Standardization and Validation of Fluorescence-Based Quantitative Assay to Study Human Platelet Adhesion to Extracellular-Matrix in a 384-Well Plate
Abstract
:1. Introduction
2. Results
2.1. Assay Optimization
2.1.1. Assay Linearity
2.1.2. Non-Specific Binding Blocking
2.1.3. Optimal ECM Protein Concentration to Perform Platelet Adhesion Assay
2.2. Assay Validation
2.2.1. Comparison between BCECF-AM vs. Calcein-AM and Its Variations
2.2.2. Z′-Factor Calculation in a 384-Well Plate
3. Discussion
Year | Type of Plate | ECM Concentration | Blocking BSA | Platelet Concentration | Dye Concentration | Type of Measurement | Ref. |
---|---|---|---|---|---|---|---|
2000 | MicroFLUOR 96-well (Dynatech) | Collagen (2 μg/well) or CRP (1.5 μg/well) | 5% | N/A | Pre-labeled platelets with 2 μM Calcein-AM at RT, 30 min | Plate reader without lysing platelets | [23] |
2000 | Microfluor 96-well (Dynatech) | Collagen (2 μg/well) or Convulxin (1.5 μg/well) | N/A | N/A | Pre-labeled platelets Calcein-AM | Plate reader without lysing platelets | [24] |
2002 | 96-well (N/A) | Vitronectin (5 μg/mL) or Fibrinogen (10 μg/mL) | 3% | 100,000/μL | Pre-labeled platelets with 2.5 μM Calcein-AM at RT, 30 min | Plate reader after lysing platelets | [25] |
2003 | Tissue culture 96-well (Costar) | D100 or D98 Fibrinogen fragments (20 μg/mL) | 1% | 100,000/μL | Pre-labeled platelets with 10 μM Calcein-AM at 37 °C, 30 min | Plate reader without lysing platelets | [26] |
2004 | MaxiSorp 96-well (Invitrogen™) | N/A | 2% | 200,000/μL | Pre-labeled platelets withn 2 μM Calcein-AM at 37 °C, 60 min | Microscopy | [27] |
2006 | 96-well (Greiner) | Fibronectin (5 μg/well) | N/A | N/A | Pre-labeled platelets with 5 μM Calcein-AM, 60 min | Plate reader without lysing platelets | [28] |
2006 | 96-well (N/A) | Fibronectin (5 µg/well) or Collagen-III (1 µg/well) | N/A | 1000/μL | Pre-labeled platelets with 5 μM Calcein-AM, 60 min | Plate reader without lysing platelets | [29] |
2008 | 384-well (Corning no. 3711) | Fibrinogen (50 μg/mL) | 0.35% | 250,000/μL | Pre-labeled platelets with 7 μM Calcein-AM at RT, 30 min | Plate reader without lysing platelets | [30] |
2010 | Immulon 4HBX 96-well (ThermoLabsystems) | Fibrinogen (0.1 to 50 μg/mL) | 1% | 100,000/μL | Pre-labeled platelets with 10 μM Calcein-AM at 37 °C, 30 min | Plate reader without lysing platelets | [31] |
2010 | Microfluor 96-well (ThermoLabsystems) | Collagen (2 μg/well) | 2% | 200,000/μL | Pre-labeled platelets with Calcein-AM | Plate reader without lysing platelets | [32] |
2010 | Immulon-2HB 96-well (Dynex Technologies) | Laminin-511 or Collagen (5 to 200 μg/mL) | 3% | 100,000/μL | Pre-labeled platelets with 4 μM Calcein-AM | Plate reader without lysing platelets | [33] |
2010 | Microfluor 96-well (ThermoLabsystems) | Fibrillar Collagen (1 μg/well) | 2% | N/A | Pre-labeled platelets with 2 μM Calcein-AM, 30 min | Plate reader without lysing platelets | [34] |
2011 | Microfluor 2 high-affinity 96-well (Thermo Electron Co) | Fibronectin (1 μg/mL), Fibrinogen (100 μg/mL) or Collagen-I (2 μg/mL) | 2% | 200,000/μL | Pre-labeled platelets with 2 μM Calcein-AM at RT, 30 min | Plate reader without lysing platelets | [35] |
2011 | 96-well (N/A) | Fibrinogen (concentration not mentioned) | 0.35% | 200/μL | Pre-labeled platelets with 7 μM Calcein-AM | Plate reader without lysing platelets | [36] |
