The Anti-ADAMTS-5 Nanobody® M6495 Protects Cartilage Degradation Ex Vivo
Abstract
:1. Introduction
2. Results
2.1. M6495 Specificity towards ADAMTS-5
2.2. Metabolic Activity
2.3. ECM Turnover in Bovine and OA Human Cartilage
2.4. ECM Turnover in Healthy Human Cartilage
2.5. Co-Cultures
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Affinity Determination of M6495 for Its Target ADAMTS-5
4.3. Ligand Binding Assay to Determine the Specificity of M6495
4.4. Ex Vivo Cultures
Retrieval of Explants
4.5. Study Setup
4.6. Biomarkers
4.6.1. Metabolic Activity
4.6.2. ECM Turnover
4.7. Statistics
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AGNxI | Aggrecanase degraded aggrecan (NITEGE) |
bCC | Bovine co-culture of cartilage and synovial membrane |
BEX | Bovine cartilage explant model |
bSMEx | Bovine synovial membrane explants |
C2M | MMP-mediated metabolite of type II collagen |
GAG | Glycosaminoglycan |
HAMA | Human anti-mouse antibodies |
hCC | Human co-culture of cartilage and synovial membrane |
HEX | Human OA cartilage explant model |
hHEX | Human healthy cartilage explant model |
hSMEx | Human synovial membrane explants |
huARGS | Aggrecanase degraded aggrecan (ARGSVI) |
HRP | Horseradish peroxidase |
IGD | Interglobular domain |
IGF-1 | Insulin-like Growth factor 1 |
M6495 | Nanobody targeting ADAMTS-5 |
mAb | Monoclonal antibody |
O + T | OSM together with TNF-a |
OSM | Oncostatin M |
PRO-C2 | Formation metabolite of type II collagen |
s(HS)TMB | Soluble (high sensitivity) 3,3′,5,5′-Tetramethylbenzidine |
TNF-a | Tumor necrosis factor alpha |
w/o | Without treatment |
References
- Mosyak, L.; Georgiadis, K.; Shane, T.; Svenson, K.; Hebert, T.; McDonagh, T.; Mackie, S.; Olland, S.; Lin, L.; Zhong, X.; et al. Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS5. Protein Sci. 2008, 17, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troeberg, L.; Nagase, H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim. Biophys. Acta 2012, 1824, 133–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sondergaard, B.C.; Henriksen, K.; Wulf, H.; Oestergaard, S.; Schurigt, U.; Brauer, R.; Danielsen, I.; Christiansen, C.; Qvist, P.; Karsdal, M.A.; et al. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation. Osteoarthr. Cartil. 2006, 14, 738–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karsdal, M.A.; Madsen, S.H.; Christiansen, C.; Henriksen, K.; Fosang, A.J.; Sondergaard, B.C. Cartilage degradation is fully reversible in the presence of aggrecanase but not matrix metalloproteinase activity. Arthritis Res. Ther. 2008, 10, R63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Zheng, Q.; Jiang, M.; Sun, S.; Christiansen, T.G.; Kassem, M.; Karsdal, M.A.; Bay-Jensen, A.C. The effect of protease inhibitors on the induction of Osteoarthritis-related biomarkers in bovine full-depth cartilage explants. PLoS ONE 2015, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hoegh-Madsen, S.; Sumer, E.U.; Bay-jensen, A.C.; Sondergaard, B.C.; Qvist, P.; Karsdal, M.A. Aggrecanase- and matrix metalloproteinase-mediated degradation is associated with different molecular characteristics of aggrecan and separated in time ex vivo. Biomarkers 2010, 15, 266–276. [Google Scholar] [CrossRef]
- Van Meurs, J.B.; van Lent, P.L.; Holthuysen, A.E.; Singer, I.I.; Bayne, E.K.; Van den Berg, W.B. Kinetics of aggrecanase- and metalloproteinase-induced neoepitopes in various stages of cartilage destruction in murine arthritis. Arthritis Rheum. 1999, 42, 1128–1139. [Google Scholar] [CrossRef]
- Behrens, F.; Kraft, E.L.; Oegema, T.R., Jr. Biochemical changes in articular cartilage after joint immobilization by casting or external fixation. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 1989, 7, 335–343. [Google Scholar] [CrossRef]
