gonzalez, A.P.; Leiderer, R.; Menger, M.D.; Messmer, K. Messmer In vivo assessment of the influence of cold preservation time on microvascular reperfusion injury after experimental small bowel transplantation. Br. J. Surg. 1998, 85, 127–133. [Google Scholar] [CrossRef]
- Campbell, E.L.; Kao, D.J.; Colgan, S.P. Neutrophils and the inflammatory tissue microenvironment in the mucosa. Immunol. Rev. 2016, 273, 112–120. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Wang, Q.; Cheng, Z.; Sun, S.; Zhang, Y.; Sun, X.; Wang, Z.; Ren, L. Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio Are Effective Predictors of Prognosis in Patients with Acute Mesenteric Arterial Embolism and Thrombosis. Ann. Vasc. Surg. 2018, 49, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Sisley, A.C.; Desai, T.; Harig, J.M.; Gewertz, B.L. Neutrophil Depletion Attenuates Human Intestinal Reperfusion Injury. J. Surg. Res. 1994, 57, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Carden, D.L.; Smith, J.K.; Korthuis, R.J. Neutrophil-mediated microvascular dysfunction in postischemic canine skeletal muscle. Role of granulocyte adherence. Circ. Res. 1990, 66, 1436–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, F.H.; Weiss, S.J. Tissue Destruction by Neutrophils. N. Engl. J. Med. 1989, 320, 365–376. [Google Scholar] [CrossRef]
- Bagge, U.L.F.; Amundson, B.; Lauritzen, C. White blood cell deformability and plugging of skeletal muscle capillaries in hemorrhagic shock. Acta Physiol. Scand. 1980, 108, 159–163. [Google Scholar] [CrossRef]
- Nascimento, A.; Chapeaurouge, A.; Perales, J.; Sebben, A.; Sousa, M.V.; Fontes, W.; Castro, M.S. Purification, characterization and homology analysis of ocellatin 4, a cytolytic peptide from the skin secretion of the frog Leptodactylus ocellatus. Toxicon 2007, 50, 1095–1104. [Google Scholar] [CrossRef]
- Willerson, J.T. Pharmacologic Approaches to Reperfusion Injury. In Advances in Pharmacology; Academic Press: Cambridge, MA, USA, 1997; pp. 291–312. [Google Scholar]
- Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986, 74, 1124–1136. [Google Scholar] [CrossRef] [Green Version]
- Heurteaux, C.; Lauritzen, I.; Widmann, C.; Lazdunski, M. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc. Natl. Acad. Sci. USA 1995, 92, 4666–4670. [Google Scholar] [CrossRef] [Green Version]
- Matsuyama, K.; Chiba, Y.; Ihaya, A.; Kimura, T.; Tanigawa, N.; Muraoka, R. Effect of spinal cord preconditioning on paraplegia during cross-clamping of the thoracic aorta. Ann. Thorac. Surg. 1997, 63, 1315–1320. [Google Scholar] [CrossRef]
- Turman, M.A.; Bates, C.M. Susceptibility of Human Proximal Tubular Cells to Hypoxia: Effect of Hypoxic Preconditioning and Comparison to Glomerular Cells. Ren. Fail. 1997, 19, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Hotter, G.; Closa, D.; Prados, M.; Fernández-Cruz, L.; Prats, N.; Gelpí, E.; Roselló-Catafau, J. Intestinal Preconditioning Is Mediated by a Transient Increase in Nitric Oxide. Biochem. Biophys. Res. Commun. 1996, 222, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.Y.; Hicks, M.; Winlaw, D.; Spratt, P.; Macdonald, P. Ischemic preconditioning enhances donor lung preservation in the rat. J. Heart Lung Transplant. 1996, 15, 1258–1267. [Google Scholar] [PubMed]
- Prieto-Moure, B.; Lloris-Carsí, J.M.; Barrios-Pitarque, C.; Toledo-Pereyra, L.-H.; Lajara-Romance, J.M.; Berda-Antolí, M.; Lloris-Cejalvo, J.M.; Cejalvo-Lapeña, D. Pharmacology of Ischemia–Reperfusion. Translational Research Considerations. J. Investig. Surg. 2016, 29, 234–249. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.P.; Pugsley, W.B.; Alkhulaifi, A.M.; Kemp, M.; Hooper, J.; Yellon, D.M. Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart 1997, 77, 314–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clavien, P.-A.; Selzner, M.; Rüdiger, H.A.; Graf, R.; Kadry, Z.; Rousson, V.; Jochum, W. A Prospective Randomized Study in 100 Consecutive Patients Undergoing Major Liver Resection With Versus Without Ischemic Preconditioning. Ann. Surg. 2003, 238, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Kharbanda, R.K.; Peters, M.; Walton, B.; Kattenhorn, M.; Mullen, M.; Klein, N.; Vallance, P.; Deanfield, J.; MacAllister, R. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo. Circulation 2001, 103, 1624–1630. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.F.M.; Tahir, M.; Arshid, S.; Castro, M.S.; Fontes, W. Reconciling the IPC and two-hit models: Dissecting the underlying cellular and molecular mechanisms of two seemingly opposing frameworks. J. Immunol. Res. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.F.M.; Castro, M.S.; Fontes, W. Neutrophil proteome: Lessons from different standpoints. Protein Pept. Lett. 2008, 15. [Google Scholar] [CrossRef]
- Tahir, M.; Arshid, S.; Fontes, B.; Castro, M.S.; Luz, I.S.; Botelho, K.L.R.; Sidoli, S.; Schwämmle, V.; Roepstorff, P.; Fontes, W. Analysis of the Effect of Intestinal Ischemia and Reperfusion on the Rat Neutrophils Proteome. Front. Mol. Biosci. 2018, 5, 89. [Google Scholar] [CrossRef] [Green Version]
- Arshid, S.; Tahir, M.; Fontes, B.; Montero, E.F.S.; Castro, M.S.; Sidoli, S.; Schwämmle, V.; Roepstorff, P.; Fontes, W. Neutrophil proteomic analysis reveals the participation of antioxidant enzymes, motility and ribosomal proteins in the prevention of ischemic effects by preconditioning. J. Proteom. 2017, 151, 162–173. [Google Scholar] [CrossRef]
