Melon Genome Regions Associated with TGR-1551-Derived Resistance to Cucurbit yellow stunting disorder virus
Abstract
:1. Introduction
2. Results
2.1. Multienvironment Phenotyping for Resistance to CYSDV of the RIL Population
2.2. QTL Analysis With the RIL Population
2.3. Phenotyping for Resistance to CYSDV and QTL Analysis in Three Selected BC1S1 Progenies Derived from Selected Resistant RILs
2.4. Progeny Test Narrowing the Interval of the Major QTL and Confirmation of Its Effect in Advanced Backcross Selfing Populations
3. Materials and Methods
3.1. Plant Material
- An RIL population F7/F8, developed by the single seed descent method [30];
- Three BC1S1 progenies derived from crosses between three resistant RILs and BO;
- Fifteen BC3S1 progenies derived from 15 BC3 (× BO) selected for their genotype in the candidate region.
3.2. Inoculation Method
3.3. Disease Assessment
3.4. Statistical Analyses
3.5. Markers and Genotyping Methods
3.6. QTL Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martelli, G.P.; Agranovsky, A.A.; Bar-Joseph, M.; Boscia, D.; Candresse, T.; Coutts, R.H.A.; Dolja, V.V.; Duffus, J.E.; Falk, B.W.; Gonsalves, D.; et al. Family Closteroviridae. In Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses; Van Regenmortel, M.H.V., Fauquet, C.M., Bishop, D.H.L., Carstens, E., Estes, M.K., Lemon, S.M., Maniloff, J., Mayo, M.A., McGeoch, D.J., Pringle, C.R., et al., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 943–952. [Google Scholar]
- Martelli, G.P.; Agranovsky, A.A.; Bar-Joseph, M.; Boscia, D.; Candresse, T.; Coutts, R.H.; Dolja, V.V.; Falk, B.W.; Gonsalves, D.; Jelkmann, W.; et al. The family Closteroviridae revised. Arch. Virol. 2002, 147, 2039–2044. [Google Scholar] [CrossRef]
- Hassan, A.A.; Duffus, J.E. A review of a yellowing and stunting disorder of cucurbits in the United Arab Emirates. Emir. J. Agric. Sci. 1990, 2, 1–16. [Google Scholar] [CrossRef]
- Célix, A.; López-Sesé, A.; Almarza, N.; Gómez-Guillamón, M.L.; Rodríguez-Cerezo, E. Characterization of cucurbit yellow stunting disorder virus, a new Bemisia tabaci-transmitted closterovirus. Phytopathology 1996, 86, 1370–1376. [Google Scholar]
- Wisler, G.C.; Duffus, J.E.; Liu, H.Y.; Li, R.H. Ecology and Epidemiology of Whitefly-Transmitted Closteroviruses. Plant. Dis. 1998, 82, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Desbiez, C.; Lecoq, H.; Aboulama, S.; Peterschmitt, M. First report of Cucurbit yellow stunting disorder virus in Morocco. Plant. Dis. 2000, 84, 596. [Google Scholar] [CrossRef]
- Abou-Jawdah, Y.; Sobh, H.; Fayad, A.; Lecoq, H.; Delecolle, B.; Trad-Ferre, J. Cucurbit yellow stunting disorder virus-A new threat to cucurbits in Lebanon. J. Plant. Pathol. 2000, 82, 55–60. [Google Scholar]
- Louro, D.; Vaira, A.M.; Accotto, G.P.; Nolasco, G. Cucurbit yellow stunting disorder virus (genus Crinivirus) associated with the yellowing disease of cucurbit crops in Portugal. Plant. Dis. 2000, 84, 1156. [Google Scholar] [CrossRef]
- Kao, J.; Jia, L.; Tian, T.; Rubio, L.; Falk, B.W. First report of Cucurbit yellow stunting disorder virus (Genus Crinivirus) in North America. Plant. Dis. 2000, 84, 101. [Google Scholar] [CrossRef]
- Yakoubi, S.; Desbiez, C.; Fakhfakh, H.; Wipf-Scheibel, C.; Marrakchi, M.; Lecoq, H. Occurrence of Cucurbit yellow stunting disorder virus and Cucumber vein yellowing virus in Tunisia. J. Plant. Pathol. 2007, 89, 417–420. [Google Scholar]