- Stoop, R.; van der Kraan, P.M.; Buma, P.; Hollander, A.P.; Poole, A.R.; Van den Berg, W.B. Denaturation of type II collagen in articular cartilage in experimental murine arthritis. Evidence for collagen degradation in both reversible and irreversible cartilage damage. J. Pathol. Underst. Dis. 1999, 188, 329–337. [Google Scholar] [CrossRef]
- Glasson, S.S.; Askew, R.; Sheppard, B.; Carito, B.; Blanchet, T.; Ma, H.-L.L.; Flannery, C.R.; Peluso, D.; Kanki, K.; Yang, Z.; et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 2005, 434, 644–648. [Google Scholar] [CrossRef]
- Little, C.B.; Barai, A.; Burkhardt, D.; Smith, S.M.; Fosang, A.J.; Werb, Z.; Shah, M.; Thompson, E.W. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 2009, 60, 3723–3733. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Lohr, T.A.; Elefante, L.; Shearin, J.; Matico, R.; Su, J.L.; Xue, Y.; Liu, F.; Genell, C.; Miller, R.E.; et al. Translational development of an ADAMTS-5 antibody for osteoarthritis disease modification. Osteoarthr. Cartil. 2015, 23, 1254–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fosang, A.J. ADAMTS-5 takes centre state in new developments for aggrecanase inhibitors. Osteoarthr. Cartil. 2015, 23, 1231–1232. [Google Scholar] [CrossRef] [Green Version]
- Larsson, S.; Lohmander, L.S.; Struglics, A. Synovial fluid level of aggrecan ARGS fragments is a more sensitive marker of joint disease than glycosaminoglycan or aggrecan levels: A cross-sectional study. Arthritis Res. Ther. 2009, 11, R92. [Google Scholar] [CrossRef] [Green Version]
- Sandy, J.D.; Neame, P.J.; Boynton, R.E.; Flannery, C.R. Catabolism of aggrecan in cartilage expiants: Identification of a major cleavage site within the interglobular domain. J. Biol. Chem. 1991, 266, 5. [Google Scholar]
- Sandy, J.D.; Flannery, C.R.; Neame, P.J.; Stefan Lohmander, L. The structure of aggrecan fragments in human synovial fluid: Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J. Clin. Investig. 1992, 89, 1512–1516. [Google Scholar] [CrossRef]
- Lohmander, L.S.; Neame, P.J.; Sandy, J.D. The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum. 1993, 36, 1214–1222. [Google Scholar] [CrossRef]
- Struglics, A.; Hansson, M.; Lohmander, L.S. Human aggrecanase generated synovial fluid fragment levels are elevated directly after knee injuries due to proteolysis both in the inter globular and chondroitin sulfate domains. Osteoarthr. Cartil. 2011, 19, 1047–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malfait, A.-M.M.; Tortorella, M.D. The “elusive DMOAD”: Aggrecanase inhibition from laboratory to clinic. Clin. Exp. Rheumatol. 2019, 37, 130–134. [Google Scholar] [PubMed]
- Hochberg, M.C.; Guermazi, A.; Guehring, H.; Aydemir, A.; Wax, S.; Fleuranceau-Morel, P.; Reinstrup Bihlet, A.; Byrjalsen, I.; Ragnar Andersen, J.; Eckstein, F. Effect of Intra-Articular Sprifermin vs Placebo on Femorotibial Joint Cartilage Thickness in Patients With Osteoarthritis. JAMA 2019, 322, 1360. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.D. Ongoing trials with matrix metalloproteinase inhibitors. Expert Opin. Investig. Drugs 2000, 9, 2167–2177. [Google Scholar] [CrossRef] [PubMed]
- Krzeski, P.; Buckland-Wright, C.; Bálint, G.; Cline, G.A.; Stoner, K.; Lyon, R.; Beary, J.; Aronstein, W.S.; Spector, T.D. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: A randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res. Ther. 2007, 9, R109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, S.; Lohmander, L.S.; Struglics, A. An ARGS-aggrecan assay for analysis in blood and synovial fluid. Osteoarthr. Cartil. 2014, 22, 242–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germaschewski, F.M.; Matheny, C.J.; Larkin, J.; Liu, F.; Thomas, L.R.; Saunders, J.S.; Sully, K.; Whittall, C.; Boyle, Y.; Peters, G.; et al. Quantitation of ARGS aggrecan fragments in synovial fluid, serum and urine from osteoarthritis patients. Osteoarthr. Cartil. 2014, 22, 690–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swearingen, C.; Carpenter, J.W.; Siegel, R.; Brittain, I.J.; Dotzlaf, J.; Durham, T.B.; Toth, J.L.; Laska, D.; Marimuthu, J.; Liu, C.; et al. Development of a novel clinical biomarker assay to detect and quantify aggrecanase-generated aggrecan fragments in human synovial fluid, serum and urine. Osteoarthr. Cartil. 2010, 18, 1150–1158. [Google Scholar] [CrossRef] [Green Version]
