Role of Phosphodiesterase 7 (PDE7) in T Cell Activity. Effects of Selective PDE7 Inhibitors and Dual PDE4/7 Inhibitors on T Cell Functions
Abstract
:1. Introduction
2. cAMP Signaling in T Cells
3. Phosphodiesterase 7 (PDE7) Family in T Cells
4. Potential Therapeutic Use of Selective PDE7 Inhibitors
5. The Effect of Selective PDE7 Inhibitors on T Cell Activity
6. The Effect of Dual PDE4/7 Inhibitors on T Cell Activity
7. Concluding Remarks
Funding
Conflicts of Interest
Abbreviations
AC | Adenylyl cyclase |
AKAP | A-kinase anchoring protein |
APC | Antigen presenting cell |
cAMP | Cyclic-3′,5′-adenosine monophosphate |
CD | Cluster of differentiation |
cGMP | Cyclic-3′,5′-guanosine monophosphate |
CLL | Chronic lymphocytic leukemia |
COPD | Chronic obstructive pulmonary disease |
CREB | cAMP response element-binding protein |
Csk | C-terminal Src kinase |
DPC | Distal pole complex |
EAE | Experimental autoimmune encephalomyelitis |
EPAC | Exchange protein activated by cAMP |
Foxp3 | Forkhead box P3 |
IC | Inhibitory concentration |
MHC | Major histocompatibility complex |
MLR | Mixed lymphocyte reaction |
MTG | Myeloid translocation gene |
NFAT | Nuclear factor of activated T-cells |
NF-κB | Nuclear factor κB |
PBMC | Peripheral blood mononuclear cells |
PDE | Phosphodiesterase |
PHA | Phytohemagglutinin |
PKA | Protein kinase A |
PMA | Phorbol-12-myristate-13-acetate |
sAC | Soluble adenylyl cyclase |
SMAC | Supramolecular activation cluster |
Tcon | Conventional T cell |
tmAC | Transmembrane adenylyl cyclase |
TCR | T-cell receptor |
Treg | Regulatory T cell |
References
- Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharm. Rev. 2006, 58, 488–520. [Google Scholar] [CrossRef] [PubMed]
- Keravis, T.; Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: Benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br. J. Pharm. 2012, 165, 1288–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurice, D.H.; Ke, H.; Ahmad, F.; Wang, Y.; Chung, J.; Manganiello, V.C. Advances in targeting cyclic nucleotide phosphodiesterases. Nat. Rev. Drug Discov. 2014, 13, 290–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raphael, I.; Nalawade, S.; Eagar, T.N.; Forsthuber, T.G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2015, 74, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhang, Q.; Tan, L.; Xu, Y.; Xie, X.; Zhao, Y. The regulatory effects of mTOR complexes in the differentiation and function of CD4+ T cell subsets. J. Immunol. Res. 2020, 2020, 3406032. [Google Scholar] [CrossRef] [Green Version]
- Annunziato, F.; Romagnani, C.; Romagnani, S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol. 2015, 135, 626–635. [Google Scholar] [CrossRef]
- Kim, B.S.; Park, Y.J.; Chung, Y. Targeting IL-17 in autoimmunity and inflammation. Arch. Pharm. Res. 2016, 39, 1537–1547. [Google Scholar] [CrossRef]
- Boonpiyathad, T.; Sözener, Z.C.; Akdis, M.; Akdis, C.A. The role of Treg cell subsets in allergic disease. Asian Pac. J. Allergy Immunol. 2020, in press. [Google Scholar]
- Giembycz, M.A.; Corrigan, C.J.; Seybold, J.; Newton, R.; Barnes, P.J. Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T-lymphocytes: Role in regulating proliferation and the biosynthesis of interleukin-2. Br. J. Pharm. 1996, 118, 1945–1958. [Google Scholar] [CrossRef] [Green Version]