- Brown, J.K.; Guerrero, J.C.; Matheron, M.; Olsen, M.; Idris, M.A. Widespread outbreak of Cucurbit yellow stunting disorder virus in melon, squash and watermelon crops in the Sonoran Desert of Arizona and Sonora Mexico. Plant. Dis. 2007, 91, 773. [Google Scholar] [CrossRef]
- Kuo, Y.W.; Rojas, M.R.; Gilbertson, R.L.; Wintermantel, W.M. First Report of Cucurbit yellow stunting disorder virus in California and Arizona, in Association with Cucurbit leaf crumple virus and Squash leaf curl virus. Plant. Dis. 2007, 91, 330. [Google Scholar] [CrossRef]
- Polston, J.E.; Hladky, L.L.; Akad, F.; Wintermantel, W.M. First Report of Cucurbit yellow stunting disorder virus in Cucurbits in Florida. Plant. Dis. 2008, 92, 1251. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Z.; Chen, Y.Y.; Zhu, W.M. First Report of Cucurbit yellow stunting disorder virus on Melon in China. Plant. Dis. 2010, 94, 485. [Google Scholar] [CrossRef] [PubMed]
- Tzanetakis, I.E.; Martin, R.R.; Wintermantel, W.M. Epidemiology of criniviruses: An emerging problem in world agriculture. Front. Microbiol. 2013, 4, 193–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wintermantel, W.M.; Gilbertson, R.L.; Natwick, E.T.; McCreight, J.D. Emergence and epidemiology of Cucurbit yellow stunting disorder virus in the American Desert Southwest, and development of host plant resistance in melon. Virus Res. 2017, 241, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Wintermantel, W.M.; Hladky, L.L.; Cortez, A.A.; Natwick, E.T. A New Expanded Host Range of Cucurbit yellow stunting disorder virus Includes Three Agricultural Crops. Plant. Dis. 2009, 93, 685–690. [Google Scholar] [CrossRef] [Green Version]
- López-Sesé, A.I.; Gómez-Guillamón, M.L. Resistance to Cucurbit yellowing stunting disorder virus (CYSDV) in Cucumis melo L. HortScience 2000, 35, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Lapidot, M.; Legg, J.P.; Wintermantel, W.M.; Polston, J.E. Management of Whitefly-Transmitted Viruses in Open-Field Production Systems. Adv. Virus Res. 2014, 90, 147–206. [Google Scholar]
- McCreight, J.D.; Wintermantel, W.M. Potential new Sources of Genetic Resistance in Melon to Cucurbit yellow stunting disorder virus. In Proceedings of the IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, Avignon, France, 21–24 May 2008; INRA; pp. 173–179. [Google Scholar]
- McCreight, J.D.; Wintermantel, W.M. Genetic resistance in melon PI 313970 to Cucurbit yellow stunting disorder virus. HortScience 2011, 46, 1582–1587. [Google Scholar] [CrossRef] [Green Version]
- Soria, C.; López-Sesé, A.I.; Gómez-Guillamón, M.L. Resistance of Cucumis melo Against Bemisia tabaci (Homoptera:Aleyrodidae). Environ. Entomol. 1999, 28, 831–835. [Google Scholar] [CrossRef]
- Marco, C.F.; Aguilar, J.M.; Abad, J.; Gómez-Guillamón, M.L.; Aranda, M.A. Melon Resistance to Cucurbit yellow stunting disorder virus Is Characterized by Reduced Virus Accumulation. Phytopathology 2003, 93, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Park, S.O.; Crosby, K.M.; Mirkov, T.E. Detection of loci for Cucurbit yellow stunting disorder virus resistance in Cucumis melo L. Acta Hortic. 2007, 763, 207–214. [Google Scholar] [CrossRef]
