Biotech-Educated Platelets: Beyond Tissue Regeneration 2.0
Abstract
:1. Introduction
Biotech-Educated Platelets (Concept and Context)
2. The Unexpected Biochemistry of Platelets Can Orchestrate the Entire Process of Wound Repair and Tissue Regeneration
3. Creating Value: The Spark of Innovation—Reshaping the Status Quo and “Looking Beyond”
4. Platelet Secretome (Degranulation), a “Jack-In-The-Box”—the Pivotal Process on Wound Healing-Platelet Proteome, Peptidome and Sheddome
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PDGF | platelet-derived growth factor |
TGF-β 1 and 2 | transforming growth factor beta-1 and -2 |
VEGF | vascular endothelial growth factor |
bFGF | basic fibroblast growth factor |
HGF | hepatocyte growth factor |
EGF | epidermal growth factor |
IGF-1 | insulin-like growth factor-1 |
PECAM-1 | platelet endothelial cell adhesion molecule |
CD31 | cluster of differentiation 31 |
DAPI | 4,6-diamidino-2-phenylindole |
SDF1 | stromal cell-derived factor 1 |
CXCL12 | C-X-C motif chemokine 12 |
LAMP1 | lysosomal-associated membrane protein 1 |
ADAM | A disintegrin and metalloproteases |
TB4 | thymosin B4 |
PF4 | platelet factor 4 |
References
- Sun, L.; Huang, W.; Ding, Z.; Zhao, Y.; Wang, C.; Purnawali, H.; Tang, C. Stimulus-responsive shape memory materials: A review. Mater. Des. 2012, 33, 577–640. [Google Scholar] [CrossRef]
- Wang, G.; Yao, L.; Wang, W.; Ou, J.; Cheng, C.Y.; Ishii, H. xPrint: A Modularized Liquid Printer for Smart Materials Deposition. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 5743–5752. [Google Scholar]
- Griffin, M.; Greiser, U.; Barry, F.; O’Brien, T.; Ritter, T. Genetically modified mesenchymal stem cells and their clinical potential in acute cardiovascular disease. Discov. Med. 2010, 9, 219–223. [Google Scholar]
- De Luca, M.; Aiuti, A.; Cossu, G.; Parmar, M.; Pellegrini, G.; Robey, P.G. Advances in stem cell research and therapeutic development. Nat. Cell Biol. 2019, 21, 801–811. [Google Scholar] [CrossRef]
- Takayama, N.; Nishikii, H.; Usui, J.; Tsukui, H.; Sawaguchi, A.; Hiroyama, T.; Eto, K.; Nakauchi, H. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood 2008, 111, 5298–5306. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, Y.; Nakamura, S.; Nakajima, M.; Endo, H.; Dohda, T.; Takayama, N.; Nakauchi, H.; Arai, F.; Fukuda, T.; Eto, K. Two differential flows in a bioreactor promoted platelet generation from human pluripotent stem cell–derived megakaryocytes. Exp. Hematol. 2013, 41, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Thon, J.N.; Mazutis, L.; Wu, S.; Sylman, J.L.; Ehrlicher, A.; Machlus, K.R.; Feng, Q.; Lu, S.; Lanza, R.; Neeves, K.B.; et al. Platelet bioreactor-on-a-chip. Blood 2014, 124, 1857–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doshi, N.; Orje, J.N.; Molins, B.; Smith, J.W.; Mitragotri, S.; Ruggeri, Z.M.; Mitragotri, S. Platelet mimetic particles for targeting thrombi in flowing blood. Adv. Mater. 2012, 24, 3864–3869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Q.; Shabrani, N.; Thon, J.N.; Huo, H.; Thiel, A.; Machlus, K.R.; Kim, K.; Brooks, J.; Li, F.; Luo, C.; et al. Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Rep. 2014, 3, 817–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, M. Beyond Clotting: The Powers of Platelets. Science 2010, 328, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Garraud, O.; Cognasse, F. Are Platelets Cells? And if Yes, are They Immune Cells? Front. Immunol. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, S.L.; Maggirwar, S.B.; Blumberg, N.; Phipps, R.P. Nuclear Emancipation: A Platelet Tour de Force. Sci. Signal. 2010, 3, pe37. [Google Scholar] [CrossRef] [PubMed]
