Change the Laminin, Change the Cardiomyocyte: Improve Untreatable Heart Failure
Abstract
:1. Introduction
2. Why Titin Isoforms to Alter Cardiac Compliance?
3. Polylaminin’s Effects on Cardiac Stiffness
4. Toward a Multi-Target Therapeutic for HFpEF
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PKA | Protein kinase A |
PKC | Protein kinase C |
PKG | Protein kinase G |
ECM | Extracellular matrix |
HFpEF | Heart failure with preserved ejection fraction |
hiPSC | Human induced pluripotent stem cells |
References
- Obokata, M.; Reddy, Y.N.; Borlaug, B.A. Diastolic Dysfunction and Heart Failure With Preserved Ejection Fraction: Understanding Mechanisms by Using Noninvasive Methods. JACC Cardiovasc. Imaging 2020, 13, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.; Anker, S.; Bueno, H.; Cleland, J.; Coats, A.; Falk, V.; González-Juanatey, J.; Harjola, V.-P.; Jankowska, E.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [PubMed]
- Granzier, H.; Labeit, S. Cardiac titin: An adjustable multi-functional spring. J. Physiol. 2002, 541, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Franssen, C.; Gonzalez Miqueo, A. The role of titin and extracellular matrix remodelling in heart failure with preserved ejection fraction. Neth. Heart J. 2016, 24, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Rienks, M.; Papageorgiou, A.-P.; Frangogiannis, N.G.; Heymans, S.; Farrall, M. Myocardial extracellular matrix: An ever-changing and diverse entity. Circ. Res. 2014, 114, 872–888. [Google Scholar] [CrossRef] [Green Version]
- Peter, A.K.; Cheng, H.; Ross, R.S.; Knowlton, K.U.; Chen, J. The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog. Pediatr. Cardiol. 2011, 31, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Hochman-Mendez, C.; De Campos, D.B.P.; Pinto, R.S.; Mendes, B.J.D.S.; Rocha, G.M.; Monnerat, G.; Weissmuller, G.; Sampaio, L.C.; Carvalho, A.B.; Taylor, D.A.; et al. Tissue-engineered human embryonic stem cell-containing cardiac patches: Evaluating recellularization of decellularized matrix. J. Tissue Eng. 2020, 11, 2041731420921482. [Google Scholar] [CrossRef]
- Guo, W.; Schafer, S.; Greaser, M.L.; Radke, M.H.; Liss, M.; Govindarajan, T.; Maatz, H.; Schulz, H.; Li, S.; Parrish, A.M.; et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 2012, 18, 766–773. [Google Scholar] [CrossRef]
- Kruger, M.; Linke, W.A. Protein kinase—A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J. Muscle Res. Cell Motil. 2006, 27, 435–444. [Google Scholar] [CrossRef]
- Borbely, A.; Falcão-Pires, I.; Van Heerebeek, L.; Hamdani, N.; Édes, I.; Gavina, C.; Leite-Moreira, A.F.; Bronzwaer, J.G.; Papp, Z.; Van Der Velden, J.; et al. Hypophosphorylation of the Stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ. Res. 2009, 104, 780–786. [Google Scholar] [CrossRef] [Green Version]
- Neagoe, C.; Neagoe, C.; Kulke, M.; Del Monte, F.; Gwathmey, J.K.; De Tombe, P.P.; Hajjar, R.J.; Linke, W.A. Titin Isoform Switch in Ischemic Human Heart Disease. Circulation 2002, 106, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Linke, W.A.; Kruger, M. The giant protein titin as an integrator of myocyte signaling pathways. Physiology (Bethesda) 2010, 25, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Granzier, H.L.; Hutchinson, K.; Tonino, P.; Methawasin, M.; Li, F.; Slater, R.; Bull, M.; Saripalli, C.; Pappas, C.; Gregorio, C.; et al. Deleting titin's I-band/A-band junction reveals critical roles for titin in biomechanical sensing and cardiac function. Proc. Natl. Acad. Sci. USA 2014, 111, 14589–14594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunlay, S.M.; Roger, V.L.; Redfield, M.M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2017, 14, 591–602. [Google Scholar] [CrossRef]