- Gómez-Guillamón, M.L.; Marco, C.F.; Aranda, M.A.; Crosby, K. Behavior of two CYSDV isolates in several selections of the melon accession ‘TGR-1551’. In Cucurbitaceae: Evaluation and Enhancement of Cucurbit Germplasm; Maynard, D.N., Ed.; ASHS Press: Alexandria, VA, USA, 2002; pp. 287–293. [Google Scholar]
- McCreight, J.D.; Wintermantel, W.M.; Natwick, E.T.; Sinclair, J.W.; Crosby, K.M.; Gomez-Guillamon, M.L. Recessive resistance to Cucurbit yellow stunting disorder virus in melon TGR 1551. In Proceedings of the V International Symposium of the ISHS on Cucurbits. Acta Horticulturae, Cartagena, Murcia, Spain, 22–26 June 2015; pp. 101–107. [Google Scholar]
- McCreight, J.D.; Natwick, E.T.; Wintermantel, W.M.; López-Sesé, A.I.; Gómez-Guillamón, M.L. Allelism of resistance to Cucurbit yellow stunting disorder virus in melon accessions PI 313970 and TGR 1551. In Proceedings of the American Society for Horticultural Science Annual Conference, Las Vegas, NV, USA, 22–25 July 2019. [Google Scholar]
- Abrahamian, P.E.; Abou-Jawda, Y. Whitefly-transmitted criniviruses of cucurbits: Current status and future prospects. Virus Dis. 2014, 25, 26–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil-Salas, F.M.; Morris, J.; Colyer, A.; Budge, G.; Boonham, N.; Cuadrado, I.M.; Janssen, D. Development of real-time RT-PCR assays for the detection of Cucumber vein yellowing virus (CVYV) and Cucurbit yellow stunting disorder virus (CYSDV) in the whitefly vector Bemisia tabaci. J. Virol. Methods 2007, 146, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Palomares-Rius, F.J.P.; Garcés-Claver, A.; Gómez-Guillamón, M.L. Detection of two QTLs associated with resistance to Cucurbit yellow stunting disorder virus in melon line TGR 1551 XIth Eucarpia Meeting on Cucurbit Genetics and Breeding, Warsaw, Poland, July 24–28. Cucurbitaceae 2016, 28, 334–337. [Google Scholar]
- Palomares-Rius, F.J.; Garcés-Claver, A.; Picó, B.; Esteras, C.; Yuste-Lisbona, F.; Gómez-Guillamón, M. ‘Carmen’, a Yellow Canary Melon Breeding Line Resistant to Podosphaera xanthii, Aphis gossypii, and cucurbit yellow stunting disorder virus. HortScience 2018, 53, 1072–1075. [Google Scholar] [CrossRef] [Green Version]
- Pallas, V.; García, J.A. How do plant viruses induce disease? Interactions and interference with host components. J. Gen. Virol. 2011, 92, 2691–2705. [Google Scholar] [CrossRef]
- Sáez, C.; Esteras, C.; Martínez, C.; Ferriol, M.; Dhillon, N.P.S.; López, C.; Picó, B. Resistance to Tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant. Cell Rep. 2017, 36, 1571–1584. [Google Scholar] [CrossRef]
- Díaz-Pendón, J.A.; Fernández-Muñoz, R.; Gómez-Guillamón, M.L.; Moriones, E. Inheritance of Resistance to Watermelon mosaic virus in Cucumis melo that Impairs Virus Accumulation, Symptom Expression, and Aphid Transmission. Phytopathology 2005, 95, 840–846. [Google Scholar] [CrossRef] [Green Version]
- Wintermantel, W.M.; Gilbertson, R.L.; McCreight, J.D.; Natwick, E.T. Host-Specific Relationship Between Virus Titer and Whitefly Transmission of Cucurbit yellow stunting disorder virus. Plant. Dis. 2016, 100, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Maule, A.J.; Escaler, M.; Aranda, M.A. Programme responses to virus replication in plants. Mol. Plant. Pathol. 2000, 1, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Pérez-de-Castro, A.; Esteras, C.; Alfaro-Fernández, A.; Daròs, J.; Monforte, A.; Picó, B.; Gómez-Guillamón, M. Fine mapping of wmv1551, a resistance gene to Watermelon mosaic virus in melon. Mol. Breed. 2019, 39, 93. [Google Scholar] [CrossRef]