2011 | Polystyrene 96-well (Nunc) | Fibrinogen (10 μg/mL) | N/A | 200,000/μL | Pre-labeled platelets with 7 μM Calcein-AM at 37 °C, 30 min | Plate reader without lysing platelets | [37] |
2012 | Microfluor 96-well (ThermoLabsystems) | Collagen (1 μg/well) | 2% | 200,000/μL | Pre-labeled platelets with 2 μM Calcein-AM at RT, 30 min | Plate reader without lysing platelets | [38] |
2012 | 96-well (N/A) | Fibrinogen (50 μg/mL) | 1% | 200,000/μL | Pre-labeled platelets with 2.5 μM Calcein-AM at RT, 15 min | Plate reader without lysing platelets | [39] |
2013 | 96-well (N/A) | Collagen (40 μg/mL) | 5% | N/A | Pre-labeled platelets with 2.5 μM Calcein-AM at RT, 15 min | Plate reader after lysing platelets | [40] |
2013 | Microfluor 96-well plates (ThermoLabsystems) | Collagen-I (20 μg/mL) | 2% | 200,000/μL | Pre-labeled platelets with 2 μM Calcein-AM at RT, 30 min | Plate reader without lysing platelets | [41] |
2014 | Tissue culture 96-well (Costa) | Fragment D98 (10 μg/mL) | 1% | 100,000/μL | Pre-labeled platelets with 10 μM Calcein-AM at 37 °C, 30 min | Plate reader without lysing platelets | [42] |
2015 | Microfluor 96-well (Thermo Labsystems) | Collagen (1 μg/well) or Fibrinogen (50 μg/well) | 2% | 200,000/μL | Pre-labeled platelets with 2 μM Calcein-AM at RT, 30 min | Plate reader without lysing platelets | [43] |
2016 | 96-well (N/A) | Fibrinogen (50 μg/mL) | 5% | 500,000/well | Pre-labeled platelets with 7 μM Calcein-AM | Plate reader without lysing platelets | [44] |
2016 | 96-well (Corning) | Collagen (100 μg/mL) | 1% | N/A | Pre-labeled platelets with 10 ng/mL Calcein for 30min 37C | Plate reader without lysing platelets | [45] |
2017 | 96-well (Greiner Bio-one, 655096) | Fibrinogen or Fibrinogen fragment D98 (10 μg/mL) | 0.35% | 200,000/μL | Pre-labeled platelets with 7 uM Calcein for 30min RT | Plate reader without lysing platelets | [46] |
2020 | 96-well (N/A) | Collagen (20 μg/mL) | 2% | 200,000/μL | Pre-labeled platelets with 4 μM Calcein-AM at 37 °C, 60 min | Plate reader without lysing platelets | [47] |
Year | Type of Plate | ECM Concentration | Blocking BSA | Platelet Concentration | Dye Concentration | Type of Measurement | Ref. |
---|---|---|---|---|---|---|---|
1996 | 96-well (N/A) | Collagen (100 μg/mL) | 0.35% | 300,000/μL | Pre-labeled platelets with 2 μM BCECF-AM at 37 °C, 30 min | Plate reader without lysing platelets | [48] |
1997 | 96-well (Falcon) | Collagen-I or Fibrinogen (100 μg/mL) | 0.0005% | 375,000/μL | Pre-labeled platelets with 6 mM BCECF-AM at 37 °C, 30 min | Plate reader after lysing platelets | [49] |
1997 | 96-well (Costar) | Fibronectin or Vitronectin (0.05 to 1.5 μg/well) | 0.50% | 300,000/μL | Pre-labeled platelets with 5 μM BCECF-AM at 37 °C, 40 min | Plate reader without lysing platelets | [50] |
1997 | 96-well (Costar) | Fibronectin, Vitronectin, vWF, laminin (1 μg/well) or collagen-IV (5 μg/well) | 0.50% | 300,000/μL | Pre-labeled platelets with 5 μM BCECF-AM at 37 °C, 40 min | Plate reader without lysing platelets | [51] |
1998 | 96-well (N/A) | Fibrinogen (0.01, 0.1 and 2 μg/well) | N/A | 400,000/μL | Pre-labeled platelets with 12 μM BCECF-AM at 37 °C, 30 min | Plate reader without lysing platelets | [52] |
1999 | 96-well (Immulon-2) | Fibrinogen (1 ng to 2 μg/well) | N/A | 4,000,000/μL | Pre-labeled platelets with 6 μM BCECF-AM at 37 °C, 30 min | Plate reader without lysing platelets | [53] |