- Zile, M.R.; Baicu, C.F.; Ikonomidis, J.S.; Stroud, R.E.; Nietert, P.J.; Bradshaw, A.D.; Slater, R.; Palmer, B.M.; Van Buren, P.; Meyer, M.; et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: Contributions of collagen and titin. Circulation 2015, 131, 1247–1259. [Google Scholar] [CrossRef]
- Redfield, M.M.; Chen, H.H.; Borlaug, B.A.; Semigran, M.J.; Lee, K.L.; Lewis, G.; LeWinter, M.M.; Rouleau, J.L.; Bull, D.A.; Mann, D.L.; et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: A randomized clinical trial. JAMA 2013, 309, 1268–1277. [Google Scholar] [CrossRef]
- Patton, B.L.; Miner, J.H.; Chiu, A.Y.; Sanes, J.R. Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. J. Cell Biol. 1997, 139, 1507–1521. [Google Scholar] [CrossRef] [Green Version]
- Rayagiri, S.S.; Ranaldi, D.; Raven, A.; Azhar, N.I.F.M.; Lefebvre, O.; Zammit, P.S.; Borycki, A.-G. Basal lamina remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal. Nat. Commun. 2018, 9, 1075. [Google Scholar] [CrossRef] [Green Version]
- Yurchenco, P.D.; Tsilibary, E.C.; Charonis, A.S.; Furthmayr, H. Laminin polymerization in vitro. Evidence for a two-step assembly with domain specificity. J. Boil. Chem. 1985, 260, 7636–7644. [Google Scholar]
- Kalb, E.; Engel, J. Binding and calcium-induced aggregation of laminin onto lipid bilayers. J. Biol. Chem. 1991, 266, 19047–19052. [Google Scholar]
- Hochman-Mendez, C.; Cantini, M.; Moratal, D.; Salmerón-Sánchez, M.; Coelho-Sampaio, T. A Fractal Nature for Polymerized Laminin. PLoS ONE 2014, 9, e109388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho-Sampaio, T.; Tenchov, B.; Nascimento, M.A.; Hochman-Mendez, C.; Morandi, V.; Caarls, M.B.; Altankov, G. Type IV collagen conforms to the organization of polylaminin adsorbed on planar substrata. Acta Biomater. 2020, 111, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Menezes, K.; De Menezes, J.R.L.; Nascimento, M.A.; Santos, R.D.S.; Coelho-Sampaio, T. Polylaminin, a polymeric form of laminin, promotes regeneration after spinal cord injury. FASEB J. 2010, 24, 4513–4522. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hochman-Mendez, C.; Curty, E.; Taylor, D.A. Change the Laminin, Change the Cardiomyocyte: Improve Untreatable Heart Failure. Int. J. Mol. Sci. 2020, 21, 6013. https://doi.org/10.3390/ijms21176013
Hochman-Mendez C, Curty E, Taylor DA. Change the Laminin, Change the Cardiomyocyte: Improve Untreatable Heart Failure. International Journal of Molecular Sciences. 2020; 21(17):6013. https://doi.org/10.3390/ijms21176013
Chicago/Turabian StyleHochman-Mendez, Camila, Ernesto Curty, and Doris A. Taylor. 2020. "Change the Laminin, Change the Cardiomyocyte: Improve Untreatable Heart Failure" International Journal of Molecular Sciences 21, no. 17: 6013. https://doi.org/10.3390/ijms21176013
APA StyleHochman-Mendez, C., Curty, E., & Taylor, D. A. (2020). Change the Laminin, Change the Cardiomyocyte: Improve Untreatable Heart Failure. International Journal of Molecular Sciences, 21(17), 6013. https://doi.org/10.3390/ijms21176013