- González, V.M.; Aventín, N.; Centeno, E.; Puigdomènech, P. High presence/absence gene variability in defense-related gene clusters of Cucumis melo. BMC Genom. 2013, 14, 782. [Google Scholar] [CrossRef] [Green Version]
- Sarria-Villada, E.; Garzo, E.; López-Sesé, A.I.; Fereres, A.; Gómez-Guillamón, M.L. Hypersensitive response to Aphis gossypii Glover in melon genotypes carrying the Vat gene. J. Exp. Bot. 2009, 60, 3269–3277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuste-Lisbona, F.J.; Capel, C.; Gómez-Guillamón, M.L.; Capel, J.; López-Sesé, A.I.; Lozano, R. Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon (Cucumis melo L.). Theor. Appl. Genet. 2011, 122, 747–758. [Google Scholar] [CrossRef]
- de Ruiter, W.; Hofstede, R.; de Vries, J.; van den Heuvel, H. Combining QTLs for resistance to CYSDV and powdery mildew in a single cucumber line. In Proceedings of the IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, Avignon, France, 21–24 May 2008; INRA; pp. 181–188. [Google Scholar]
- García-Andrés, S.; Baclava, E.; Chan, E.K.F.; Joobeur, T.; King, J.J.; Kraakman, P.J.; Krishnamurthy, S.; Mills, J.M.; de Vries, J. Melon Plants with Improved Disease Tolerance. European Patent EP3005862A1, 13 April 2016. [Google Scholar]
- González, V.M.; Aventín, N.; Centeno, E.; Puigdomènech, P. Interspecific and intraspecific gene variability in a 1-Mb region containing the highest density of NBS-LRR genes found in the melon genome. BMC Genom. 2014, 15, 1131. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Esteras, C.; Formisano, G.; Roig, C.; Díaz, A.; Blanca, J.; Garcia-Mas, J.; Gómez-Guillamón, M.L.; López-Sesé, A.I.; Lázaro, A.; Monforte, A.J.; et al. SNP genotyping in melons: Genetic variation, population structure, and linkage disequilibrium. Theor. Appl. Genet. 2013, 126, 1285–1303. [Google Scholar] [CrossRef]
- Leida, C.; Moser, C.; Esteras, C.; Sulpice, R.; Lunn, J.E.; De Langen, F.; Monforte, A.J.; Picó, B. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in abroad germplasm collection of melon (Cucumis melo L). BMC Genet. 2015, 16, 28. [Google Scholar] [CrossRef] [Green Version]
- Perpiñá, G.; Esteras, C.; Gibon, Y.; Monforte, A.J.; Picó, B. A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant. Biol. 2016, 16, 154. [Google Scholar] [CrossRef]
- Van Ooijen, J.W. MapQTL® 6 Software for the Mapping of Quantitative Trait Loci in Experimental Population of Diploid Species; Kyazma BV: Wageningen, The Netherlands, 2009. [Google Scholar]
- Zeng, Z.B. Precision mapping of quantitative trait loci. Genetics 1994, 136, 1457–1468. [Google Scholar] [PubMed]
- Wang, S.; Basten, C.J.; Zeng, Z.B. Windows QTL Cartographer 2.5; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 2012. [Google Scholar]
- Joehanes, R.; Nelson, J.C. QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 2008, 24, 2788–2789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lincoln, S.; Daly, M.; Lander, E.S. Constructing Genetic Maps with MAPMAKER/EXP 3.0: A Tutorial and Reference Manual; Whitehead Institute: Cambridge, MA, USA, 1993. [Google Scholar]
Trait 1 | Interval 2 | Nearest Marker 3 | Kruskal–Wallis | Composite Interval Mapping | ||
---|---|---|---|---|---|---|
Mean BO 4 | Mean TGR 5 | LOD 6 | R 2,7 | |||