1999 | 96-well (Costar) | Fibronectin, Vitronectin, vWF or Laminin (120 μg/mL) | 0.50% | 300,000/μL | Pre-labeled platelets with 5 μM BCECF-AM at 37 °C, 40 min | Plate reader without lysing platelets | [54] |
2008 | 96-well (N/A) | Collagen or Fibrinogen (50 μg/mL) | 1% | N/A | Pre-labeled platelets with BCECF-AM for 40 min (temperature and concentration N/A) | Microscopy | [55] |
2010 | 96-well (N/A) | Collagen or Fibrinogen(50 μg/mL) | 1% | N/A | Pre-labeled platelets with BCECF-AM for 30 min (temperature and concentration N/A) | Plate reader without lysing platelets | [56] |
2018 | 96-well (N/A) | Collagen (10 μg/mL) | 0.5% or 0.05% | N/A | Pos-labelling platelets with 12 μM BCECF-AM (incubation time and temperature N/A) | Plate reader after lysing platelets | [57] |
2019 | 96-well (N/A) | Fibrinogen (100 μg/mL) | 5% | 200,000/μL | Pre-labeled platelets with BCECF-AM at 37 °C for 30 min (concentration N/A) | Plate reader after lysing platelets | [58] |
4. Materials and Methods
4.1. Materials
4.2. Washed Platelet Preparation
4.3. Study Design
4.3.1. 96-Well Plate and BCECF-AM
4.3.2. 96-Well Plate and Calcein-AM
4.3.3. 384-Well Plate and BCECF-AM
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AM | Acetoxymethyl |
BCECF | 2′,7′-Bis-(2-Carboxyethyl)-5-(and-6)-Carboxyfluorescein |
BSA | Bovine Serum Albumin |
CRP | Collagen-Related Peptide |
ECM | Extracellular Matrix |
Fbg | Fibrinogen |
N/A | Not Available |
p | Probability value |
PGE1 | Prostaglandin E1 |
RT | Room Temperature |
PRP | Platelet-Rich Plasma |
PPP | Platelet-Poor Plasma |
SEM | Standard Error of the Mean |
SBB | Sudan Black B |
SD | Standard Deviation |
SOP | Standard Operating Procedure |
FI | Fluorescence Intensity |
References
- Ruggeri, Z.M.; Mendolicchio, G.L. Adhesion mechanisms in platelet function. Circ. Res. 2007, 100, 1673–1685. [Google Scholar] [CrossRef]
- Bergmeier, W.; Hynes, R.O. Extracellular matrix proteins in hemostasis and thrombosis. Cold Spring Harb. Perspect. Biol. 2012, 4. [Google Scholar] [CrossRef] [PubMed]
- Frenette, P.S.; Denis, C.V.; Weiss, L.; Jurk, K.; Subbarao, S.; Kehrel, B.; Hartwig, J.H.; Vestweber, D.; Wagner, D.D. P-Selectin Glycoprotein Ligand 1 (Psgl-1) Is Expressed on Platelets and Can Mediate Platelet–Endothelial Interactions in Vivo. J. Exp. Med. 2000, 191, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, A.C.; Whiss, P.A. Measurement of adhesion of human platelets in plasma to protein surfaces in microplates. J. Pharmacol. Toxicol. Methods 2005, 52, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Varga-Szabo, D.; Pleines, I.; Nieswandt, B. Cell adhesion mechanisms in platelets. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, Z.M. Platelets in atherothrombosis. Nat. Med. 2002, 8, 1227–1234. [Google Scholar] [CrossRef]
- Stoll, G.; Kleinschnitz, C.; Nieswandt, B. Molecular mechanisms of thrombus formation in ischemic stroke: Novel insights and targets for treatment. Blood 2008, 112, 3555–3562. [Google Scholar] [CrossRef]
- Yurchenco, P.D. Basement membranes: Cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol. 2011, 3. [Google Scholar] [CrossRef] [Green Version]
- Voss, B.; Rauterberg, J. Localization of collagen types I, III, IV and V, fibronectin and laminin in human arteries by the indirect immunofluorescence method. Pathol. Res. Pract. 1986, 181, 568–575. [Google Scholar] [CrossRef]