- Arshid, S.; Tahir, M.; Fontes, B.; de Souza Montero, E.F.; Castro, M.S.; Sidoli, S.; Roepstorff, P.; Fontes, W. High performance mass spectrometry based proteomics reveals enzyme and signaling pathway regulation in neutrophils during the early stage of surgical trauma. Proteom. Clin. Appl. 2017, 11, 1600001. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P. The regulation of protein function by multisite phosphorylation–a 25 year update. Trends Biochem. Sci. 2000, 25, 596–601. [Google Scholar] [CrossRef]
- Manning, G.; Plowman, G.D.; Hunter, T.; Sudarsanam, S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 2002, 27, 514–520. [Google Scholar] [CrossRef]
- Olsen, J.V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M. Resource Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell 2006, 2, 635–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.-Y. Protein Tyrosine Phosphatases: Structure and Function, Substrate Specificity, and Inhibitor Development. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 209–234. [Google Scholar] [CrossRef] [PubMed]
- Hurley, J.H.; Dean, A.M.; Thorsness, P.E.; Koshlandjunior, D.E.; Stroud, R.M. Regulation of Isocitrate Dehydrogenase By Phosphorylation Involves no Long-Range Conformational Change in the Free enzyme. J. Biol. Chem. 1990, 265, 3599–3602. [Google Scholar]
- Miller, M.L.; Jensen, L.J.; Diella, F.; Jorgensen, C.; Tinti, M.; Li, L.; Hsiung, M.; Parker, S.A.; Bordeaux, J.; Sicheritz-Ponten, T.; et al. Linear Motif Atlas for Phosphorylation-Dependent Signaling. Sci. Signal. 2008, 1, ra2. [Google Scholar] [CrossRef]
- Campos, V.; Melo, R.C.N.; Silva, L.P.; Aquino, E.N.; Castro, M.S.; Fontes, W. Characterization of neutrophil adhesion to different titanium surfaces. Bull. Mater. Sci. 2014, 37, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P. The role of protein phosphorylation in human health and disease. Eur. J. Biochem. 2001, 268, 5001–5010. [Google Scholar] [CrossRef]
- Libério, M.S.; Joanitti, G.A.; Fontes, W.; Castro, M.S. Anticancer peptides and proteins: A panoramic view. Protein Pept. Lett. 2013, 20, 380–391. [Google Scholar]
- Song, C.; Ye, M.; Liu, Z.; Cheng, H.; Jiang, X.; Han, G.; Songyang, Z.; Tan, Y.; Wang, H.; Ren, J.; et al. Systematic Analysis of Protein Phosphorylation Networks From Phosphoproteomic Data. Mol. Cell. Proteom. 2012, 11, 1070–1083. [Google Scholar] [CrossRef] [Green Version]
- Manning, G. The Protein Kinase Complement of the Human Genome. Science 2002, 298, 1912–1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, T. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell 1995, 80, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Schlessinger, J. Cell Signaling by Receptor Tyrosine Kinases. Cell 2000, 103, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Macek, B.; Mijakovic, I.; Olsen, J.V.; Gnad, F.; Kumar, C.; Jensen, P.R.; Mann, M. The Serine/Threonine/Tyrosine Phosphoproteome of the Model BacteriumBacillus subtilis. Mol. Cell. Proteom. 2007, 6, 697–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundby, A.; Secher, A.; Lage, K.; Nordsborg, N.B.; Dmytriyev, A.; Lundby, C.; Olsen, J. V Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat. Commun. 2012, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Karp, N.A.; Huber, W.; Sadowski, P.G.; Charles, P.D.; Hester, S.V.; Lilley, K.S. Addressing accuracy and precision issues in iTRAQ quantitation. Mol. Cell. Proteom. 2010, 9, 1885–1897. [Google Scholar] [CrossRef] [Green Version]
- Glibert, P.; Meert, P.; Van Steendam, K.; Van Nieuwerburgh, F.; De Coninck, D.; Martens, L.; Dhaenens, M.; Deforce, D. Phospho-iTRAQ: Assessing isobaric labels for the large-scale study of phosphopeptide stoichiometry. J. Proteome Res. 2015, 14, 839–849. [Google Scholar] [CrossRef]
- Palmisano, G.; Parker, B.L.; Engholm-Keller, K.; Lendal, S.E.; Kulej, K.; Schulz, M.; Schwämmle, V.; Graham, M.E.; Saxtorph, H.; Cordwell, S.J.; et al. A novel method for the simultaneous enrichment, identification, and quantification of phosphopeptides and sialylated glycopeptides applied to a temporal profile of mouse brain development. Mol. Cell. Proteom. 2012, 11, 1191–1202. [Google Scholar] [CrossRef] [Green Version]
- Caenepeel, S.; Charydczak, G.; Sudarsanam, S.; Hunter, T.; Manning, G. The mouse kinome: Discovery and comparative genomics of all mouse protein kinases. Proc. Natl. Acad. Sci. USA 2004, 101, 11707–11712. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Klemic, J.F.; Chang, S.; Bertone, P.; Casamayor, A.; Klemic, K.G.; Smith, D.; Gerstein, M.; Reed, M.A.; Snyder, M. Analysis of yeast protein kinases using protein chips. Nat. Genet. 2000, 26, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Kobe, B.; Kampmann, T.; Forwood, J.K.; Listwan, P.; Brinkworth, R.I. Substrate specificity of protein kinases and computational prediction of substrates. Biochim. Biophys. Acta Proteins Proteom. 2005, 1754, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.R.; Fumagalli, L.; Berton, G. Activation of SRC family kinases in human neutrophils. Evidence that p58c-frg and p53/56lyn redistributed to a Triton X-100-insoluble cytoskeletal fraction, also enriched in the caveolar protein Caveolin, display an enhanced kinase activity. FEBS Lett. 1996, 380, 198–203. [Google Scholar] [PubMed] [Green Version]
- Zhang, H.; Meng, F.; Chu, C.-L.; Takai, T.; Lowell, C.A. The Src Family Kinases Hck and Fgr Negatively Regulate Neutrophil and Dendritic Cell Chemokine Signaling via PIR-B. Immunity 2005, 22, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Mazzi, P.; Caveggion, E.; Lapinet-Vera, J.A.; Lowell, C.A.; Berton, G. The Src-Family Kinases Hck and Fgr Regulate Early Lipopolysaccharide-Induced Myeloid Cell Recruitment into the Lung and Their Ability To Secrete Chemokines. J. Immunol. 2015, 195, 2383–2395. [Google Scholar] [CrossRef] [Green Version]