- Tenor, H.; Staniciu, L.; Schudt, C.; Hatzelmann, A.; Wendel, A.; Djukanović, R.; Church, M.K.; Shute, J.K. Cyclic nucleotide phosphodiesterases from purified human CD4+ and CD8+ T lymphocytes. Clin. Exp. Allergy 1995, 25, 616–624. [Google Scholar] [CrossRef]
- Glavas, N.A.; Ostenson, C.; Schaefer, J.B.; Vasta, V.; Beavo, J.A. T cell activation up-regulates cyclic nucleotide phosphodiesterases 8A1 and 7A3. Proc. Natl. Acad. Sci. USA 2001, 98, 6319–6324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazhin, A.V.; Kahnert, S.; Kimpfler, S.; Schadendorf, D.; Umansky, V. Distinct metabolism of cyclic adenosine monophosphate in regulatory and helper CD4+ T cells. Mol. Immunol. 2010, 47, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Contreras, S.; Milara, J.; Morcillo, E.; Cortijo, J. Selective inhibition of phosphodiesterases 4A, B, C and D isoforms in chronic respiratory diseases: Current and future evidences. Curr. Pharm. Des. 2017, 23, 2073–2083. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zuo, J.; Tang, W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front. Pharm. 2018, 9, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakkas, L.I.; Mavropoulos, A.; Bogdanos, D.P. Phosphodiesterase 4 inhibitors in immune-mediated diseases: Mode of action, clinical applications, current and future perspectives. Curr. Med. Chem. 2017, 24, 3054–3067. [Google Scholar] [CrossRef]
- Cilli, A.; Bal, H.; Gunen, H. Efficacy and safety profile of roflumilast in a real-world experience. J. Thorac. Dis. 2019, 11, 1100–1105. [Google Scholar] [CrossRef]
- Fala, L. Otezla (Apremilast), an oral PDE-4 inhibitor, receives FDA approval for the treatment of patients with active psoriatic arthritis and plaque psoriasis. Am. Health Drug Benefits 2015, 8, 105–110. [Google Scholar]
- Fahrbach, K.; Tarpey, J.; Washington, E.B.; Hughes, R.; Thom, H.; Neary, M.P.; Cha, A.; Gerber, R.; Cappelleri, J.C. Crisaborole ointment, 2%, for treatment of patients with mild-to-moderate atopic dermatitis: Systematic literature review and network meta-analysis. Derm. (Heidelb) 2020, 10, 681–694. [Google Scholar] [CrossRef]
- Kniotek, M.; Boguska, A. Sildenafil can affect innate and adaptive immune system in both experimental animals and patients. J. Immunol. Res. 2017, 2017, 4541958. [Google Scholar] [CrossRef]
- Szczypka, M.; Obmińska-Mrukowicz, B. Modulating effect of nonselective and selective phosphodiesterase inhibitors on lymphocyte subsets and humoral immune response in mice. Pharm. Rep. 2010, 62, 1148–1158. [Google Scholar] [CrossRef]
- Szczypka, M.; Ploch, S.; Obmińska-Mrukowicz, B. Modulation of Th1/Th2 cytokine production by selective and nonselective phosphodiesterase inhibitors administered to mice. Pharm. Rep. 2012, 64, 179–184. [Google Scholar] [CrossRef]
- Wang, S.; Yan, C.; Xu, H.; Zhao, X.; Han, Y. Suppression of encephalitogenic T-cell responses by cilostazol is associated with upregulation of regulatory T cells. Neuroreport 2010, 21, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Zych, M.; Roszczyk, A.; Kniotek, M.; Kaleta, B.; Zagozdzon, R. Sildenafil citrate influences production of TNF-α in healthy men lymphocytes. J. Immunol. Res. 2019, 2019, 8478750. [Google Scholar] [CrossRef] [PubMed]