- Polanowska-Grabowska, R.; Simon, C.G.; Gear, A.R. Platelet adhesion to collagen type I, collagen type IV, von Willebrand factor, fibronectin, laminin and fibrinogen: Rapid kinetics under shear. Thromb. Haemost. 1999, 81, 118–123. [Google Scholar]
- Colman, R.W. Hemostasis and Thrombosis: Basic Principles and Clinical Practice; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Martins Lima, A.; Martins Cavaco, A.C.; Fraga-Silva, R.A.; Eble, J.A.; Stergiopulos, N. From Patients to Platelets and Back Again: Pharmacological Approaches to Glycoprotein VI, a Thrilling Antithrombotic Target with Minor Bleeding Risks. Thromb. Haemost. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanini, L.; Bergmeier, W. Negative regulators of platelet activation and adhesion. J. Thromb. Haemost. 2018, 16, 220–230. [Google Scholar] [CrossRef]
- Denis, C.V.; Wagner, D.D. Platelet adhesion receptors and their ligands in mouse models of thrombosis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Massberg, S.; Schürzinger, K.; Lorenz, M.; Konrad, I.; Schulz, C.; Plesnila, N.; Kennerknecht, E.; Rudelius, M.; Sauer, S.; Braun, S.; et al. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: An in vivo study in mice lacking glycoprotein IIb. Circulation 2005, 112, 1180–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawaz, M. Platelets and Inflammation. Platelet Funct. 2005, 115–147. [Google Scholar] [CrossRef]
- Li, Z.; Yang, F.; Dunn, S.; Gross, A.K.; Smyth, S.S. Platelets as immune mediators: Their role in host defense responses and sepsis. Thromb Res. 2011, 127, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Li, N. Platelets in cancer metastasis: To help the “villain” to do evil. Int. J. Cancer 2016, 138, 2078–2087. [Google Scholar] [CrossRef]
- Xu, X.-X.; Gao, X.-H.; Pan, R.; Lu, D.; Dai, Y. A simple adhesion assay for studying interactions between platelets and endothelial cells in vitro. Cytotechnology 2010, 62, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Chiba, M.; Malik, S.W.; Specks, U. Microtiter plate immunoassay for the evaluation of platelet adhesion to fibronectin. J. Immunol. Methods 1996, 191, 55–63. [Google Scholar] [CrossRef]
- Begley, C.G.; Ioannidis, J.P.A. Reproducibility in science: Improving the standard for basic and preclinical research. Circ. Res. 2015, 116, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.H.; Chung, T.D.Y.; Oldenburg, K.R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen 1999, 4, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Francischetti, I.M.; Chiang, T.M.; Guimarães, J.A.; Bon, C. Role of the recombinant non-integrin platelet collagen receptor P65 on platelet activation induced by convulxin. Biochem. Biophys. Res. Commun. 2000, 270, 932–935. [Google Scholar] [CrossRef] [PubMed]
- Francischetti, I.M.B.; Ribeiro, J.M.C.; Champagne, D.; Andersen, J. Purification, Cloning, Expression, and Mechanism of Action of a Novel Platelet Aggregation Inhibitor from the Salivary Gland of the Blood-sucking Bug, Rhodnius prolixus. J. Biol. Chem. 2000, 275, 12639–12650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavakis, T.; Boeckel, N.; Santoso, S.; Voss, R.; Isordia-Salas, I.; Pixley, R.A.; Morgenstern, E.; Colman, R.W.; Preissner, K.T. Inhibition of platelet adhesion and aggregation by a defined region (Gly-486-Lys-502) of high molecular weight kininogen. J. Biol. Chem. 2002, 277, 23157–23164. [Google Scholar] [CrossRef] [Green Version]