- Denis, M.M.; Tolley, N.D.; Bunting, M.; Schwertz, H.; Jiang, H.; Lindemann, S.; Yost, C.C.; Rubner, F.J.; Albertine, K.H.; Swoboda, K.J.; et al. Escaping the nuclear confines: Signal-dependent pre-mRNA splicing in anucleate platelets. Cell 2005, 122, 379–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyrich, A.S.; Schwertz, H.; Kraiss, L.W.; Zimmerman, G.A. Protein synthesis by platelets: Historical and new perspectives. J. Thromb. Haemost. 2009, 7, 241–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landry, P.; Plante, I.; Ouellet, D.L.; Perron, M.P.; Rousseau, G.; Provost, P. Existence of a microRNA pathway in anucleate platelets. Nat. Struct. Mol. Boil. 2009, 16, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Semple, J.W.; Italiano, J.E.; Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol. 2011, 11, 264–274. [Google Scholar] [CrossRef]
- Xu, X.R.; Zhang, D.; Oswald, B.E.; Carrim, N.; Wang, X.; Hou, Y.; Zhang, Q.; LaValle, C.; McKeown, T.; Marshall, A.H.; et al. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit. Rev. Clin. Lab. Sci. 2016, 53, 409–430. [Google Scholar] [CrossRef]
- Gregg, D.; Goldschmidt-Clermont, P.J. Platelets and Cardiovascular Disease. Circulation 2003, 108, 88–90. [Google Scholar] [CrossRef] [Green Version]
- Menter, D.G.; Kopetz, S.; Hawk, E.; Sood, A.K.; Loree, J.M.; Gresele, P.; Honn, K.V. Platelet “first responders” in wound response, cancer, and metastasis. Cancer Metastasis Rev. 2017, 36, 199–213. [Google Scholar] [CrossRef]
- Van Der Meijden, P.E.J.; Heemskerk, J.W.M. Platelet biology and functions: New concepts and clinical perspectives. Nat. Rev. Cardiol. 2018, 16, 166–179. [Google Scholar] [CrossRef]
- Hu, C.-M.J.; Fang, R.H.; Wang, K.-C.; Luk, B.T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C.H.; Kroll, A.V.; et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121. [Google Scholar] [CrossRef]
- De Ávila, B.E.-F.; Angsantikul, P.; Ramírez-Herrera, D.E.; Soto, F.; Teymourian, H.; Dehaini, D.; Chen, Y.; Zhang, L.; Wang, J. Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Sci. Robot. 2018, 3, eaat0485. [Google Scholar] [CrossRef] [Green Version]
- Barroso, J.; Osborne, B.; Teramura, G.; Pellham, E.; Fitzpatrick, M.; Biehl, R.; Yu, A.; Pehta, J.; Slichter, S.J. Safety evaluation of a lyophilized platelet-derived hemostatic product. Transfusion 2018, 58, 2969–2977. [Google Scholar] [CrossRef]
- Farokhzad, O.C. Nanotechnology: Platelet mimicry. Nature 2015, 526, 47–48. [Google Scholar] [CrossRef] [PubMed]
- Modery-Pawlowski, C.L.; Tian, L.L.; Pan, V.; McCrae, K.R.; Mitragotri, S.; Gupta, A.S. Approaches to synthetic platelet analogs. Biomaterials 2013, 34, 526–541. [Google Scholar] [CrossRef]
- Sim, X.; Jarocha, D.; Hayes, V.; Hanby, H.; Marks, M.S.; Camire, R.M.; French, D.L.; Poncz, M.; Gadue, P. Identifying and enriching platelet-producing human stem cell–derived megakaryocytes using factor V uptake. Blood 2017, 130, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Blin, A.; Le Goff, A.; Magniez, A.; Poirault-Chassac, S.; Teste, B.; Sicot, G.; Nguyen, K.A.; Hamdi, F.S.; Reyssat, M.; Baruch, D. Microfluidic model of the platelet-generating organ: Beyond bone marrow biomimetics. Sci. Rep. 2016, 6, 21700. [Google Scholar] [CrossRef] [Green Version]