- Mariño-Ramírez, L.; Hu, J.C. Isolation and mapping of self-assembling protein domains encoded by theSaccharomyces cerevisiaegenome using λ repressor fusions. Yeast 2002, 19, 641–650. [Google Scholar] [CrossRef]
- Wheeler, D.L.; Iida, M.; Dunn, E.F. The Role of Src in Solid Tumors. Oncologist 2009, 14, 667–678. [Google Scholar] [CrossRef]
- Gagné, V.; Marois, L.; Levesque, J.-M.; Galarneau, H.; Lahoud, M.H.; Caminschi, I.; Naccache, P.H.; Tessier, P.; Fernandes, M.J.G. Modulation of monosodium urate crystal-induced responses in neutrophils by the myeloid inhibitory C-type lectin-like receptor: Potential therapeutic implications. Arthritis Res. Ther. 2013, 15, R73. [Google Scholar] [CrossRef] [Green Version]
- Lodowski, D.T. Keeping G Proteins at Bay: A Complex between G Protein-Coupled Receptor Kinase 2 and Gbetagamma. Science 2003, 300, 1256–1262. [Google Scholar] [CrossRef]
- Tesmer, J.J.G.; Tesmer, V.M.; Lodowski, D.T.; Steinhagen, H.; Huber, J. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol. J. Med. Chem. 2010, 53, 1867–1870. [Google Scholar] [CrossRef] [Green Version]
- Ribas, C.; Penela, P.; Murga, C.; Salcedo, A.; García-Hoz, C.; Jurado-Pueyo, M.; Aymerich, I.; Mayor, F. The G protein-coupled receptor kinase (GRK) interactome: Role of GRKs in GPCR regulation and signaling. Biochim. Biophys. Acta Biomembr. 2007, 1768, 913–922. [Google Scholar] [CrossRef] [Green Version]
- Arraes, S.M.A.; Freitas, M.S.; da Silva, S.V.; de Paula Neto, H.A.; Alves-Filho, J.C.; Martins, M.A.; Basile-Filho, A.; Tavares-Murta, B.M.; Barja-Fidalgo, C.; Cunha, F.Q. Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood 2006, 108, 2906–2913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penela, P.; Ribas, C.; Mayor, F. Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell. Signal. 2003, 15, 973–981. [Google Scholar] [CrossRef]
- Xu, X.; Jin, T. The Novel Functions of the PLC/PKC/PKD Signaling Axis in G Protein-Coupled Receptor-Mediated Chemotaxis of Neutrophils. J. Immunol. Res. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shizukuda, Y.; Helisch, A.; Yokota, R.; Ware, J.A. Downregulation of Protein Kinase Cδ Activity Enhances Endothelial Cell Adaptation to Hypoxia. Circulation 1999, 100, 1909–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soderling, T.R. The Ca2+–calmodulin-dependent protein kinase cascade. Trends Biochem. Sci. 1999, 24, 232–236. [Google Scholar] [CrossRef]
- Camonis, J.H.; Hergovich, A. RalA GTPase and MAP4K4 Function through NDR1 Activation in Stress Response and Apoptotic Signaling. Cell Biol. Cell Metab. 2014, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.O.; Aquino, E.N.; Neves, A.C.D.; Fontes, W. The Neutrophil Nucleus and Its Role in Neutrophilic Function. J. Cell. Biochem. 2015, 116, 1831–1836. [Google Scholar] [CrossRef] [PubMed]
- Hergovich, A.; Stegert, M.R.; Schmitz, D.; Hemmings, B.A. NDR kinases regulate essential cell processes from yeast to humans. Nat. Rev. Mol. Cell Biol. 2006, 7, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Stolz, D.B.; Guo, F.; Ross, M.A.; Watkins, S.C.; Tan, B.E.E.J.E.N.; Qi, R.Z.; Manser, E.D.; Li, Q.I.U.T.; Bay, B.H.; et al. Signaling via a novel integral plasma membrane pool of a serine/threonine protein kinase PRK1 in mammalian cells. FASEB J. 2004, 18, 1722–1724. [Google Scholar] [CrossRef] [PubMed]
- Van Ziffle, J.A.; Lowell, C.A. Neutrophil-specific deletion of Syk kinase results in reduced host defense to bacterial infection. Blood 2009, 114, 4871–4882. [Google Scholar] [CrossRef] [Green Version]
- Raeder, E.M.; Mansfield, P.J.; Hinkovska-Galcheva, V.; Shayman, J.A.; Boxer, L.A. Syk activation initiates downstream signaling events during human polymorphonuclear leukocyte phagocytosis. J. Immunol. 1999, 163, 6785–6793. [Google Scholar] [PubMed]
- Cox, D.; Chang, P.; Kurosaki, T.; Greenberg, S. Syk Tyrosine Kinase Is Required for Immunoreceptor Tyrosine Activation Motif-dependent Actin Assembly. J. Biol. Chem. 1996, 271, 16597–16602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luhovy, A.Y.; Jaberi, A.; Papillon, J.; Guillemette, J.; Cybulsky, A. V Regulation of the Ste20-like Kinase, SLK. J. Biol. Chem. 2011, 287, 5446–5458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cybulsky, A.V.; Takano, T.; Papillon, J.; Khadir, A.; Bijian, K.; Chien, C.-C.; Alpers, C.E.; Rabb, H. Renal expression and activity of the germinal center kinase SK2. Am. J. Physiol. Physiol. 2004, 286, F16–F25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cybulsky, A.V.; Takano, T.; Guillemette, J.; Papillon, J.; Volpini, R.A.; Di Battista, J.A. The Ste20-like kinase SLK promotes p53 transactivation and apoptosis. Am. J. Physiol. Renal Physiol. 2009, 297, F971–F980. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Takano, T.; Guillemette, J.; Papillon, J.; Ren, G.; Cybulsky, A. V Induction of Apoptosis by the Ste20-like Kinase SLK, a Germinal Center Kinase That Activates Apoptosis Signal-regulating Kinase and p38. J. Biol. Chem. 2005, 281, 3075–3084. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, S.F. The Na+/H+ exchanger NHE1 in stress-induced signal transduction: Implications for cell proliferation and cell death. Pflügers Arch. Eur. J. Physiol. 2006, 452, 249–259. [Google Scholar] [CrossRef]
- Henderson, L.M.; Chappell, J.B.; Jones, O.T.G. Internal pH changes associated with the activity of NADPH oxidase of human neutrophils. Further evidence for the presence of an H+ conducting channel. Biochem. J. 1988, 251, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Felberg, J.; Johnson, P. Characterization of Recombinant CD45 Cytoplasmic Domain Proteins. J. Biol. Chem. 1998, 273, 17839–17845. [Google Scholar] [CrossRef] [Green Version]