- Podolnikova, N.P.; Yakubenko, V.P.; Volkov, G.L.; Plow, E.F.; Ugarova, T.P. Identification of a novel binding site for platelet integrins alpha IIb beta 3 (GPIIbIIIa) and alpha 5 beta 1 in the gamma C-domain of fibrinogen. J. Biol. Chem. 2003, 278, 32251–32258. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.M. Platelet Adhesion Assays Performed Under Static Conditions. In Platelets and Megakaryocytes: Volume 1: Functional Assays; Gibbins, J.M., Mahaut-Smith, M.P., Eds.; Methods In Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2004; pp. 145–151. ISBN 978-1-59259-782-6. [Google Scholar]
- Dai, E.; Viswanathan, K.; Sun, Y.M.; Li, X.; Liu, L.Y.; Togonu-Bickersteth, B.; Richardson, J.; Macaulay, C.; Nash, P.; Turner, P.; et al. Identification of Myxomaviral Serpin Reactive Site Loop Sequences That Regulate Innate Immune Responses. J. Biol. Chem. 2006, 281, 8041–8050. [Google Scholar] [CrossRef]
- Viswanathan, K.; Liu, L.; Vaziri, S.; Dai, E.; Richardson, J.; Togonu-Bickersteth, B.; Vatsya, P.; Christov, A.; Lucas, A.R. Myxoma viral serpin, Serp-1, a unique interceptor of coagulation and innate immune pathways. Thromb. Haemost. 2006, 95, 499–510. [Google Scholar] [CrossRef]
- Blue, R.; Murcia, M.; Karan, C.; Jirousková, M.; Coller, B.S. Application of high-throughput screening to identify a novel alphaIIb-specific small- molecule inhibitor of alphaIIbbeta3-mediated platelet interaction with fibrinogen. Blood 2008, 111, 1248–1256. [Google Scholar] [CrossRef]
- Podolnikova, N.P.; Yermolenko, I.S.; Fuhrmann, A.; Lishko, V.K.; Magonov, S.; Bowen, B.; Enderlein, J.; Podolnikov, A.V.; Ros, R.; Ugarova, T.P. Control of Integrin αIIbβ3 Outside-In Signaling and Platelet Adhesion by Sensing the Physical Properties of Fibrin(ogen) Substrates. Biochemistry 2010, 49, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Assumpção, T.C.F.; Alvarenga, P.H.; Ribeiro, J.M.C.; Andersen, J.F.; Francischetti, I.M.B. Dipetalodipin, a Novel Multifunctional Salivary Lipocalin That Inhibits Platelet Aggregation, Vasoconstriction, and Angiogenesis through Unique Binding Specificity for TXA2, PGF2α, and 15(S)-HETE. J. Biol. Chem. 2010, 285, 39001–39012. [Google Scholar] [CrossRef] [Green Version]
- Crockett, J.; Newman, D.K.; Newman, P.J. PECAM-1 functions as a negative regulator of laminin-induced platelet activation. J. Thromb. Haemost. 2010, 8, 1584–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, E.; Tokumasu, F.; Mizurini, D.M.; McPhie, P.; Narum, D.L.; Ribeiro, J.M.C.; Monteiro, R.Q.; Francischetti, I.M.B. Aegyptin displays high-affinity for the von Willebrand factor binding site (RGQOGVMGF) in collagen and inhibits carotid thrombus formation in vivo. FEBS J. 2010, 277, 413–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, D.; Xu, X.; An, S.; Liu, H.; Yang, X.; Andersen, J.F.; Wang, Y.; Tokumasu, F.; Ribeiro, J.M.C.; Francischetti, I.M.B.; et al. A novel family of RGD-containing disintegrins (Tablysin-15) from the salivary gland of the horsefly Tabanus yao targets αIIbβ3 or αVβ3 and inhibits platelet aggregation and angiogenesis. Thromb. Haemost. 