- Steegborn, C. Structure, mechanism, and regulation of soluble adenylyl cyclases—Similarities and differences to transmembrane adenylyl cyclases. Biochim. Biophys. Acta 2014, 1842, 2535–2547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, B.; Davis, R.; Sadat, E.L.; Collins, J.; Sternweis, P.C.; Yuan, D.; Jiang, L.I. Distinct roles of adenylyl cyclase VII in regulating the immune responses in mice. J. Immunol. 2010, 185, 335–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arumugham, V.B.; Baldari, C.T. cAMP: A multifaceted modulator of immune synapse assembly and T cell activation. J. Leukoc. Biol. 2017, 101, 1301–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehbi, V.L.; Taskén, K. Molecular Mechanisms for cAMP-Mediated Immunoregulation in T cells—Role of Anchored Protein Kinase A Signaling Units. Front. Immunol. 2016, 7, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Vergara, L.; König, R. T cell receptor induced intracellular redistribution of type I protein kinase A. Immunology 2004, 113, 453–459. [Google Scholar] [CrossRef]
- Asirvatham, A.L.; Galligan, S.G.; Schillace, R.V.; Davey, M.P.; Vasta, V.; Beavo, J.A.; Carr, D.W. A-kinase anchoring proteins interact with phosphodiesterases in T lymphocyte cell lines. J. Immunol. 2004, 173, 4806–4814. [Google Scholar] [CrossRef] [Green Version]
- Mosenden, R.; Moltu, K.; Ruppelt, A.; Berge, T.; Taskén, K. Effects of type I protein kinase A modulation on the T cell distal pole complex. Scand. J. Immunol. 2011, 74, 568–573. [Google Scholar] [CrossRef]
- Arp, J.; Kirchhof, M.G.; Baroja, M.L.; Nazarian, S.H.; Chau, T.A.; Strathdee, C.A.; Ball, E.H.; Madrenas, J. Regulation of T-cell activation by phosphodiesterase 4B2 requires its dynamic redistribution during immunological synapse formation. Mol. Cell Biol. 2003, 23, 8042–8057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueda, C.M.; Jackson, C.M.; Chougnet, C.A. Regulatory T-cell-mediated suppression of conventional T-cells and dendritic cells by different cAMP intracellular pathways. Front. Immunol. 2016, 7, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaeli, T.; Bloom, T.J.; Martins, T.; Loughney, K.; Ferguson, K.; Riggs, M.; Rodgers, L.; Beavo, J.A.; Wigler, M. Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase-deficient Saccharomyces cerevisiae. J. Biol. Chem 1993, 268, 12925–12932. [Google Scholar] [PubMed]
- Ichimura, M.; Kase, H. A new cyclic nucleotide phosphodiesterase isozyme expressed in the T-lymphocyte cell lines. Biochem. Biophys. Res. Commun. 1993, 193, 985–990. [Google Scholar] [CrossRef]
- Han, P.; Zhu, X.; Michaeli, T. Alternative splicing of the high affinity cAMP-specific phosphodiesterase (PDE7A) mRNA in human skeletal muscle and heart. J. Biol. Chem. 1997, 272, 16152–16157. [Google Scholar] [CrossRef] [Green Version]
- Hetman, J.M.; Soderling, S.H.; Glavas, N.A.; Beavo, J.A. Cloning and characterization of PDE7B, a cAMP-specific phosphodiesterase. Proc. Natl. Acad. Sci. USA 2000, 97, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Kotera, J.; Yuasa, K.; Omori, K. Identification of human PDE7B, a cAMP-specific phosphodiesterase. Biochem. Biophys. Res. Commun. 2000, 271, 575–583. [Google Scholar] [CrossRef]
- Bloom, T.J.; Beavo, J.A. Identification and tissue-specific expression of PDE7 phosphodiesterase splice variants. Proc. Natl. Acad. Sci. USA 1996, 93, 14188–14192. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Kotera, J.; Omori, K. Novel alternative splice variants of rat phosphodiesterase 7B showing unique tissue-specific expression and phosphorylation. Biochem. J. 2002, 361, 211–220. [Google Scholar] [CrossRef]