- Streuli, M.; Krueger, N.X.; Thai, T.; Tang, M.; Saito, H. Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J. 1990, 9, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.W.; Doan, K.; Park, J.; Chau, A.H.; Zhang, H.; Lowell, C.A.; Weiss, A. Receptor-like Tyrosine Phosphatases CD45 and CD148 Have Distinct Functions in Chemoattractant-Mediated Neutrophil Migration and Response to S. aureus. Immunity 2011, 35, 757–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, D.; Lorenz, U.; Klingmuller, U.; Neel, B.G.; Walsh, C.T. Intramolecular Regulation of Protein Tyrosine Phosphatase SH-PTP1: A New Function for Src Homology 2 Domains. Biochemistry 1994, 33, 15483–15493. [Google Scholar] [CrossRef] [PubMed]
- Ravetch, J. V Immune Inhibitory Receptors. Science 2000, 290, 84–89. [Google Scholar] [CrossRef]
- Yousefi, S.; Simon, H.-U. SHP-1: A regulator of neutrophil apoptosis. Semin. Immunol. 2003, 15, 195–199. [Google Scholar] [CrossRef]
- Abu-Dayyeh, I.; Shio, M.T.; Sato, S.; Akira, S.; Cousineau, B.; Olivier, M. Leishmania-induced IRAK-1 inactivation is mediated by SHP-1 interacting with an evolutionarily conserved KTIM motif. PLoS Negl. Trop. Dis. 2008, 2, e305. [Google Scholar] [CrossRef]
- Chylek, L.A.; Akimov, V.; Dengjel, J.; Rigbolt, K.T.G.; Hu, B.; Hlavacek, W.S.; Blagoev, B. Phosphorylation Site Dynamics of Early T-cell Receptor Signaling. PLoS ONE 2014, 9, e104240. [Google Scholar] [CrossRef] [Green Version]
- Nishio, M.; Watanabe, K.; Sasaki, J.; Taya, C.; Takasuga, S.; Iizuka, R.; Balla, T.; Yamazaki, M.; Watanabe, H.; Itoh, R.; et al. Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat. Cell Biol. 2006, 9, 36–44. [Google Scholar] [CrossRef]
- Webb, P.R.; Wang, K.Q.; Scheel-Toellner, D.; Pongracz, J.; Salmon, M.; Lord, J.M. Regulation of neutrophil apoptosis: A role for protein kinase C and phosphatidylinositol-3-kinase. Apoptosis 2000, 5, 451–458. [Google Scholar] [CrossRef]
- Leung, W.-H.; Tarasenko, T.; Bolland, S. Differential roles for the inositol phosphatase SHIP in the regulation of macrophages and lymphocytes. Immunol. Res. 2008, 43, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Subramanian, K.K.; Sakai, J.; Bajrami, B.; Luo, H.R. Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion. Mol. Biol. Cell 2012, 23, 1219–1230. [Google Scholar] [CrossRef] [PubMed]
- Strassheim, D.; Kim, J.-Y.; Park, J.-S.; Mitra, S.; Abraham, E. Involvement of SHIP in TLR2-Induced Neutrophil Activation and Acute Lung Injury. J. Immunol. 2005, 174, 8064–8071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrera, P. Tousled-like kinase functions with the chromatin assembly pathway regulating nuclear divisions. Genes Dev. 2003, 17, 2578–2590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahoo, A.; Im, S.-H. Interleukin and Interleukin Receptor Diversity: Role of Alternative Splicing. Int. Rev. Immunol. 2010, 29, 77–109. [Google Scholar] [CrossRef]
- Graubert, T.A.; Shen, D.; Ding, L.; Okeyo-Owuor, T.; Lunn, C.L.; Shao, J.; Krysiak, K.; Harris, C.C.; Koboldt, D.C.; Larson, D.E.; et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat. Genet. 2011, 44, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Quesada, V.; Conde, L.; Villamor, N.; Ordóñez, G.R.; Jares, P.; Bassaganyas, L.; Ramsay, A.J.; Beà, S.; Pinyol, M.; Martínez-Trillos, A.; et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 2011, 44, 47–52. [Google Scholar] [CrossRef]
- Wen, D.; Xu, Z.; Xia, L.; Liu, X.; Tu, Y.; Lei, H.; Wang, W.; Wang, T.; Song, L.; Ma, C.; et al. Important Role of SUMOylation of Spliceosome Factors in Prostate Cancer Cells. J. Proteome Res. 2014, 13, 3571–3582. [Google Scholar] [CrossRef]
- Tong, A.; Nguyen, J.; Lynch, K.W. Differential Expression of CD45 Isoforms Is Controlled by the Combined Activity of Basal and Inducible Splicing-regulatory Elements in Each of the Variable Exons. J. Biol. Chem. 2005, 280, 38297–38304. [Google Scholar] [CrossRef] [Green Version]
- Krogh-Madsen, R.; Plomgaard, P.; Keller, P.; Keller, C.; Pedersen, B.K. Insulin stimulates interleukin-6 and tumor necrosis factor-alpha gene expression in human subcutaneous adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2004, 286, E234–E238. [Google Scholar] [CrossRef]
- Iida, K.T.; Shimano, H.; Kawakami, Y.; Sone, H.; Toyoshima, H.; Suzuki, S.; Asano, T.; Okuda, Y.; Yamada, N. Insulin up-regulates tumor necrosis factor-alpha production in macrophages through an extracellular-regulated kinase-dependent pathway. J. Biol. Chem. 2001, 276, 32531–32537. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Dhall, S.; Castro, A.; Chan, A.; Alamat, R.; Martins-Green, M. Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue. Biol. Open 2018, 7, 026187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safronova, V.G.; Gabdoulkhakova, A.G.; Miller, A.V.; Kosarev, I.V.; Vasilenko, R.N. Variations of the effect of insulin on neutrophil respiratory burst. The role of Tyrosine kinases and phosphatases. Biochem. 2001, 66, 840–849. [Google Scholar]
- Rafiq, K.; Kolpakov, M.A.; Seqqat, R.; Guo, J.; Guo, X.; Qi, Z.; Yu, D.; Mohapatra, B.; Zutshi, N.; An, W.; et al. c-Cbl inhibition improves cardiac function and survival in response to myocardial ischemia. Circulation 2014, 129, 2031–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafiq, K.; Guo, J.; Vlasenko, L.; Guo, X.; Kolpakov, M.A.; Sanjay, A.; Houser, S.R.; Sabri, A. c-Cbl ubiquitin ligase regulates focal adhesion protein turnover and myofibril degeneration induced by neutrophil protease cathepsin G. J. Biol. Chem. 2012, 287, 5327–5339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruvinsky, I.; Sharon, N.; Lerer, T.; Cohen, H.; Stolovich-Rain, M.; Nir, T.; Dor, Y.; Zisman, P.; Meyuhas, O. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev. 2005, 19, 2199–2211. [Google Scholar] [CrossRef] [Green Version]