2011, 105, 1032–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hausmann, J.; Kamtekar, S.; Christodoulou, E.; Day, J.E.; Wu, T.; Fulkerson, Z.; Albers, H.M.H.G.; van Meeteren, L.A.; Houben, A.J.S.; van Zeijl, L.; et al. Structural basis of substrate discrimination and integrin binding by autotaxin. Nat. Struct. Mol. Biol. 2011, 18, 198–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulkerson, Z.; Wu, T.; Sunkara, M.; Kooi, C.V.; Morris, A.J.; Smyth, S.S. Binding of Autotaxin to Integrins Localizes Lysophosphatidic Acid Production to Platelets and Mammalian Cells. J. Biol. Chem. 2011, 286, 34654–34663. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Assumpção, T.C.F.; Li, Y.; Andersen, J.F.; Ribeiro, J.; Francischetti, I.M.B. Triplatin, a platelet aggregation inhibitor from the salivary gland of the triatomine vector of Chagas disease, binds to TXA(2) but does not interact with glycoprotein PVI. Thromb. Haemost. 2012, 107, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Sachs, U.J.; Bakchoul, T.; Eva, O.; Giptner, A.; Bein, G.; Aster, R.H.; Gitter, M.; Peterson, J.; Santoso, S. A point mutation in the EGF-4 domain of β(3) integrin is responsible for the formation of the Sec(a) platelet alloantigen and affects receptor function. Thromb. Haemost. 2012, 107, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Lim, K.-M.; Shin, H.-J.; Seo, D.-B.; Noh, J.-Y.; Kang, S.; Chung, H.Y.; Shin, S.; Chung, J.-H.; Bae, O.-N. Inhibitory effects of black soybean on platelet activation mediated through its active component of adenosine. Thromb. Res. 2013, 131, 254–261. [Google Scholar] [CrossRef]
- Assumpcao, T.C.F.; Ma, D.; Schwarz, A.; Reiter, K.; Santana, J.M.; Andersen, J.F.; Ribeiro, J.M.; Nardone, G.; Yu, L.L.; Francischetti, I.M.B. Salivary antigen-5/CAP family members are Cu2+-dependent antioxidant enzymes which scavenge O2- and inhibit collagen-induced platelet aggregation and neutrophil oxidative burst. J. Biol. Chem. 2013, jbc.M113.466995. [Google Scholar] [CrossRef] [Green Version]
- Podolnikova, N.P.; Yakovlev, S.; Yakubenko, V.P.; Wang, X.; Gorkun, O.V.; Ugarova, T.P. The Interaction of Integrin αIIbβ3 with Fibrin Occurs through Multiple Binding Sites in the αIIb β-Propeller Domain. J. Biol. Chem. 2014, 289, 2371–2383. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Francischetti, I.M.B.; Ribeiro, J.M.C.; Andersen, J.F. The structure of hookworm platelet inhibitor (HPI), a CAP superfamily member from Ancylostoma caninum. Acta Crystallogr. F Struct. Biol. Commun. 2015, 71, 643–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Joshi, S.; Xiang, B.; Kanaho, Y.; Li, Z.; Bouchard, B.A.; Moncman, C.L.; Whiteheart, S.W. Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking. Blood 2016, 127, 1459–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newburg, D.S.; Tanritanir, A.C.; Chakrabarti, S. Lactodifucotetraose, a human milk oligosaccharide, attenuates platelet function and inflammatory cytokine release. J. Thromb. Thromb. 2016, 42, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Zafar, H.; Shang, Y.; Li, J.; David, G.A.; Fernandez, J.P.; Molina, H.; Filizola, M.; Coller, B.S. αIIbβ3 binding to a fibrinogen fragment lacking the γ-chain dodecapeptide is activation dependent and EDTA inducible. Blood Adv. 2017, 1, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Venturini, W.; Olate-Briones, A.; Valenzuela, C.; Méndez, D.; Fuentes, E.; Cayo, A.; Mancilla, D.; Segovia, R.; Brown, N.E.; Moore-Carrasco, R. Platelet Activation Is Triggered by Factors Secreted by Senescent Endothelial HMEC-1 Cells In Vitro. Int. J. Mol. Sci. 2020, 21, 3287. [Google Scholar] [CrossRef]