- Thon, J.N.; Karlsson, S.M. Scale-up of platelet production from human pluripotent stem cells for developing targeted therapies: Advances & challenges. Cell Gene Ther. Insights 2017, 3, 701–718. [Google Scholar] [CrossRef] [Green Version]
- Chavan, S.K. Determination of rate and analysis of reasons for discarding blood and blood components in a blood bank of tertiary care hospital: A retrospective study. Int. J. Res. Med Sci. 2017, 5, 1111. [Google Scholar] [CrossRef] [Green Version]
- Andrade, S.S.; Sumikawa, J.T.; Castro, E.D.; Batista, F.P.; Paredes-Gamero, E.J.; Oliveira, L.C.; Guerra, I.M.; Peres, G.B.; Cavalheiro, R.P.; Juliano, L.; et al. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis—Influence of platelets and fibrin bundles on the behavior of breast tumor cells. Oncotarget 2017, 8, 16851–16874. [Google Scholar] [CrossRef]
- Faria, A.V.S.; Andrade, S.S.; Reijm, A.N.; Spaander, M.C.W.; De Maat, M.P.M.; Peppelenbosch, M.P.; Ferreira, C.V.; Fuhler, G.M. Targeting Tyrosine Phosphatases by 3-Bromopyruvate Overcomes Hyperactivation of Platelets from Gastrointestinal Cancer Patients. J. Clin. Med. 2019, 8, 936. [Google Scholar] [CrossRef] [Green Version]
- Andrade, S.S.; Faria, A.V.D.S.; Queluz, D.D.P.; Ferreira-Halder, C.V. Platelets as a ‘natural factory’ for growth factor production that sustains normal (and pathological) cell biology. Boil. Chem. 2020, 401, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Montgomery, R.R. Platelets as delivery systems for disease treatments. Adv. Drug Deliv. Rev. 2010, 62, 1196–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzpatrick, R.E.; Rostan, E.F. Reversal of photodamage with topical growth factors: A pilot study. J. Cosmet. Laser Ther. 2003, 5, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Cognasse, F.; Garraud, O.; Pozzetto, B.; Laradi, S.; Hamzeh-Cognasse, H. How can non-nucleated platelets be so smart? J. Thromb. Haemost. 2016, 14, 794–796. [Google Scholar] [CrossRef]
- Gnatenko, D.V.; Dunn, J.J.; McCorkle, S.; Weissmann, D.; Perrotta, P.L.; Bahou, W.F. Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood 2003, 101, 2285–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wu, Y.; Zhou, J.; Ahmad, S.S.; Mutus, B.; Garbi, N.; Hämmerling, G.; Liu, J.; Essex, D.W. Platelet-derived ERp57 mediates platelet incorporation into a growing thrombus by regulation of the aIIbb3 integrin. Blood 2013, 122, 3642–3650. [Google Scholar] [CrossRef]
- Provost, P. The clinical significance of platelet microparticle-associated microRNAs. Clin. Chem. Lab. Med. 2017, 55, 657–666. [Google Scholar] [CrossRef]
- Van Der Wal, D.E.; Zhu, G.; Li, J.; Vadasz, B.; Issaka, Y.; Lang, S.; Freedman, J.; Ni, H. Desialylation: A Novel Platelet Clearance Mechanism and a Potential New Therapeutic Target in Anti-GPIb Antibody Mediated Thrombocytopenia. Blood 2012, 120, 265. [Google Scholar] [CrossRef]
- Mason, K.D.; Carpinelli, M.R.; Fletcher, J.I.; Collinge, J.E.; Hilton, A.A.; Ellis, S.; Kelly, P.N.; Ekert, P.G.; Metcalf, D.; Roberts, A.W.; et al. Programmed Anuclear Cell Death Delimits Platelet Life Span. Cell 2007, 128, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Dai, Z. Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers. Adv. Colloid Interface Sci. 2014, 207, 32–42. [Google Scholar] [CrossRef]