- Yano, T.; Ferlito, M.; Aponte, A.; Kuno, A.; Miura, T.; Murphy, E.; Steenbergen, C. Pivotal role of mTORC2 and involvement of ribosomal protein S6 in cardioprotective signaling. Circ. Res. 2014, 114, 1268–1280. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Das, S.; Losert, W.; Parent, C.A. MTORC2 Regulates Neutrophil Chemotaxis in a cAMP- and RhoA-Dependent Fashion. Dev. Cell 2010, 19, 845–857. [Google Scholar] [CrossRef] [Green Version]
- Jacinto, E.; Loewith, R.; Schmidt, A.; Lin, S.; Rüegg, M.A.; Hall, A.; Hall, M.N. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 2004, 6, 1122–1128. [Google Scholar] [CrossRef]
- He, Y.; Li, D.; Cook, S.L.; Yoon, M.-S.; Kapoor, A.; Rao, C.V.; Kenis, P.J.A.; Chen, J.; Wang, F. Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol. Biol. Cell 2013, 24, 3369–3380. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Ledderose, C.; Graf, A.F.; Brix, B.; Birsak, T.; Lee, A.; Zhang, J.; Junger, W.G. mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis. J. Cell Biol. 2015, 210, 1153–1164. [Google Scholar] [CrossRef]
- Nishikimi, A.; Fukuhara, H.; Su, W.; Hongu, T.; Takasuga, S.; Mihara, H.; Cao, Q.; Sanematsu, F.; Kanai, M.; Hasegawa, H.; et al. Sequential Regulation of DOCK2 Dynamics by Two Phospholipids During Neutrophil Chemotaxis. Science 2009, 324, 384–387. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Terasawa, M.; Miyano, K.; Yanagihara, T.; Uruno, T.; Sanematsu, F.; Nishikimi, A.; Côté, J.-F.; Sumimoto, H.; Fukui, Y. DOCK2 and DOCK5 Act Additively in Neutrophils To Regulate Chemotaxis, Superoxide Production, and Extracellular Trap Formation. J. Immunol. 2014, 193, 5660–5667. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, K. Direct association of pp125FAK with paxillin, the focal adhesion- targeting mechanism of pp125FAK. J. Exp. Med. 1995, 182, 1089–1099. [Google Scholar] [CrossRef]
- Fumagalli, L.; Zhang, H.; Baruzzi, A.; Lowell, C.A.; Berton, G. The Src Family Kinases Hck and Fgr Regulate Neutrophil Responses to N-Formyl-Methionyl-Leucyl-Phenylalanine. J. Immunol. 2007, 178, 3874–3885. [Google Scholar] [CrossRef]
- Stadtmann, A.; Brinkhaus, L.; Mueller, H.; Rossaint, J.; Bolomini-Vittori, M.; Bergmeier, W.; Van Aken, H.; Wagner, D.D.; Laudanna, C.; Ley, K.; et al. Rap1a activation by CalDAG-GEFI and p38 MAPK is involved in E-selectin-dependent slow leukocyte rolling. Eur. J. Immunol. 2011, 41, 2074–2085. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Mejorada, G.; Rosales, C. Signal transduction by immunoglobulin Fc receptors. J. Leukoc. Biol. 1998, 63, 521–533. [Google Scholar] [CrossRef]
- Floc’h, A.L.; Tanaka, Y.; Bantilan, N.S.; Voisinne, G.; Altan-Bonnet, G.; Fukui, Y.; Huse, M. Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse. J. Exp. Med. 2013, 210, 2721–2737. [Google Scholar] [CrossRef] [Green Version]
- Kunisaki, Y.; Nishikimi, A.; Tanaka, Y.; Takii, R.; Noda, M.; Inayoshi, A.; Watanabe, K.; Sanematsu, F.; Sasazuki, T.; Sasaki, T.; et al. DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. J. Cell Biol. 2006, 174, 647–652. [Google Scholar] [CrossRef]
- Carballo, E.; Pitterle, D.M.; Stumpo, D.J.; Sperling, R.T.; Blackshear, P.J. Phagocytic and macropinocytic activity in MARCKS-deficient macrophages and fibroblasts. Am. J. Physiol. Physiol. 1999, 277, C163–C173. [Google Scholar] [CrossRef]
- Granger, D.N.; Korthuis, R.J. Physiologic Mechanisms of Postischemic Tissue Injury. Annu. Rev. Physiol. 1995, 57, 311–332. [Google Scholar] [CrossRef]
- Riaz, A.A.; Wan, M.X.; Schaefer, T.; Schramm, R.; Ekberg, H.; Menger, M.D.; Jeppsson, B.; Thorlacius, H. Fundamental and Distinct Roles of P-Selectin and LFA-1 in Ischemia/Reperfusion-Induced Leukocyte-Endothelium Interactions in the Mouse Colon. Ann. Surg. 2002, 236, 777–784. [Google Scholar] [CrossRef]
- Aquino, E.N.; Neves, A.C.; Santos, K.C.; Uribe, C.E.; De Souza, P.E.; Correa, J.R.; Castro, M.S.; Fontes, W. Proteomic Analysis of Neutrophil Priming by PAF. Protein Pept. Lett. 2015, 23, 142–151. [Google Scholar] [CrossRef]
- Yoshigi, M.; Hoffman, L.M.; Jensen, C.C.; Yost, H.J.; Beckerle, M.C. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 2005, 171, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Malmersjö, S.; Palma, S.D.; Diao, J.; Lai, Y.; Pfuetzner, R.A.; Wang, A.L.; Mcmahon, M.A.; Hayer, A.; Porteus, M.; Bodenmiller, B.; et al. Phosphorylation of residues inside the SNARE complex suppresses secretory vesicle fusion. EMBO J. 2016, 35, 1810–1821. [Google Scholar] [CrossRef] [PubMed]
- Mollinedo, F.; Calafat, J.; Janssen, H.; Martín-Martín, B.; Canchado, J.; Nabokina, S.M.; Gajate, C. Combinatorial SNARE Complexes Modulate the Secretion of Cytoplasmic Granules in Human Neutrophils. J. Immunol. 2006, 177, 2831–2841. [Google Scholar] [CrossRef] [Green Version]
- Tapper, H. The secretion of preformed granules by macrophages and neutrophils. J. Leukoc. Biol. 1996, 59, 613–622. [Google Scholar] [CrossRef]
- Antonin, W. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. EMBO J. 2000, 19, 6453–6464. [Google Scholar] [CrossRef]
- Logan, M.R.; Lacy, P.; Odemuyiwa, S.O.; Steward, M.; Davoine, F.; Kita, H.; Moqbel, R. A critical role for vesicle-associated membrane protein-7 in exocytosis from human eosinophils and neutrophils. Allergy 2006, 61, 777–784. [Google Scholar] [CrossRef]