- Wu, C.C.; Ko, F.N.; Huang, T.F.; Teng, C.M. Mechanisms-regulated platelet spreading after initial platelet contact with collagen. Biochem. Biophys. Res. Commun. 1996, 220, 388–393. [Google Scholar] [CrossRef]
- Liu, C.Z.; Huang, T.F. Crovidisin, a collagen-binding protein isolated from snake venom of Crotalus viridis, prevents platelet-collagen interaction. Arch. Biochem. Biophys. 1997, 337, 291–299. [Google Scholar] [CrossRef]
- Sheu, J.B.; Ko, W.C.; Hung, W.C.; Peng, H.C.; Huang, T.F. Interaction of thrombin-activated platelets with extracellular matrices (fibronectin and vitronectin): Comparison of the activity of Arg-Gly-Asp-containing venom peptides and monoclonal antibodies against glycoprotein IIb/IIIa complex. J. Pharm. Pharmacol. 1997, 49, 78–84. [Google Scholar] [CrossRef]
- Sheu, J.R.; Yen, M.H.; Hung, W.C.; Lee, Y.M.; Su, C.H.; Huang, T.F. Triflavin inhibits platelet-induced vasoconstriction in de-endothelialized aorta. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 3461–3468. [Google Scholar] [CrossRef]
- Leng, L.; Kashiwagi, H.; Ren, X.D.; Shattil, S.J. RhoA and the function of platelet integrin alphaIIbbeta3. Blood 1998, 91, 4206–4215. [Google Scholar] [CrossRef]
- Law, D.A.; Nannizzi-Alaimo, L.; Ministri, K.; Hughes, P.E.; Forsyth, J.; Turner, M.; Shattil, S.J.; Ginsberg, M.H.; Tybulewicz, V.L.; Phillips, D.R. Genetic and pharmacological analyses of Syk function in alphaIIbbeta3 signaling in platelets. Blood 1999, 93, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Sheu, J.R.; Hung, W.C.; Wu, C.H.; Ma, M.C.; Kan, Y.C.; Lin, C.H.; Lin, M.S.; Luk, H.N.; Yen, M.H. Reduction in lipopolysaccharide-induced thrombocytopenia by triflavin in a rat model of septicemia. Circulation 1999, 99, 3056–3062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.C.; Wu, W.B.; Huang, T.F. A snake venom metalloproteinase, kistomin, cleaves platelet glycoprotein VI and impairs platelet functions. J. Thromb. Haemost. 2008, 6, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.-L.; Chiang, M.-L.; Huang, T.-F.; Su, K.-P.; Lane, H.-Y.; Lai, Y.-C. A selective serotonin reuptake inhibitor, citalopram, inhibits collagen-induced platelet aggregation and activation. Thromb. Res. 2010, 126, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.M.; Wegner, S.V.; Martins Cavaco, A.C.; Estevão-Costa, M.I.; Sanz-Soler, R.; Niland, S.; Nosov, G.; Klingauf, J.; Spatz, J.P.; Eble, J.A. The spatial molecular pattern of integrin recognition sites and their immobilization to colloidal nanobeads determine α2β1 integrin-dependent platelet activation. Biomaterials 2018, 167, 107–120. [Google Scholar] [CrossRef]
- Tseng, Y.-L.; Braun, A.; Chang, J.P.-C.; Chiang, M.-L.; Tseng, C.-Y.; Chen, W. Micromolar concentrations of citalopram or escitalopram inhibit glycoprotein VI-mediated and integrin αIIbβ3-mediated signaling in human platelets. Toxicol. Appl. Pharmacol. 2019, 364, 106–113. [Google Scholar] [CrossRef]
- Encyclopedia of Spectroscopy and Spectrometry—3rd Edition. Academic Press, 2016. Available online: https://www.elsevier.com/books/encyclopedia-of-spectroscopy-and-spectrometry/lindon/978-0-12-803224-4 (accessed on 5 September 2020).