- Li, L.; Yee, C.; Beavo, J.A. CD3- and CD28-dependent induction of PDE7 required for T cell activation. Science 1999, 283, 848–851. [Google Scholar] [CrossRef]
- Smith, S.J.; Brookes-Fazakerley, S.; Donnelly, L.E.; Barnes, P.J.; Barnette, M.S.; Giembycz, M.A. Ubiquitous expression of phosphodiesterase 7A in human proinflammatory and immune cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2003, 284, L279–L289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.J.; Cieslinski, L.B.; Newton, R.; Donnelly, L.E.; Fenwick, P.S.; Nicholson, A.G.; Barnes, P.J.; Barnette, M.S.; Giembycz, M.A. Discovery of BRL 50481 [3-(N,N-dimethylsulfonamido)-4-methyl-nitrobenzene], a selective inhibitor of phosphodiesterase 7: In vitro studies in human monocytes, lung macrophages, and CD8+ T-lymphocytes. Mol. Pharm. 2004, 66, 1679–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nueda, A.; García-Roger, N.; Domenech, T.; Godessart, N.; Cárdenas, A.; Santamaría-Babi, L.F.; Beleta, J. Phosphodiesterase 7A1 is expressed in human CD4+ naïve T cells at higher levels than in CD4+ memory cells and is not required during their CD3/CD28-dependent activation. Cell Immunol. 2006, 242, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Sonati, P.; Rubin, C.; Michaeli, T. PDE7A1, a cAMP-specific phosphodiesterase, inhibits cAMP-dependent protein kinase by a direct interaction with C. J. Biol. Chem. 2006, 281, 15050–15057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Murray, F.; Zahno, A.; Kanter, J.R.; Chou, D.; Suda, R.; Fenlon, M.; Rassenti, L.; Cottam, H.; Kipps, T.J.; et al. Cyclic nucleotide phosphodiesterase profiling reveals increased expression of phosphodiesterase 7B in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 2008, 105, 19532–19537. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Zitt, C.; Auriga, C.; Hatzelmann, A.; Epstein, P.M. Inhibition of PDE3, PDE4 and PDE7 potentiates glucocorticoid-induced apoptosis and overcomes glucocorticoid resistance in CEM T leukemic cells. Biochem. Pharm. 2010, 79, 321–329. [Google Scholar] [CrossRef]
- Jones, N.A.; Leport, M.; Holand, T.; Vos, T.; Morgan, M.; Fink, M.; Pruniaux, M.P.; Berthelier, C.; O’Connor, B.J.; Bertrand, C.; et al. Phosphodiesterase (PDE) 7 in inflammatory cells from patients with asthma and COPD. Pulm. Pharm. 2007, 20, 60–68. [Google Scholar] [CrossRef]
- Kanda, N.; Watanabe, S. Regulatory roles of adenylate cyclase and cyclic nucleotide phosphodiesterases 1 and 4 in interleukin-13 production by activated human T cells. Biochem. Pharm. 2001, 62, 495–507. [Google Scholar] [CrossRef]
- Nakata, A.; Ogawa, K.; Sasaki, T.; Koyama, N.; Wada, K.; Kotera, J.; Kikkawa, H.; Omori, K.; Kaminuma, O. Potential role of phosphodiesterase 7 in human T cell function: Comparative effects of two phosphodiesterase inhibitors. Clin. Exp. Immunol. 2002, 128, 460–466. [Google Scholar] [CrossRef]