- Venditto, V.J.; Szoka, F.C. Cancer nanomedicines: So many papers and so few drugs. Adv. Drug Deliv. Rev. 2012, 65, 80–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.; Park, J.W. Antibody Targeting of Long-Circulating Lipidic Nanoparticles Does Not Increase Tumor Localization but Does Increase Internalization in Animal Models. Cancer Res. 2006, 66, 6732–6740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felding-Habermann, B. Targeting tumor cell-platelet interaction in breast cancer metastasis. Pathophysiol. Haemost. Thromb. 2003, 33, 56–58. [Google Scholar] [CrossRef] [PubMed]
- Battinelli, E.; Markens, B.A.; Italiano, J.E. Release of angiogenesis regulatory proteins from platelet alpha granules: Modulation of physiologic and pathologic angiogenesis. Blood 2011, 118, 1359–1369. [Google Scholar] [CrossRef] [PubMed]
- Etulain, J.; Negrotto, S.; Tribulatti, M.V.; Croci, D.O.; Carabelli, J.; Campetella, O.; Rabinovich, G.A.; Schattner, M. Control of Angiogenesis by Galectins Involves the Release of Platelet-Derived Proangiogenic Factors. PLoS ONE 2014, 9, e96402. [Google Scholar] [CrossRef] [PubMed]
- Grose, R.; Werner, S. Wound-Healing Studies in Transgenic and Knockout Mice. Mol. Biotechnol. 2004, 28, 147–166. [Google Scholar] [CrossRef]
- Martin, P.; Leibovich, S. Inflammatory cells during wound repair: The good, the bad and the ugly. Trends Cell Boil. 2005, 15, 599–607. [Google Scholar] [CrossRef]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T.P. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef]
- Agbani, E.O.; Bosch, M.T.J.V.D.; Brown, E.; Williams, C.M.; Mattheij, N.J.; Cosemans, J.M.; Collins, P.W.; Heemskerk, J.W.M.; Hers, I.; Poole, A.W. Coordinated Membrane Ballooning and Procoagulant Spreading in Human Platelets. Circulation 2015, 132, 1414–1424. [Google Scholar] [CrossRef] [Green Version]
- Brogren, H.; Karlsson, L.; Andersson, M.; Wang, L.; Erlinge, D.; Jern, S. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood 2004, 104, 3943–3948. [Google Scholar] [CrossRef]
- Evangelista, V.; Manarini, S.; Di Santo, A.; Capone, M.L.; Ricciotti, E.; Di Francesco, L.; Tacconelli, S.; Sacchetti, A.; D’Angelo, S.; Scilimati, A.; et al. De Novo Synthesis of Cyclooxygenase-1 Counteracts the Suppression of Platelet Thromboxane Biosynthesis by Aspirin. Circ. Res. 2006, 98, 593–595. [Google Scholar] [CrossRef] [PubMed]
- Weyrich, A.S.; Denis, M.M.; Schwertz, H.; Tolley, N.D.; Foulks, J.M.; Spencer, E.; Kraiss, L.W.; Albertine, K.H.; McIntyre, T.M.; Zimmerman, G.A. mTOR-dependent synthesis of Bcl-3 controls the retraction of fibrin clots by activated human platelets. Blood 2006, 109, 1975–1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panes, O.; Matus, V.; Sáez, C.G.; Quiroga, T.; Pereira, J.; Mezzano, D. Human platelets synthesize and express functional tissue factor. Blood 2007, 109, 5242–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Lang, S.; Zhai, Z.; Li, L.; Kahr, W.H.A.; Chen, P.; Brkić, J.; Spring, C.M.; Flick, M.J.; Degen, J.L.; et al. Fibrinogen is required for maintenance of platelet intracellular and cell-surface P-selectin expression. Blood 2009, 114, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.; D’Souza, D.; Martin, J.; Grose, R.; Cooper, L.; Maki, R.; McKercher, S.R. Wound Healing in the PU.1 Null Mouse—Tissue Repair Is Not Dependent on Inflammatory Cells. Curr. Boil. 2003, 13, 1122–1128. [Google Scholar] [CrossRef] [Green Version]