- Struglics, A.; Larsson, S.; Kumahashi, N.; Frobell, R.; Lohmander, L.S. Changes in cytokines and aggrecan ARGS neoepitope in synovial fluid and serum and in C-terminal crosslinking telopeptide of type II collagen and N-terminal crosslinking telopeptide of type i collagen in urine over five years after anterior cruciate ligame. Arthritis Rheumatol. 2015, 67, 1816–1825. [Google Scholar] [CrossRef]
- Blewis, M.E.; Nugent-Derfus, G.E.; Schmidt, T.A.; Schumacher, B.L.; Sah, R.L. A model of synovial fluid lubricant composition in normal and injured joints. Eur. Cells Mater. 2007, 13, 26–38. [Google Scholar] [CrossRef]
- Larsson, S.; Englund, M.; Struglics, A.; Lohmander, L.S. Association between synovial fluid levels of aggrecan ARGS fragments and radiographic progression in knee osteoarthritis. Arthritis Res. Ther. 2010, 12, R230. [Google Scholar] [CrossRef] [Green Version]
- Guehring, H.; Goteti, K.; Sonne, J.; Ladel, C.; Ona, V.; Moreau, F.; Bay-Jensen, A.-C.; Bihlet, A.R. Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Single Ascending Doses of the Anti-ADAMTS-5 Nanobody, M6495, in Healthy Male Subjects: A Phase I, Placebo-Controlled, First-in-human Study. Arthritis Rheumatol. 2019, 2, 71. [Google Scholar]
- Lalande, A.; Kuzniatsova, K.; Chassereau, F.; Geronimi, J.; Bernard, K.; Larsson, S.; Struglics, A.; Lohmander, S.; Pueyo, M. Safety, Tolerability, Pharmacokinetics And Pharmacodynamics iI Healthy Male Japanese Subjects Of The ADAMTS-5 Inhibitor S201086/GLPG1972, A Potential New Treatment In OA. Ann. Rheum. Dis. 2020, 79, 804–805. [Google Scholar]
- Larkin, J.; Lohr, T.A.; Elefante, L.; Shearin, J.; Matico, R.; SU, J.-L.; Xue, Y.; Liu, F.; Rossmann, E.; Renninger, J.; et al. The highs And Lows Of Translational Drug Development: Antibody-Mediated Inhibition Of ADAMTS-5 For Osteoarthritis Disease Modification. Ostearthritis Cartil. 2014, 22, 483–484. [Google Scholar] [CrossRef] [Green Version]
- Clement-Lacroix, P.; Little, C.; Meurisse, S.; Blanqué, R.; Mollat, P.; Brebion, F.; Gosmini, R.; De Ceuninck, F.; Botez, I.; Lepescheux, L.; et al. GLPG1972: A potent, selective, orally available adamts-5 inhibitor for the treatment of OA. Osteoarthr. Cartil. 2017, 25, S58–S59. [Google Scholar] [CrossRef] [Green Version]
- Chiusaroli, R.; Visentini, M.; Galimberti, C.; Casseler, C.; Mennuni, L.; Covaceuszach, S.; Lanza, M.; Ugolini, G.; Caselli, G.; Rovati, L.C.; et al. Targeting of ADAMTS5′s ancillary domain with the recombinant mAb CRB0017 ameliorates disease progression in a spontaneous murine model of osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1807–1810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Aar, E.M.; Desrivot, J.; Fagard, L.; Amantini, D.; Larsson, S.; Struglics, A.; Lohmander, S.; Vanhoutte, F.; Dupont, S.; Nv, G.; et al. Favorable human safety, pharmacokinetics and pharmacodynimacs of the ADAMTS-5 Inhibitor GLPG1972, a Potential New Treatment in Osteoarthritis. Arthr. Rheumatol. 2017, 69. [Google Scholar]
- Caterson, B.; Flannery, C.R.; Hughes, C.E.; Little, C.B. Mechanisms Involved in Cartilage Proteoglycan Catabolism. Matrix Biol. 2000, 19, 333–344. [Google Scholar] [CrossRef]
- Little, C.B.; Flannery, C.R.; Hughes, C.E.; Mort, J.S.; Roughley, P.J.; Dent, C.; Caterson, B. Aggrecanase versus matrix metalloproteinases in the catabolism of the interglobular domain of aggrecan in vitro. Biochem. J. 1999, 344, 61–68. [Google Scholar] [CrossRef]