- Yang, G.; McIntyre, K.W.; Townsend, R.M.; Shen, H.H.; Pitts, W.J.; Dodd, J.H.; Nadler, S.G.; McKinnon, M.; Watson, A.J. Phosphodiesterase 7A-deficient mice have functional T cells. J. Immunol. 2003, 171, 6414–6420. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, E.; Lagente, V.; Dupont, M.; Fargeau, H.; Palazzi, X.; Richard, V.; Dassaud, M.; Fric, M.; Coupe, M.; Carré, C.; et al. Lack of involvement of type 7 phosphodiesterase in an experimental model of asthma. Eur. Respir. J. 2012, 39, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Redondo, M.; Palomo, V.; Brea, J.; Pérez, D.I.; Martín-Álvarez, R.; Pérez, C.; Paúl-Fernández, N.; Conde, S.; Cadavid, M.I.; Loza, M.I.; et al. Identification in silico and experimental validation of novel phosphodiesterase 7 inhibitors with efficacy in experimental autoimmune encephalomyelitis mice. ACS Chem. Neurosci. 2012, 3, 793–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castaño, T.; Wang, H.; Campillo, N.E.; Ballester, S.; González-García, C.; Hernández, J.; Pérez, C.; Cuenca, J.; Pérez-Castillo, A.; Martínez, A.; et al. Synthesis, structural analysis, and biological evaluation of thioxoquinazoline derivatives as phosphodiesterase 7 inhibitors. Chem. Med. Chem. 2009, 4, 866–876. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Watson, A.; Kempson, J.; Carlsen, M.; Barbosa, J.; Stebbins, K.; Lee, D.; Dodd, J.; Nadler, S.G.; McKinnon, M.; et al. Identification of potent pyrimidine inhibitors of phosphodiesterase 7 (PDE7) and their ability to inhibit T cell proliferation. Bioorg. Med. Chem. Lett. 2009, 19, 1935–1938. [Google Scholar] [CrossRef] [PubMed]
- Redondo, M.; Brea, J.; Perez, D.I.; Soteras, I.; Val, C.; Perez, C.; Morales-García, J.A.; Alonso-Gil, S.; Paul-Fernandez, N.; Martin-Alvarez, R.; et al. Effect of phosphodiesterase 7 (PDE7) inhibitors in experimental autoimmune encephalomyelitis mice. Discovery of a new chemically diverse family of compounds. J. Med. Chem. 2012, 55, 3274–3284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Wyman, A.R.; Alaamery, M.A.; Argueta, S.A.; Ivey, F.D.; Meyers, J.A.; Lerner, A.; Burdo, T.H.; Connolly, T.; Hoffman, C.S.; et al. Anti-inflammatory effects of novel barbituric acid derivatives in T lymphocytes. Int. Immunopharmacol. 2016, 38, 223–232. [Google Scholar] [CrossRef]
- González-García, C.; Bravo, B.; Ballester, A.; Gómez-Pérez, R.; Eguiluz, C.; Redondo, M.; Martínez, A.; Gil, C.; Ballester, S. Comparative assessment of PDE 4 and 7 inhibitors as therapeutic agents in experimental autoimmune encephalomyelitis. Br. J. Pharm. 2013, 170, 602–613. [Google Scholar] [CrossRef] [Green Version]
- Martín-Álvarez, R.; Paúl-Fernández, N.; Palomo, V.; Gil, C.; Martínez, A.; Mengod, G. A preliminary investigation of phoshodiesterase 7 inhibitor VP3.15 as therapeutic agent for the treatment of experimental autoimmune encephalomyelitis mice. J. Chem. Neuroanat. 2017, 80, 27–36. [Google Scholar] [CrossRef]
- Medina-Rodríguez, E.M.; Bribián, A.; Boyd, A.; Palomo, V.; Pastor, J.; Lagares, A.; Gil, C.; Martínez, A.; Williams, A.; de Castro, F. Promoting in vivo remyelination with small molecules: A neuroreparative pharmacological treatment for multiple sclerosis. Sci. Rep. 2017, 7, 43545. [Google Scholar] [CrossRef] [Green Version]
- Mestre, L.; Redondo, M.; Carrillo-Salinas, F.J.; Morales-García, J.A.; Alonso-Gil, S.; Pérez-Castillo, A.; Gil, C.; Martínez, A.; Guaza, C. PDE7 inhibitor TC3.6 ameliorates symptomatology in a model of primary progressive multiple sclerosis. Br. J. Pharm. 2015, 172, 4277–4290. [Google Scholar] [CrossRef]
- Paterniti, I.; Mazzon, E.; Gil, C.; Impellizzeri, D.; Palomo, V.; Redondo, M.; Perez, D.I.; Esposito, E.; Martinez, A.; Cuzzocrea, S. PDE 7 inhibitors: New potential drugs for the therapy of spinal cord injury. PLoS ONE 2011, 6, e15937. [Google Scholar] [CrossRef] [PubMed]