- Wang, C.C.; Ng, C.P.; Lu, L.; Atlashkin, V.; Zhang, W.; Seet, L.F.; Hong, W. A role of VAMP8/Endobrevin in regulated exocytosis of pancreatic acinar cells. Dev. Cell 2004, 7, 359–371. [Google Scholar] [CrossRef] [Green Version]
- Lacy, P. The role of Rho GTPases and SNAREs in mediator release from granulocytes. Pharmacol. Ther. 2005, 107, 358–376. [Google Scholar] [CrossRef]
- Tahir, M.; Arshid, S.; Heimbecker, A.M.C.; Castro, M.S.; de Souza Montero, E.F.; Fontes, B.; Fontes, W. Evaluation of the effects of ischemic preconditioning on the hematological parameters of rats subjected to intestinal ischemia and reperfusion. Clinics 2015, 70, 61–68. [Google Scholar] [CrossRef]
- Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Gobom, J.; Nordhoff, E.; Mirgorodskaya, E.; Ekman, R.; Roepstorff, P. Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 1999, 34, 105–116. [Google Scholar] [CrossRef]
- Laursen, I.; Højrup, P.; Houen, G.; Christiansen, M. Characterisation of the 1st SSI purified MBL standard. Clin. Chim. Acta 2008, 395, 159–161. [Google Scholar] [CrossRef]
- Engholm-Keller, K.; Hansen, T.A.; Palmisano, G.; Larsen, M.R. Multidimensional Strategy for Sensitive Phosphoproteomics Incorporating Protein Prefractionation Combined with SIMAC, HILIC, and TiO2Chromatography Applied to Proximal EGF Signaling. J. Proteome Res. 2011, 10, 5383–5397. [Google Scholar] [CrossRef] [PubMed]
- Thingholm, T.E.; Jørgensen, T.J.D.; Jensen, O.N.; Larsen, M.R. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc. 2006, 1, 1929–1935. [Google Scholar] [CrossRef]
- Larsen, M.R.; Thingholm, T.E.; Jensen, O.N.; Roepstorff, P.; Jørgensen, T.J.D. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteom. 2005, 4, 873–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.R.; Jensen, S.S.; Jakobsen, L.A.; Heegaard, N.H.H. Exploring the Sialiome Using Titanium Dioxide Chromatography and Mass Spectrometry. Mol. Cell. Proteom. 2007, 6, 1778–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNulty, D.E.; Annan, R.S. Hydrophilic Interaction Chromatography Reduces the Complexity of the Phosphoproteome and Improves Global Phosphopeptide Isolation and Detection. Mol. Cell. Proteom. 2008, 7, 971–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Riverol, Y.; Alpi, E.; Wang, R.; Hermjakob, H.; Vizcaino, J.A. Making proteomics data accessible and reusable: Current state of proteomics databases and repositories. Proteomics 2015, 15, 930–949. [Google Scholar] [CrossRef] [Green Version]
- Jarnuczak, A.F.; Vizcaino, J.A. Using the PRIDE Database and ProteomeXchange for Submitting and Accessing Public Proteomics Datasets. Curr. Protoc. Bioinform. 2017, 59, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Spivak, M.; Weston, J.; Bottou, L.; Käll, L.; Noble, W.S. Improvements to the Percolator Algorithm for Peptide Identification from Shotgun Proteomics Data Sets. J. Proteome Res. 2009, 8, 3737–3745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taverner, T.; Karpievitch, Y.V.; Polpitiya, A.D.; Brown, J.N.; Dabney, A.R.; Anderson, G.A.; Smith, R.D. DanteR: An extensible R-based tool for quantitative analysis of -omics data. Bioinformatics 2012, 28, 2404–2406. [Google Scholar] [CrossRef] [PubMed]
- Breitling, R.; Armengaud, P.; Amtmann, A.; Herzyk, P. Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 2004, 573, 83–92. [Google Scholar] [CrossRef]
- Schwämmle, V.; León, I.R.; Jensen, O.N. Assessment and Improvement of Statistical Tools for Comparative Proteomics Analysis of Sparse Data Sets with Few Experimental Replicates. J. Proteome Res. 2013, 12, 3874–3883. [Google Scholar] [CrossRef]
- Schwämmle, V.; Jensen, O.N. A simple and fast method to determine the parameters for fuzzy c–means cluster analysis. Bioinformatics 2010, 26, 2841–2848. [Google Scholar] [CrossRef]
- Wang, J.; Duncan, D.; Shi, Z.; Zhang, B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): Update 2013. Nucleic Acids Res. 2013, 41, W77–W83. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.F.; Schwartz, D. Biological Sequence Motif Discovery Usingmotif-x. In Current Protocols in Bioinformatics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN 0471250953. [Google Scholar]
Protein ID | Description | Gene Symbol | Regulated Phosphopeptide in Domain | Phospho Reg. Cluster | Sig. Regulation | Phosphosite in Protein | Enzyme Code | Domain Containing the Phosphopeptide | Domain Description |
---|---|---|---|---|---|---|---|---|---|
Kinases | |||||||||
Q6P6U0 | Tyrosine-protein kinase Fgr | Fgr | LIVDDEYphNPQQGTKFPIK | 2 | IR vs. Ctrl | Y400 | EC: 2.7.10.2 | PTKc_Src_Fyn_like | Catalytic domain of a subset of Src kinase-like Protein Tyrosine Kinases |
Pkinase_Tyr | Protein tyrosine kinase | ||||||||
Q64303 | Serine/threonine-protein kinase PAK 2 | Pak2 | -- | -- | -- | -- | EC: 2.7.11.1 | -- | -- |
E9PTG8 | Serine/threonine-protein kinase 10 | Stk10 | -- | -- | -- | -- | EC: 2.7.11.1 | -- | -- |
Q63531 | Ribosomal protein S6 kinase alpha-1 | Rps6ka1 | -- | -- | -- | -- | EC: 2.7.11.1 | -- | -- |
Q9WUT3 | Ribosomal protein S6 kinase alpha-2 | Rps6ka2 | -- | -- | -- | -- | EC: 2.7.11.1 | -- | -- |
P26817 | Beta-adrenergic receptor kinase 1 | Adrbk1 | NKPRSphPVVELSK | 2 | IR vs. Ctrl | S670 | EC: 2.7.11.15 | PH_GRK2_subgroup | G Protein-Coupled Receptor Kinase 2 subgroup pleckstrin homology (PH) domain |
G-beta gamma binding site | |||||||||
Q63433 | Serine/threonine-protein kinase N1 | Pkn1 | -- | -- | -- | -- | EC: 2.7.11.13 | -- | -- |
P09215 | Protein kinase C delta type | Prkcd | SPSDYSNFDPEFLNEKPQLSphFSDK | 6 | IR vs. Ctrl | S643 | EC: 2.7.11.13 | STKc_nPKC_delta | Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C delta |