- Sipe, J.B.; Zhang, J.; Waits, C.; Skikne, B.; Garimella, R.; Anderson, H.C. Localization of bone morphogenetic proteins (BMPs)-2, -4, and -6 within megakaryocytes and platelets. Bone 2004, 35, 1316–1322. [Google Scholar] [CrossRef]
- Nurden, A.T.; Nurden, P.; Sanchez, M.; Andia, I.; Anitua, E. Platelets and wound healing. Front. Biosci. 2008, 13, 3525–3548. [Google Scholar] [CrossRef]
- Sadtler, K.; Estrellas, K.; Allen, B.W.; Wolf, M.T.; Fan, H.; Tam, A.J.; Patel, C.H.; Luber, B.S.; Wang, H.; Wagner, K.R.; et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 2016, 352, 366–370. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Grimm, W.A.; Garner, W.L.; Qin, L.; Travis, T.; Tan, N.; Han, Y.-P. Epithelial to Mesenchymal Transition in Human Skin Wound Healing Is Induced by Tumor Necrosis Factor-α through Bone Morphogenic Protein-2. Am. J. Pathol. 2010, 176, 2247–2258. [Google Scholar] [CrossRef] [Green Version]
- Barrière, G.; Fici, P.; Gallerani, G.; Fabbri, F.; Rigaud, M. Epithelial Mesenchymal Transition: A double-edged sword. Clin. Transl. Med. 2015, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Eisenstein, M.; Garber, K.; Seydel, C.; DeFrancesco, L. Nature Biotechnology’s academic spinouts of 2019. Nat. Biotechnol. 2020, 38, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Storrie, B. The cellular basis of platelet secretion: Emerging structure/function relationships. Platelets 2016, 28, 108–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, P.; Flaumenhaft, R. Platelet α-granules: Basic biology and clinical correlates. Blood Rev. 2009, 23, 177–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannerden, H.E.V.N.T.; Van Dijk, S.M.; Du, V.; Heijnen, H. Platelet protein disulfide isomerase is localized in the dense tubular system and does not become surface expressed after activation. Blood 2009, 114, 4738–4740. [Google Scholar] [CrossRef]
- Yadav, S.; Williamson, J.K.; Aronova, M.A.; Prince, A.A.; Pokrovskaya, I.D.; Leapman, R.D.; Storrie, B. Golgi proteins in circulating human platelets are distributed across non-stacked, scattered structures. Platelets 2016, 28, 400–408. [Google Scholar] [CrossRef]
- Thon, J.N.; Peters, C.G.; Machlus, K.R.; Aslam, R.; Rowley, J.; MacLeod, H.; Devine, M.T.; Fuchs, T.A.; Weyrich, A.S.; Semple, J.W.; et al. T granules in human platelets function in TLR9 organization and signaling. J. Cell Boil. 2012, 198, 561–574. [Google Scholar] [CrossRef]
- Machlus, K.R.; Italiano, J.E. The incredible journey: From megakaryocyte development to platelet formation. J. Exp. Med. 2013, 210, 785–796. [Google Scholar] [CrossRef] [Green Version]
- Coppinger, J.A.; O’Connor, R.; Wynne, K.; Flanagan, M.; Sullivan, M.; Maguire, P.B.; Fitzgerald, D.J.; Cagney, G. Moderation of the platelet releasate response by aspirin. Blood 2007, 109, 4786–4792. [Google Scholar] [CrossRef]
- Burkhart, J.M.; Gambaryan, S.; Watson, S.P.; Jurk, K.; Walter, U.; Sickmann, A.; Heemskerk, J.W.; Zahedi, R.P. What Can Proteomics Tell Us About Platelets? Circ. Res. 2014, 114, 1204–1219. [Google Scholar] [CrossRef] [Green Version]
- Zahedi, R.P.; Lewandrowski, U.; Wiesner, J.; Wortelkamp, S.; Moebius, J.; Schütz, C.; Walter, U.; Gambaryan, S.; Sickmann, A. Phosphoproteome of Resting Human Platelets. J. Proteome Res. 2008, 7, 526–534. [Google Scholar] [CrossRef]