- Bartolome, F.; de la Cueva, M.; Pascual, C.; Antequera, D.; Fernandez, T.; Gil, C.; Martinez, A.; Carro, E. Amyloid β-induced impairments on mitochondrial dynamics, hippocampal neurogenesis, and memory are restored by phosphodiesterase 7 inhibition. Alzheimers Res. 2018, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Gonzalez, R.; Pascual, C.; Antequera, D.; Bolos, M.; Redondo, M.; Perez, D.I.; Pérez-Grijalba, V.; Krzyzanowska, A.; Sarasa, M.; Gil, C.; et al. Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer’s disease. Neurobiol. Aging 2013, 34, 2133–2145. [Google Scholar] [CrossRef] [Green Version]
- Morales-Garcia, J.A.; Alonso-Gil, S.; Gil, C.; Martinez, A.; Santos, A.; Perez-Castillo, A. Phosphodiesterase 7 inhibition induces dopaminergic neurogenesis in hemiparkinsonian rats. Stem Cells Transl. Med. 2015, 4, 564–575. [Google Scholar] [CrossRef] [Green Version]
- Morales-Garcia, J.A.; Alonso-Gil, S.; Santos, Á.; Perez-Castillo, A. Phosphodiesterase 7 regulation in cellular and rodent models of Parkinson’s disease. Mol. Neurobiol. 2020, 57, 806–822. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, S.; Zhong, X.; Kang, Z.; Chen, R. PDE-7 inhibitor BRL-50481 reduces neurodegeneration and long-term memory deficits in mice following sevoflurane exposure. ACS Chem. Neurosci. 2020, 11, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Mokry, J.; Joskova, M.; Mokra, D.; Christensen, I.; Nosalova, G. Effects of selective inhibition of PDE4 and PDE7 on airway reactivity and cough in healthy and ovalbumin-sensitized guinea pigs. Adv. Exp. Med. Biol. 2013, 756, 57–64. [Google Scholar] [CrossRef]
- Page, C.P. Phosphodiesterase inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. Int. Arch. Allergy Immunol. 2014, 165, 152–164. [Google Scholar] [CrossRef]
- Fortin, M.; D’Anjou, H.; Higgins, M.E.; Gougeon, J.; Aubé, P.; Moktefi, K.; Mouissi, S.; Séguin, S.; Séguin, R.; Renzi, P.M.; et al. A multi-target antisense approach against PDE4 and PDE7 reduces smoke-induced lung inflammation in mice. Respir. Res. 2009, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- de Medeiros, A.S.; Wyman, A.R.; Alaamery, M.A.; Allain, C.; Ivey, F.D.; Wang, L.; Le, H.; Morken, J.P.; Habara, A.; Le, C.; et al. Identification and characterization of a potent and biologically-active PDE4/7 inhibitor via fission yeast-based assays. Cell Signal. 2017, 40, 73–80. [Google Scholar] [CrossRef]
- Dong, H.; Claffey, K.P.; Brocke, S.; Epstein, P.M. Inhibition of breast cancer cell migration by activation of cAMP signaling. Breast Cancer Res. Treat. 2015, 152, 17–28. [Google Scholar] [CrossRef]
- Jankowska, A.; Świerczek, A.; Chłoń-Rzepa, G.; Pawłowski, M.; Wyska, E. PDE7-selective and dual inhibitors: Advances in chemical and biological research. Curr. Med. Chem. 2017, 24, 673–700. [Google Scholar] [CrossRef]
- Kadoshima-Yamaoka, K.; Murakawa, M.; Goto, M.; Tanaka, Y.; Inoue, H.; Murafuji, H.; Nagahira, A.; Hayashi, Y.; Nagahira, K.; Miura, K.; et al. ASB16165, a novel inhibitor for phosphodiesterase 7A (PDE7A), suppresses IL-12-induced IFN-gamma production by mouse activated T lymphocytes. Immunol. Lett. 2009, 122, 193–197. [Google Scholar] [CrossRef]