- Gdovin, M.J.; Zamora, D.A.; Ravindran, C.R.M.; Leiter, J.C. Optical recording of intracellular pH in respiratory chemoreceptors. Ethn. Dis. 2010, 20, S1-33–S1-38. [Google Scholar]
- Homolya, L.; Holló, Z.; Germann, U.A.; Pastan, I.; Gottesman, M.M.; Sarkadi, B. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J. Biol. Chem. 1993, 268, 21493–21496. [Google Scholar]
- Ramirez, C.N.; Antczak, C.; Djaballah, H. Cell viability assessment: Toward content-rich platforms. Expert Opin. Drug Discov. 2010, 5, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Nolte, M.A.; Kraal, G.; Mebius, R.E. Effects of fluorescent and nonfluorescent tracing methods on lymphocyte migration in vivo. Cytometry A 2004, 61, 35–44. [Google Scholar] [CrossRef]
- Membrane Fusion Technique, Part B, Volume 221—1st Edition. Available online: https://www.elsevier.com/books/membrane-fusion-technique-part-b/abelson/978-0-12-182122-7 (accessed on 5 September 2020).
- Gan, B.S.; Krump, E.; Shrode, L.D.; Grinstein, S. Loading pyranine via purinergic receptors or hypotonic stress for measurement of cytosolic pH by imaging. Am. J. Physiol. 1998, 275, C1158–C1166. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.P.; Zhou, W.L.; Baltz, J.M. Fluorophore toxicity in mouse eggs and zygotes. Zygote 1998, 6, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Gdovin, M.J.; Zamora, D.A.; Ravindran, C.R.M.; Costanzo, M.C.; Leiter, J.C. Employing a pH Sensitive Fluorophore to Measure Intracellular pH in the In Vitro Brainstem Preparation of Rana catesbeiana. Open Zool. J. 2010. [Google Scholar] [CrossRef] [Green Version]
- Oswald, M.W.; Hunt, H.H.; Lazarchick, J. Normal range of plasma fibrinogen. Am. J. Med. Technol. 1983, 49, 57–59. [Google Scholar] [PubMed]
- Ozkan, P.; Mutharasan, R. A rapid method for measuring intracellular pH using BCECF-AM. Biochim. Biophys. Acta 2002, 1572, 143–148. [Google Scholar] [CrossRef]
Dye | BCECF-AM and Calcein-AM |
---|---|
Signal | Fluorescence |
Excitation: | 485 nm |
Emission: | 535 nm |
Measurement time: | 0.1 s |
Lamp energy (CW): | 15000 |
Emission side: | Above |
Temperature: | 22 °C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins Lima, A.; Saint Auguste, D.S.; Cuenot, F.; Martins Cavaco, A.C.; Lachkar, T.; Khawand, C.M.E.; Fraga-Silva, R.A.; Stergiopulos, N. Standardization and Validation of Fluorescence-Based Quantitative Assay to Study Human Platelet Adhesion to Extracellular-Matrix in a 384-Well Plate. Int. J. Mol. Sci. 2020, 21, 6539. https://doi.org/10.3390/ijms21186539
Martins Lima A, Saint Auguste DS, Cuenot F, Martins Cavaco AC, Lachkar T, Khawand CME, Fraga-Silva RA, Stergiopulos N. Standardization and Validation of Fluorescence-Based Quantitative Assay to Study Human Platelet Adhesion to Extracellular-Matrix in a 384-Well Plate. International Journal of Molecular Sciences. 2020; 21(18):6539. https://doi.org/10.3390/ijms21186539
Chicago/Turabian StyleMartins Lima, Augusto, Damian S. Saint Auguste, François Cuenot, Ana C. Martins Cavaco, Tom Lachkar, Cindy Marie Elodie Khawand, Rodrigo A. Fraga-Silva, and Nikolaos Stergiopulos. 2020. "Standardization and Validation of Fluorescence-Based Quantitative Assay to Study Human Platelet Adhesion to Extracellular-Matrix in a 384-Well Plate" International Journal of Molecular Sciences 21, no. 18: 6539. https://doi.org/10.3390/ijms21186539
APA StyleMartins Lima, A., Saint Auguste, D. S., Cuenot, F., Martins Cavaco, A. C., Lachkar, T., Khawand, C. M. E., Fraga-Silva, R. A., & Stergiopulos, N. (2020). Standardization and Validation of Fluorescence-Based Quantitative Assay to Study Human Platelet Adhesion to Extracellular-Matrix in a 384-Well Plate. International Journal of Molecular Sciences, 21(18), 6539. https://doi.org/10.3390/ijms21186539