P09215 | Protein kinase C delta type | Prkcd | SPSDYSNFDPEFLNEKPQLSFSphDK | 6 | IR vs. Ctrl | S645 | EC: 2.7.11.13 | STKc_nPKC_delta | Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C delta |
Q64725 | Tyrosine-protein kinase SYK | Syk | -- | -- | -- | -- | EC: 2.7.10.2 | -- | -- |
O08815 | STE20-like serine/threonine-protein kinase | Slk | -- | -- | -- | -- | EC: 2.7.11.1 | -- | -- |
Q6P9R2 | Serine/threonine-protein kinase OSR1 | Oxsr1 | -- | -- | -- | -- | EC: 2.7.11.1 | -- | -- |
Q91VJ4 | Serine/threonine-protein kinase 38 | Stk38 | FEGLTphAR | 1 | IR vs. IPC | T452 | EC: 2.7.11.1 | STKc_NDR1 | Catalytic domain of the Serine/Threonine Kinase, Nuclear Dbf2-Related kinase 1 |
Phosphatases | |||||||||
P81718 | Tyrosine-protein phosphatase non-receptor type 6 | Ptpn6 | DLSphGPDAETLLK | 2 | IR vs. Ctrl | S12 | EC: 3.1.3.48 | SH2_N-SH2_SHP_like | N-terminal Src homology 2 (N-SH2) domain found in SH2 domain Phosphatases (SHP) proteins |
P97573 | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 | Inpp5d | TGIANTphLGNK | 3 | IR vs. IPC | T519 | EC: 3.1.3.86 | INPP5D_SHIP1-INPP5D | Catalytic inositol polyphosphate 5-phosphatase (INPP5d) domain of SH2 domain |
Putative catalytic site | |||||||||
Putative active site | |||||||||
Putative Mg binding site | |||||||||
Putative PI/IP binding site | |||||||||
B2GV87 | Receptor-type tyrosine-protein phosphatase epsilon precursor | Ptpre | -- | -- | -- | -- | EC: 3.1.3.48 | -- | -- |
P04157 | Receptor-type tyrosine-protein phosphatase C isoform 4 precursor | Ptprc | -- | -- | -- | -- | EC: 3.1.3.48 | -- | -- |
Class/ID | Significantly Regulated Phosphopeptide | Significant Regulation | Modified pos. in Peptide | Data Source 1 | Position in Protein | Cluster | Motif |
---|---|---|---|---|---|---|---|
Kinases | |||||||
Q6P6U0 | EDVGLEGDFRSphQGAEER | IR vs. Ctrl | S11 | RAT | S25 | 5 | |
LIVDDEYphNPQQGTKFPIK | IR vs. Ctrl | Y7 | RAT | Y400 | 2 | ||
SphSSISPQPISPAFLNVGNIR | IR vs. Ctrl | S1 | RAT | S41 | 2 | S.S | |
SphSSISPQPISphPAFLNVGNIR | IR vs. Ctrl | S1 | RAT | S41 | 5 | S.S | |
SSphSISPQPISphPAFLNVGNIR | IR vs. Ctrl | S2 | RAT | S42 | 5 | S.......S | |
SSSISphPQPISphPAFLNVGNIR | IR vs. Ctrl | S5 | RAT | S45 | 5 | SP | |
SSSphISphPQPISPAFLNVGNIR | IR vs. Ctrl | S3 | RAT | S43 | 5 | S.S | |
SSSphISPQPISphPAFLNVGNIR | IR vs. Ctrl | S3 | RAT | S43 | 5 | S.S | |
EDVGLEGDFRSphQGAEER | IR vs. Lap | S11 | RAT | S25 | 5 | ||
Q64303 | FYDSphNTVK | IR vs. Ctrl | S4 | RAT | S132 | 2 | |
YLSphFTPPEK | IR vs. Lap | S3 | RAT | S141 | 6 | ||
E9PTG8 | ILRLSphTFEK | IR vs. Ctrl | S5 | RAT | S13 | 6 | |
LSphTFEK | IR vs. Ctrl | S2 | RAT | S13 | 6 | ||
LSphTFEK | IR vs. Lap | S2 | RAT | S13 | 6 | ||
LSTphFEK | IR vs. IPC | T3 | RAT | T14 | 1 | ||
Q63531 | KLPSphTTL | IR vs. Ctrl | S4 | RAT | S732 | 2 | |
Q9WUT3 | LEPVLSphSSLAQR | IR vs. Ctrl | S6 | MOUSE | S716 | 3 | S.S |
LEPVLSphSSLAQR | IR vs. IPC | S6 | MOUSE | S716 | 3 | S.S | |
P26817 | NKPRSphPVVELSK | IR vs. Ctrl | S5 | RAT | S670 | 2 | SP |
Q63433 | SGSphLSGR | IR vs. Ctrl | S3 | RAT | S377 | 2 | S.S |
P09215 | SPSDYSNFDPEFLNEKPQLSFSphDK | IR vs. Ctrl | S22 | RAT | S645 | 6 | S.S |
SPSDYSNFDPEFLNEKPQLSphFSDK | IR vs. Ctrl | S20 | RAT | S643 | 6 | S.S | |
SPSDYSNFDPEFLNEKPQLSphFSDK | IR vs. Lap | S20 | RAT | S643 | 6 | S.S | |
SPSDYSNFDPEFLNEKPQLSphFSDK | IR vs. IPC | S20 | RAT | S643 | 6 | S.S | |
Q64725 | SYSphFPKPGHK | IR vs. Ctrl | S3 | RAT | S291 | 6 | S.S |
O08815 | TKDSGSphVSLQETR | IR vs. Lap | S6 | RAT | S778 | 3 | S.S |
Q6P9R2 | AAISQLRSphPR | IR vs. IPC | S8 | MOUSE | S359 | 5 | SP |
RVPGSphSphGRLHK | IR vs. IPC | S5 | MOUSE | S324 | 3 | ||
Q91VJ4 | FEGLTphAR | IR vs. IPC | T5 | MOUSE | T452 | 1 | |
Phosphatases | |||||||
P81718 | DLSphGPDAETLLK | IR vs. Ctrl | S3 | RAT | S12 | 2 | R..S |
TphSSKHKEEVYENVHSK | IR vs. Ctrl | T1 | RAT | T557 | 5 | ||
DLSphGPDAETLLK | IR vs. Lap | S3 | RAT | S12 | 2 | R..S | |
P97573 | DSSLGPGRGEGPPTphPPSQPPLSPK | IR vs. Ctrl | T14 | RAT | T963 | 2 | TP |
GEGPPTphPPSQPPLSphPK | IR vs. Ctrl | T6 | RAT | T963 | 5 | TP | |
GEGPPTphPPSQPPLSphPKK | IR vs. Ctrl | T6 | RAT | T963 | 5 | TP | |
KEQESphPK | IR vs. Ctrl | S5 | RAT | S1037 | 2 | SP | |
KEQESphPK | IR vs. Lap | S5 | RAT | S1037 | 2 | SP | |
GEGPPTphPPSQPPLSPK | IR vs. IPC | T6 | RAT | T963 | 2 | TP | |
TGIANTphLGNK | IR vs. IPC | T6 | RAT | T519 | 3 | ||
B2GV87 | SPSphGPKK | IR vs. Ctrl | S3 | RAT | S106 | 3 | S.S |
SPSphGPKK | IR vs. Lap | S3 | RAT | S106 | 3 | S.S | |
P04157 | ANSphQDKIEFHNEVDGAK | IR vs. Lap | S3 | RAT | S1209 | 6 | |
KANSphQDK | IR vs. Lap | S4 | RAT | S1209 | 6 | ||
KANSphQDKIEFHNEVDGAK | IR vs. Lap | S4 | RAT | S1209 | 6 | ||
ANSphQDKIEFHNEVDGAK | IR vs. IPC | S3 | RAT | S1209 | 6 | ||
KANSphQDK | IR vs. IPC | S4 | RAT | S1209 | 6 | ||
KANSphQDKIEFHNEVDGAK | IR vs. IPC | S4 | RAT | S1209 | 6 |
Acc. No. | Phosphosite | Predicted Kinase | Phosphorylated Peptide | Score | Cutoff | Motif | Cluster |
---|---|---|---|---|---|---|---|
Kinases | |||||||
Q6P6U0 | Y400 | TK/Src | LIVDDEYphNPQQGTKFPIK | 24.645 | 1.63 | -- | 6 |
Y400 | TK/Tec* | LIVDDEYphNPQQGTKFPIK | 23.341 | 3.584 | -- | ||
Y400 | TK/Jak | LIVDDEYphNPQQGTKFPIK | 18.242 | 8.154 | -- | ||
Y400 | TK/FAK* | LIVDDEYphNPQQGTKFPIK | 14.808 | 5.968 | -- | ||
Y400 | TK/DDR* | LIVDDEYphNPQQGTKFPIK | 11 | 2.683 | -- | ||
Y400 | TK/Syk | LIVDDEYphNPQQGTKFPIK | 8.825 | 2.436 | -- | ||
Y400 | TK/Csk* | LIVDDEYphNPQQGTKFPIK | 6.778 | 4.886 | -- | ||
Y400 | TK/Abl* | LIVDDEYphNPQQGTKFPIK | 5.422 | 4.747 | -- | ||
Y400 | TK/Met* | LIVDDEYphNPQQGTKFPIK | 4.607 | 2.379 | -- | ||
Y400 | TK/VEGFR* | LIVDDEYphNPQQGTKFPIK | 4.556 | 3.654 | -- | ||
Y400 | TK/Alk | LIVDDEYphNPQQGTKFPIK | 3.667 | 3.333 | -- | ||