- Kadoshima-Yamaoka, K.; Murakawa, M.; Goto, M.; Tanaka, Y.; Inoue, H.; Murafuji, H.; Hayashi, Y.; Nagahira, K.; Miura, K.; Nakatsuka, T.; et al. Effect of phosphodiesterase 7 inhibitor ASB16165 on development and function of cytotoxic T lymphocyte. Int. Immunopharmacol. 2009, 9, 97–102. [Google Scholar] [CrossRef]
- Feng, G.; Nadig, S.N.; Bäckdahl, L.; Beck, S.; Francis, R.S.; Schiopu, A.; Whatcott, A.; Wood, K.J.; Bushell, A. Functional regulatory T cells produced by inhibiting cyclic nucleotide phosphodiesterase type 3 prevent allograft rejection. Sci. Transl. Med. 2011, 3, 83ra40. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Lim, J.Y.; Rhee, C.K.; Kim, J.H.; Park, C.K.; Kim, T.J.; Cho, C.S.; Min, C.K.; Yoon, H.K. Effect of roflumilast, novel phosphodiesterase-4 inhibitor, on lung chronic graft-versus-host disease in mice. Exp. Hematol. 2016, 44, 332–341.e4. [Google Scholar] [CrossRef]
- Szczypka, M.; Lis, M.; Suszko-Pawłowska, A.; Pawlak, A.; Sysak, A.; Obmińska-Mrukowicz, B. Propentofylline, phosphodiesterase and adenosine reuptake inhibitor modulates lymphocyte subsets and lymphocyte activity after in-vivo administration in non-immunized and SRBC-immunized mice. J. Pharm. Pharm. 2017, 69, 1166–1177. [Google Scholar] [CrossRef]
- Chłoń-Rzepa, G.; Jankowska, A.; Ślusarczyk, M.; Świerczek, A.; Pociecha, K.; Wyska, E.; Bucki, A.; Gawalska, A.; Kołaczkowski, M.; Pawłowski, M. Novel butanehydrazide derivatives of purine-2,6-dione as dual PDE4/7 inhibitors with potential anti-inflammatory activity: Design, synthesis and biological evaluation. Eur. J. Med. Chem. 2018, 146, 381–394. [Google Scholar] [CrossRef]
- Świerczek, A.; Pociecha, K.; Ślusarczyk, M.; Chłoń-Rzepa, G.; Baś, S.; Mlynarski, J.; Więckowski, K.; Zadrożna, M.; Nowak, B.; Wyska, E. Comparative assessment of the new PDE7 inhibitor—GRMS-55 and lisofylline in animal models of immune-related disorders: A PK/PD modeling approach. Pharm. Res. 2020, 37, 19. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Sugahara, S.; Ikeda, K.; Shimizu, Y. Amelioration of collagen-induced arthritis in mice by a novel phosphodiesterase 7 and 4 dual inhibitor, YM-393059. Eur. J. Pharm. 2007, 559, 219–226. [Google Scholar] [CrossRef]
- Yamamoto, S.; Sugahara, S.; Ikeda, K.; Shimizu, Y. Pharmacological profile of a novel phosphodiesterase 7A and -4 dual inhibitor, YM-393059, on acute and chronic inflammation models. Eur. J. Pharm. 2006, 550, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Sugahara, S.; Naito, R.; Ichikawa, A.; Ikeda, K.; Yamada, T.; Shimizu, Y. The effects of a novel phosphodiesterase 7A and -4 dual Inhibitor, YM-393059, on T-cell-related cytokine production in vitro and in vivo. Eur. J. Pharmacol. 2006, 541, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Bjermer, L.; Abbott-Banner, K.; Newman, K. Efficacy and safety of a first-in-class inhaled PDE3/4 inhibitor (ensifentrine) vs salbutamol in asthma. Pulm. Pharm. 2019, 58, 101814. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Calzetta, L.; Rogliani, P.; Matera, M.G. Ensifentrine (RPL554): An investigational PDE3/4 inhibitor for the treatment of COPD. Expert Opin. Investig. Drugs 2019, 28, 827–833. [Google Scholar] [CrossRef]