- Little, C.B.; Mittaz, L.; Belluoccio, D.; Rogerson, F.M.; Campbell, I.K.; Meeker, C.T.; Bateman, J.F.; Pritchard, M.A.; Fosang, A.J.; Little, C. ADAMTS-1-Knockout mice do not exhibit abnormalities in aggrecan turnover in vitro or in vivo. Arthritis Rheum. 2005, 52, 1461–1472. [Google Scholar] [CrossRef]
- Karsdal, M.; Michaelis, M.; Ladel, C.; Siebuhr, A.S.; Bihlet, A.; Andersen, J.; Guehring, H.; Christiansen, C.; Bay-Jensen, A.; Kraus, V. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: Lessons learned from failures and opportunities for the future. Osteoarthr. Cartil. 2016, 24, 2013–2021. [Google Scholar] [CrossRef]
- Chen-An, P.; Andreassen, K.V.; Henriksen, K.; Karsdal, M.A.; Bay-Jensen, A.C. Investigation of chondrocyte hypertrophy and cartilage calcification in a full-depth articular cartilage explants model. Rheumatol. Int. 2012, 33, 401–411. [Google Scholar] [CrossRef]
- Bay-Jensen, A.-C.; Liu, Q.; Byrjalsen, I.; Li, Y.; Wang, J.; Pedersen, C.; Leeming, D.J.; Dam, E.B.; Zheng, Q.; Qvist, P.; et al. Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM--increased serum CIIM in subjects with severe radiographic osteoarthritis. Clin. Biochem. 2011, 44, 423–429. [Google Scholar] [CrossRef]
- Sun, S.; Bay-Jensen, A.-C.C.; Karsdal, M.A.; Siebuhr, A.S.; Zheng, Q.; Maksymowych, W.P.; Christiansen, T.G.; Henriksen, K. The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases. BMC Musculoskelet. Disord. 2014, 15, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Zheng, Q.; Simonsen, O.; Petersen, K.K.; Christiansen, T.G.; Karsdal, M.A.; Bay-Jensen, A.C. The development and characterization of a competitive ELISA for measuring active ADAMTS-4 in a bovine cartilage ex vivo model. Matrix Biol. 2013, 32, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Gudmann, N.S.S.; Wang, J.; Hoielt, S.; Chen, P.; Siebuhr, A.S.; He, Y.; Christiansen, T.G.; Karsdal, M.A.; Bay-Jensen, A.C. Cartilage turnover reflected by metabolic processing of type II collagen: A novel marker of anabolic function in chondrocytes. Int. J. Mol. Sci. 2014, 15, 18789–18803. [Google Scholar] [CrossRef] [PubMed]
- Madsen, S.H.; Goettrup, A.S.; Thomsen, G.; Christensen, S.T.; Schultz, N.; Henriksen, K.; Bay-Jensen, A.C.; Karsdal, M.A. Characterization of an Ex vivo femoral head model assessed by markers of bone and cartilage turnover. Cartilage 2011, 2, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Chen, P.; Jensen, A.C.; Karsdal, M.A.; Madsen, S.H.; Sondergaard, B.C.; Zheng, Q.; Qvist, P. Suppression of MMP activity in bovine cartilage explants cultures has little if any effect on the release of aggrecanase-derived aggrecan fragments. BMC Res. Notes 2009, 2, 259. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siebuhr, A.S.; Werkmann, D.; Bay-Jensen, A.-C.; Thudium, C.S.; Karsdal, M.A.; Serruys, B.; Ladel, C.; Michaelis, M.; Lindemann, S. The Anti-ADAMTS-5 Nanobody® M6495 Protects Cartilage Degradation Ex Vivo. Int. J. Mol. Sci. 2020, 21, 5992. https://doi.org/10.3390/ijms21175992
Siebuhr AS, Werkmann D, Bay-Jensen A-C, Thudium CS, Karsdal MA, Serruys B, Ladel C, Michaelis M, Lindemann S. The Anti-ADAMTS-5 Nanobody® M6495 Protects Cartilage Degradation Ex Vivo. International Journal of Molecular Sciences. 2020; 21(17):5992. https://doi.org/10.3390/ijms21175992
Chicago/Turabian StyleSiebuhr, Anne Sofie, Daniela Werkmann, Anne-C. Bay-Jensen, Christian S. Thudium, Morten Asser Karsdal, Benedikte Serruys, Christoph Ladel, Martin Michaelis, and Sven Lindemann. 2020. "The Anti-ADAMTS-5 Nanobody® M6495 Protects Cartilage Degradation Ex Vivo" International Journal of Molecular Sciences 21, no. 17: 5992. https://doi.org/10.3390/ijms21175992
APA StyleSiebuhr, A. S., Werkmann, D., Bay-Jensen, A. -C., Thudium, C. S., Karsdal, M. A., Serruys, B., Ladel, C., Michaelis, M., & Lindemann, S. (2020). The Anti-ADAMTS-5 Nanobody® M6495 Protects Cartilage Degradation Ex Vivo. International Journal of Molecular Sciences, 21(17), 5992. https://doi.org/10.3390/ijms21175992