S2009 (Scale 0–9) | 46.9–59.3 cM 6,810,744–23,928,244 bp | S5_16214321 | 4.93 | 2.65 | 6.4 | 0.27 |
S2010 (Scale 0–9) | 54.8–59.3 cM 16,214,321–23,928,244 bp | S5_22526564 | 6.70 | 2.09 | 18.5 | 0.62 |
S2011 (Scale 0–9) | 52.5–58.1 cM 14,759,610–22,875,514 bp | S5_16214375 | 6.16 | 0.71 | 17.9 | 0.47 |
S2012 (Scale 0–5) | 52.5–58.1 cM 14,759,610–22,875,514 bp | S5_16214375 | 4.26 | 1.89 | 12.3 | 0.34 |
S2013 (% infection) | 52.7–59.9 cM 14,759,610–24,296,585 bp | S5_20703035 | 43.26 | 19.27 | 10.5 | 0.30 |
qRT-PCR2012 | 68.8–79.3 cM 25,036,350–27,121,114 bp | S5_26193386 | 28.26 | 35.17 | 16.1 | 0.49 |
qRT-PCR2013-5 | 68.0–74.3 cM 25,036,35–26,193,386 bp | S5_26193386 | 26.88 | 35.06 | 19.9 | 0.53 |
qRT-PCR2013-8 | 65.5–74.3 cM 24,791,006–26,193,386 bp | S5_25229866 | 26.09 | 33.08 | 15.1 | 0.51 |
Response | 66-78 cM 24,957,179–26,993,475 bp | S5_25229866 | 0.94 | 0.33 | 12.7 | 0.44 |
Trait 1 | Interval 2 | Nearest Marker 3 | Composite Interval Mapping | |
---|---|---|---|---|
LOD 4 | R 2,5 | |||
Symptoms 278 | 23.1–25.4 cM 24,605,826–24,613,028 bp | cysdv22 | 6.8 | 0.21 |
27.7–40.5 cM 24,613,028–27,188,971 bp | cysdv24 | 4.5 | 0.12 | |
Symptoms 556 | 40.0–48.0 cM 24,613,028–26,993,475 bp | cysdv22 | 25.5 | 0.58 |
Trait 1 | Interval 2 | Nearest Marker 3 | Composite Interval Mapping | |
---|---|---|---|---|
LOD 4 | R 2,5 | |||
S4wpi | 44.0–50.5 cM 25,619,503–26,688,074 bp | cysdv63 | 14.8 | 0.33 |
S5wpi | 45.7–49.9 cM 25,982,529–26,629,653 bp | cysdv63 | 19.9 | 0.39 |
S6wpi | 45.8–49.9 cM 25,982,529–26,629,653 bp | cysdv63 | 19.6 | 0.39 |
S7wpi | 45.4–49.8 cM 25,943,991–26,629,653 bp | cysdv63 | 17.6 | 0.39 |
S8wpi | 46.4–49.5 cM 25,982,529–26,629,653 bp | cysdv63 | 33.1 | 0.56 |
qRT-PCR | 20.8–24.8 cM 22,651,076–24,296,585 bp | cysdv17 | 20.4 | 0.44 |
Response | 44.2–50.1 cM 25,619,503–26,629,653 bp | cysdv63 | 16.0 | 0.26 |
Marker | Position (bp) | 15 | 19 | 64 | 95 | 159 | 166 | 198 | 24 | 28 | 37 | 78 | 96 | 105 | 141 | 146 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cysdv10B | 6,412,266 | A | A | H | A | H | H | A | H | H | A | A | A | A | A | A |
cysdv11 | 9,593,263 | A | A | H | A | H | H | A | H | H | A | A | A | A | A | A |
cysdv14 | 17,265,147 | A | A | H | A | H | H | A | H | H | A | A | A | A | A | A |
cysdv17 | 22,651,076 | A | A | H | A | H | H | A | H | H | A | A | A | A | A | A |
cysdv18 | 24,296,585 | A | H | H | A | H | H | A | A | H | A | A | A | A | A | A |
cysdv19 | 24,365,016 | A | H | H | A | H | H | A | A | H | A | A | A | A | A | A |
cysdv21 | 24,605,826 | A | H | H | A | H | H | A | A | H | A | A | A | A | H | H |
cysdv22 | 24,613,028 | A | H | H | A | H | H | A | A | H | A | A | A | A | H | H |
cysdv40 | 24,652,307 | A | H | H | A | H | H | A | A | H | A | A | A | A | H | H |
cysdv42 | 24,792,185 | A | H | H | A | H | H | A | A | A | A | A | A | A | H | H |
cysdv43 | 24,864,545 | A | H | H | A | H | H | A | A | A | A | A | A | A | H | H |
cysdv44 | 24,890,589 | A | H | H | A | H | H | A | A | A | A | A | A | A | H | H |
cysdv45 | 24,945,626 | A | H | H | A | H | H | A | A | A | A | A | A | A | H | H |
cysdv46 | 24,962,187 | A | H | H | A | H | H | A | A | A | A | A | A | A | H | H |
cysdv48 | 25,026,788 | A | H | H | A | H | H | A | A | A | A | A | A | A | H | H |
cysdv49 | 25,027,045 | A | H | H | A | H | H | A | A | A | A | A | A | A | H | H |
cysdv50 | 25,236,105 | H | H | H | A | H | H | A | A | A | A | A | A | A | H | H |