- Shih, C.H.; Wang, W.H.; Chen, C.M.; Ko, W.C. Hesperetin-5,7,3’-O-trimethylether dually inhibits phosphodiesterase 3/4 and methacholine-induced airway hyperresponsiveness in sensitized and challenged mice. Drug Des. Devel. 2020, 14, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Conche, C.; Boulla, G.; Trautmann, A.; Randriamampita, C. T cell adhesion primes antigen receptor-induced calcium responses through a transient rise in adenosine 3’,5’-cyclic monophosphate. Immunity 2009, 30, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Ozegbe, P.; Foey, A.D.; Ahmed, S.; Williams, R.O. Impact of cAMP on the T-cell response to type II collagen. Immunology 2004, 111, 35–40. [Google Scholar] [CrossRef]
- Paccani, S.R.; Benagiano, M.; Savino, M.T.; Finetti, F.; Tonello, F.; D’Elios, M.M.; Baldari, C.T. The adenylate cyclase toxin of Bacillus anthracis is a potent promoter of T(H)17 cell development. J. Allergy Clin. Immunol. 2011, 127, 1635–1637. [Google Scholar] [CrossRef]
- Yao, C.; Sakata, D.; Esaki, Y.; Li, Y.; Matsuoka, T.; Kuroiwa, K.; Sugimoto, Y.; Narumiya, S. Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat. Med. 2009, 15, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Rossi Paccani, S.; Benagiano, M.; Capitani, N.; Zornetta, I.; Ladant, D.; Montecucco, C.; D’Elios, M.M.; Baldari, C.T. The adenylate cyclase toxins of Bacillus anthracis and Bordetella pertussis promote Th2 cell development by shaping T cell antigen receptor signaling. Plos Pathog. 2009, 5, e1000325. [Google Scholar] [CrossRef] [Green Version]
PDE7 Inhibitors | Disease Model/Disease | References |
---|---|---|
5-imino-1,2,4-thiadiazole derivative: “compound 15” |
| Redondo et al., 2012 [52] |
furan derivative: “derivative 13” | Redondo et al., 2012 [55] | |
TC3.6 (BRL-50481: no effect) | González-García et al., 2013 [57] | |
VP3.15, BRL-50481 | Martín-Álvarez et al., 2017 [58] | |
VP3.15 | Medina-Rodríguez et al., 2017 [59] | |
TC3.6 | Mestre et al., 2015 [60] | |
S14, VP1.15 |
| Paterniti et al., 2011 [61] |
S14 S14 |
| Bartolome et al., 2018 [62] Perez-Gonzalez et al., 2013 [63] |
S14 |
| Morales-Garcia et al., 2015, 2020 [64,65] |
BRL-50481 |
| Chen et. al., 2020 [66] |
BRL-50481 |
| Mokry et al., 2013 [67] Page, 2014 [68] |
“compound 21a”: no effect |
| Chevalier et al., [51] |
BRL-50481 (in combination with rolipram) | de Medeiros et al., 2017 [70] | |
Spiroquinazolinone | Dong et. al, 2010 [46] | |
BRL-50481, IR-202 | Zhang et al., 2008 [45] | |
Spiroquinazolinone |
| Dong et al., 2015 [71] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczypka, M. Role of Phosphodiesterase 7 (PDE7) in T Cell Activity. Effects of Selective PDE7 Inhibitors and Dual PDE4/7 Inhibitors on T Cell Functions. Int. J. Mol. Sci. 2020, 21, 6118. https://doi.org/10.3390/ijms21176118
Szczypka M. Role of Phosphodiesterase 7 (PDE7) in T Cell Activity. Effects of Selective PDE7 Inhibitors and Dual PDE4/7 Inhibitors on T Cell Functions. International Journal of Molecular Sciences. 2020; 21(17):6118. https://doi.org/10.3390/ijms21176118
Chicago/Turabian StyleSzczypka, Marianna. 2020. "Role of Phosphodiesterase 7 (PDE7) in T Cell Activity. Effects of Selective PDE7 Inhibitors and Dual PDE4/7 Inhibitors on T Cell Functions" International Journal of Molecular Sciences 21, no. 17: 6118. https://doi.org/10.3390/ijms21176118
APA StyleSzczypka, M. (2020). Role of Phosphodiesterase 7 (PDE7) in T Cell Activity. Effects of Selective PDE7 Inhibitors and Dual PDE4/7 Inhibitors on T Cell Functions. International Journal of Molecular Sciences, 21(17), 6118. https://doi.org/10.3390/ijms21176118