- Fong, K.P.; Barry, C.; Tran, A.N.; Traxler, E.A.; Wannemacher, K.M.; Tang, H.-Y.; Speicher, K.D.; Blair, I.A.; Speicher, D.W.; Grosser, T.; et al. Deciphering the human platelet sheddome. Blood 2011, 117, e15–e26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, M.; Hofmann, S.; Stegner, D.; Chalaris, A.; Bösl, M.; Braun, A.; Scheller, J.; Rose-John, S.; Nieswandt, B. Differentially regulated GPVI ectodomain shedding by multiple platelet–expressed proteinases. Blood 2010, 116, 3347–3355. [Google Scholar] [CrossRef] [PubMed]
- Omenn, G.S.; States, D.J.; Adamski, M.; Blackwell, T.W.; Menon, R.; Hermjakob, H.; Apweiler, R.; Haab, B.B.; Simpson, R.J.; Eddes, J.S.; et al. Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 2005, 5, 3226–3245. [Google Scholar] [CrossRef]
- Martelli, C.; Iavarone, F.; Vincenzoni, F.; Cabras, T.; Manconi, B.; Desiderio, C.; Messana, I.; Castagnola, M. Top-down peptidomics of bodily fluids. Peptidomics 2014, 1, 47–64. [Google Scholar] [CrossRef]
- Mannherz, H.G.; Hannappel, E. The β-thymosins: Intracellular and extracellular activities of a versatile actin binding protein family. Cell Motil. Cytoskelet. 2009, 66, 839–851. [Google Scholar] [CrossRef] [PubMed]
OPEN QUESTIONS | FUTURE PERSPECTIVES |
---|---|
What can new omics, like sheddomics, tell us about platelets’ solutions in the context of tissue repair and regeneration? | Improving the design of platelet-synthetic biosensitive materials to induce cell migration and differentiation. |
How does spatiotemporal control and source of growth factors result in effective sprouting of new blood vessels followed by maturation? | Implementing sequential delivery of platelet-based solutions to match the normal signaling in diseased tissue. |
How to mimic the complexity and dynamic process of wound repair and regeneration? How signals from multiple growth factor receptors are integrated for the development of a functional vascular network? | Using angiogenesis 3D models with screen combinations of cues. Determining an effective induction of therapeutic angiogenesis while minimizing side effects to promote tissue repair. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, S.S.; Faria, A.V.d.S.; Girão, M.J.B.C.; Fuhler, G.M.; Peppelenbosch, M.P.; Ferreira-Halder, C.V. Biotech-Educated Platelets: Beyond Tissue Regeneration 2.0. Int. J. Mol. Sci. 2020, 21, 6061. https://doi.org/10.3390/ijms21176061
Andrade SS, Faria AVdS, Girão MJBC, Fuhler GM, Peppelenbosch MP, Ferreira-Halder CV. Biotech-Educated Platelets: Beyond Tissue Regeneration 2.0. International Journal of Molecular Sciences. 2020; 21(17):6061. https://doi.org/10.3390/ijms21176061
Chicago/Turabian StyleAndrade, Sheila Siqueira, Alessandra Valéria de Sousa Faria, Manoel João Batista C. Girão, Gwenny M. Fuhler, Maikel P. Peppelenbosch, and Carmen V. Ferreira-Halder. 2020. "Biotech-Educated Platelets: Beyond Tissue Regeneration 2.0" International Journal of Molecular Sciences 21, no. 17: 6061. https://doi.org/10.3390/ijms21176061
APA StyleAndrade, S. S., Faria, A. V. d. S., Girão, M. J. B. C., Fuhler, G. M., Peppelenbosch, M. P., & Ferreira-Halder, C. V. (2020). Biotech-Educated Platelets: Beyond Tissue Regeneration 2.0. International Journal of Molecular Sciences, 21(17), 6061. https://doi.org/10.3390/ijms21176061