cysdv51 | 25,314,484 | H | H | H | H | H | H | A | A | A | A | A | A | A | H | H |
cysdv53 | 25,326,351 | H | H | H | H | H | H | A | A | A | A | A | A | A | H | H |
cysdv54 | 25,392,541 | H | H | H | H | H | H | A | A | A | A | A | A | A | H | H |
cysdv55 | 25,392,903 | H | H | H | H | H | H | A | A | A | A | A | A | A | H | H |
cysdv56 | 25,415,551 | H | H | H | H | H | H | A | A | A | A | A | A | A | H | H |
cysdv57 | 25,526,168 | H | H | H | H | H | H | A | A | A | A | A | A | A | H | H |
cysdv58 | 25,540,372 | H | H | H | H | H | H | A | A | A | A | A | A | A | H | H |
cysdv59 | 25,619,503 | H | H | H | H | H | H | A | A | A | A | A | A | A | H | H |
cysdv60 | 25,943,991 | H | H | H | H | H | H | A | A | A | A | A | A | A | H | H |
cysdv61 | 25,956,650 | H | H | H | H | H | H | A | A | A | A | A | A | A | H | H |
cysdv62 | 25,975,889 | H | H | H | H | H | H | A | A | A | A | A | A | A | H | H |
cysdv63 | 25,982,529 | H | H | H | H | H | H | A | A | A | A | A | A | A | H | H |
cysdv65 | 26,629,653 | H | H | H | H | H | A | H | A | A | A | A | A | H | A | A |
cysdv69 | 26,688,074 | H | H | A | H | H | A | H | A | A | A | A | A | H | A | A |
cysdv24 | 26,766,636 | H | H | A | H | H | A | H | A | A | A | A | A | H | A | A |
cysdv23 | 26,976,581 | H | H | A | H | H | A | H | A | A | A | A | A | H | A | A |
cysdv25 | 26,993,475 | H | H | A | H | H | A | H | A | A | A | A | A | H | A | A |
cysdv26 | 27,170,637 | H | H | A | H | H | A | H | A | A | A | A | A | H | A | A |
cysdv27 | 27,188,971 | H | H | A | H | H | A | H | A | A | A | A | A | H | A | A |
cysdv28 | 27,353,196 | H | H | A | H | H | A | H | A | A | A | A | A | H | A | A |
cysdv29 | 27,772,725 | H | H | A | H | H | A | A | A | A | A | A | A | H | A | A |
cysdv30B | 27,806,568 | H | H | A | H | H | A | H | A | A | A | A | A | H | A | A |
Phenotype | SE | SE | SE | SE | SE | SE | SE | SU | SU | SU | SU | SU | SU | SU | SU |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-de-Castro, A.; López-Martín, M.; Esteras, C.; Garcés-Claver, A.; Palomares-Ríus, F.J.; Picó, M.B.; Gómez-Guillamón, M.L. Melon Genome Regions Associated with TGR-1551-Derived Resistance to Cucurbit yellow stunting disorder virus. Int. J. Mol. Sci. 2020, 21, 5970. https://doi.org/10.3390/ijms21175970
Pérez-de-Castro A, López-Martín M, Esteras C, Garcés-Claver A, Palomares-Ríus FJ, Picó MB, Gómez-Guillamón ML. Melon Genome Regions Associated with TGR-1551-Derived Resistance to Cucurbit yellow stunting disorder virus. International Journal of Molecular Sciences. 2020; 21(17):5970. https://doi.org/10.3390/ijms21175970
Chicago/Turabian StylePérez-de-Castro, Ana, María López-Martín, Cristina Esteras, Ana Garcés-Claver, Francisco Javier Palomares-Ríus, María Belén Picó, and María Luisa Gómez-Guillamón. 2020. "Melon Genome Regions Associated with TGR-1551-Derived Resistance to Cucurbit yellow stunting disorder virus" International Journal of Molecular Sciences 21, no. 17: 5970. https://doi.org/10.3390/ijms21175970
APA StylePérez-de-Castro, A., López-Martín, M., Esteras, C., Garcés-Claver, A., Palomares-Ríus, F. J., Picó, M. B., & Gómez-Guillamón, M. L. (2020). Melon Genome Regions Associated with TGR-1551-Derived Resistance to Cucurbit yellow stunting disorder virus. International Journal of Molecular Sciences, 21(17), 5970. https://doi.org/10.3390/ijms21175970