Y400 | TK/PDGFR* | LIVDDEYphNPQQGTKFPIK | 3.646 | 2.352 | -- | ||
Y400 | TK* | LIVDDEYphNPQQGTKFPIK | 2.516 | 0.166 | -- | ||
P26817 | S670 | CMGC/MAPK | NKPRSphPVVELSK | 42.735 | 35.046 | SP | 4 |
S670 | AGC/PDK1 | NKPRSphPVVELSK | 5.222 | 2.257 | SP | ||
S670 | CMGC* | NKPRSphPVVELSK | 1.356 | 0.963 | SP | ||
S670 | CMGC/DYRK* | NKPRSphPVVELSK | 1.333 | 1.276 | SP | ||
S670 | AGC/PKC | NKPRSphPVVELSK | 0.384 | 0.236 | SP | ||
P09215 | S643 | CAMK/RAD53* | SPSDYSNFDPEFLNEKPQLSphFSDK | 13.075 | 7.385 | S.S | 5 |
S643 | AGC/PKC | SPSDYSNFDPEFLNEKPQLSphFSDK | 0.905 | 0.236 | S.S | ||
S643 | Atypical/PDHK* | SPSDYSNFDPEFLNEKPQLSphFSDK | 4.405 | 3.075 | S.S | ||
S645 | CAMK/CAMK1* | SPSDYSNFDPEFLNEKPQLSFSphDK | 3.259 | 2.488 | S.S | ||
S645 | TKL/STKR* | SPSDYSNFDPEFLNEKPQLSFSphDK | 2.938 | 2.562 | S.S | ||
Q91VJ4 | T452 | TKL* | FEGLTphAR | 4.648 | 4.354 | -- | 4 |
T452 | AGC/PKC | FEGLTphAR | 0.608 | 0.236 | -- | ||
Phosphatases | |||||||
P81718 | S12 | CAMK/PHK* | DLSphGPDAETLLK | 22.269 | 9.527 | R..S | 4 |
S12 | CMGC/CK2* | DLSphGPDAETLLK | 12.467 | 9.894 | R..S | ||
S12 | CMGC/CLK* | DLSphGPDAETLLK | 5.375 | 4.3 | R..S | ||
P97573 | T519 | Other/TLK* | TGIANTphLGNK | 6.25 | 5.775 | -- | 5 |
T519 | Other/TTK* | TGIANTphLGNK | 5.188 | 5.009 | -- |
KEGG Pathway | Accession No. | Gene Symbol | Description | No. of Phosphopeptides |
---|---|---|---|---|
Spliceosome (C = 135; O = 4; E = 0.26; R = 15.49; rawP = 0.0001; adjP = 0.0017) | ||||
P26369 | U2af2 | U2 small nuclear ribonucleoprotein auxiliary factor (U2AF) 2 | 1 | |
Q62093 | Srsf2 | serine/arginine-rich splicing factor 2 | 2 | |
Q99NB9 | Sf3b1 | splicing factor 3b, subunit 1 | 2 | |
Q3TIX9 | Usp39 | ubiquitin specific peptidase 39 | 1 | |
Chemokine signaling pathway(C = 178; O = 4; E = 0.34; R = 11.75; rawP = 0.0004; adjP = 0.0034) | ||||
Q8C3J5 | Dock2 | dedicator of cytokinesis 2 | 4 | |
Q66H76 | Pxn | paxillin | 2 | |
Q6P6U0 | Fgr | Gardner–Rasheed feline sarcoma viral (v-fgr) oncogene homolog | 6 | |
P0C643 | Rasgrp2 | RAS guanyl releasing protein 2 (calcium and DAG-regulated) | 1 | |
Fc gamma R-mediated phagocytosis(C = 91; O = 3; E = 0.17; R = 17.24; rawP = 0.0007; adjP = 0.0040) | ||||
Q8C3J5 | Dock2 | dedicator of cytokinesis 2 | 4 | |
P97573 | Inpp5d | inositol polyphosphate-5-phosphatase D | 2 | |
P30009 | Marcks | myristoylated alanine rich protein kinase C substrate | 8 | |
Insulin signaling pathway(C = 131; O = 3; E = 0.25; R = 11.97; rawP = 0.0021; adjP = 0.0089) | ||||
P22682 | Cbl | Cbl proto-oncogene, E3 ubiquitin protein ligase | 2 | |
P62754 | Rps6 | ribosomal protein S6 | 1 | |
P97573 | Inpp5d | inositol polyphosphate-5-phosphatase D | 2 | |
Focal adhesion(C = 186; O = 3; E = 0.36; R = 8.43; rawP = 0.0055; adjP = 0.0134) | ||||
Q62523 | Zyx | zyxin | 1 | |
Q10728 | Ppp1r12a | protein phosphatase 1, regulatory subunit 12A | 4 | |
Q66H76 | Pxn | paxillin | 2 | |
Phagosome(C = 185; O = 3; E = 0.35; R = 8.48; rawP = 0.0055; adjP = 0.0134) | ||||
O70257 | Stx7 | syntaxin 7 | 2 | |
P35278 | Rab5c | RAB5C, member RAS oncogene family | 1 | |
Q91ZN1 | Coro1a | coronin, actin binding protein 1A | 1 | |
mTOR signaling pathway(C = 51; O = 2; E = 0.10; R = 20.50; rawP = 0.0043; adjP = 0.0134) | ||||
Q9WUT3 | Rps6ka2 | ribosomal protein S6 kinase polypeptide 2 | 1 | |
P62754 | Rps6 | ribosomal protein S6 | 1 | |
Endocytosis(C = 230; O = 3; E = 0.44; R = 6.82; rawP = 0.0099; adjP = 0.0153) | ||||
Q5FVC7 | Acap2 | ArfGAP with coiled coil, ankyrin repeat and PH domains 2 | 1 | |
P22682 | Cbl | Cbl proto-oncogene, E3 ubiquitin protein ligase | 2 | |
P35278 | Rab5c | RAB5C, member RAS oncogene family | 1 | |
B cell receptor signaling pathway(C = 75; O = 2; E = 0.14; R = 13.94; rawP = 0.0092; adjP = 0.0153) | ||||
P97573 | Inpp5d | inositol polyphosphate-5-phosphatase D | 2 | |
P81718 | Ptpn6 | protein tyrosine phosphatase, non-receptor type 6 | 3 | |
Long-term potentiation(C = 69; O = 2; E = 0.13; R = 15.16; rawP = 0.0078; adjP = 0.0153) | ||||
Q10728 | Ppp1r12a | protein phosphatase 1, regulatory subunit 12A | 4 | |
Q9WUT3 | Rps6ka2 | ribosomal protein S6 kinase polypeptide 2 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, M.; Arshid, S.; Fontes, B.; S. Castro, M.; Sidoli, S.; Schwämmle, V.; Luz, I.S.; Roepstorff, P.; Fontes, W. Phosphoproteomic Analysis of Rat Neutrophils Shows the Effect of Intestinal Ischemia/Reperfusion and Preconditioning on Kinases and Phosphatases. Int. J. Mol. Sci. 2020, 21, 5799. https://doi.org/10.3390/ijms21165799
Tahir M, Arshid S, Fontes B, S. Castro M, Sidoli S, Schwämmle V, Luz IS, Roepstorff P, Fontes W. Phosphoproteomic Analysis of Rat Neutrophils Shows the Effect of Intestinal Ischemia/Reperfusion and Preconditioning on Kinases and Phosphatases. International Journal of Molecular Sciences. 2020; 21(16):5799. https://doi.org/10.3390/ijms21165799
Chicago/Turabian StyleTahir, Muhammad, Samina Arshid, Belchor Fontes, Mariana S. Castro, Simone Sidoli, Veit Schwämmle, Isabelle S. Luz, Peter Roepstorff, and Wagner Fontes. 2020. "Phosphoproteomic Analysis of Rat Neutrophils Shows the Effect of Intestinal Ischemia/Reperfusion and Preconditioning on Kinases and Phosphatases" International Journal of Molecular Sciences 21, no. 16: 5799. https://doi.org/10.3390/ijms21165799
APA StyleTahir, M., Arshid, S., Fontes, B., S. Castro, M., Sidoli, S., Schwämmle, V., Luz, I. S., Roepstorff, P., & Fontes, W. (2020). Phosphoproteomic Analysis of Rat Neutrophils Shows the Effect of Intestinal Ischemia/Reperfusion and Preconditioning on Kinases and Phosphatases. International Journal of Molecular Sciences, 21(16), 5799. https://doi.org/10.3390/ijms21165799