AAA+ Molecular Chaperone ClpB in Leptospira interrogans: Its Role and Significance in Leptospiral Virulence and Pathogenesis of Leptospirosis
Abstract
:1. Introduction
2. Leptospira, Leptospirosis, and Cross-Talk between Pathogenic Leptospira and Their Host
3. ClpB Disaggregase—Its Structure and Mechanism of ClpB-Mediated Protein Disaggregation and Reactivation
4. The Role of ClpB in Pathogenic L. interrogans—Another Side of This Chaperone Function
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Costa, F.; Hagan, J.E.; Calcagno, J.; Kane, M.; Torgerson, P.; Martinez-Silveira, M.S.; Stein, C.; Abela-Ridder, B.; Ko, A.I. Global morbidity and mortality of leptospirosis: A systematic review. PLoS Negl. Trop. Dis. 2015, 9, e0003898. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.G.; Nola, L.; O’Grady, L.; More, S.J.; Doherty, L.M. Seroprevalence of Leptospira Hardjo in the irish suckler cattle population. Ir. Vet. J. 2012, 65, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truszczyński, M.; Pejsak, Z. New data concerning diagnosis and control of swine leptospirosis. Życie Weter. 2012, 87, 369–372. [Google Scholar]
- Arent, Z.; Kędzierska-Mieszkowska, S. Seroprevalence study of leptospirosis in horses in northern Poland. Vet. Rec. 2013, 172, 269. [Google Scholar] [CrossRef] [PubMed]
- Arent, Z.; Frizzell, C.; Gilmore, C.; Mackie, D.; Ellis, W.A. Isolation of leptospires from genital tract of sheep. Vet. Rec. 2013, 173, 582. [Google Scholar] [CrossRef]
- Gomes-Solecki, M.; Santecchia, I.; Werts, C. Animal models of leptospirosis of mice and hamsters. Front. Immunol. 2017, 8, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bliska, J.B.; Galán, J.E.; Falkow, S. Signal transduction in the mammalian cell during bacterial attachment and entry. Cell 1993, 73, 903–920. [Google Scholar] [CrossRef]
- Galán, J.E.; Bliska, J.B. Cross-talk between bacterial pathogens and their host cells. Annu. Rev. Cell Dev. Biol. 1996, 12, 221–255. [Google Scholar] [CrossRef]
- Lourdault, K.; Cerqueira, G.M.; Wunder, E.A., Jr.; Picardeau, M. Inactivation of clpB in the pathogen Leptospira interrogans reduces virulence and resistance to stress conditions. Infect. Immun. 2011, 79, 3711–3717. [Google Scholar] [CrossRef] [Green Version]
- Eshghi, A.; Becam, J.; Lambert, A.; Sismeiro, O.; Dillies, M.-A.; Jagla, B., Jr.; Wunder, E.A., Jr.; Ko, A.I.; Coppee, J.-Y.; Goarant, C.; et al. A putative regulatory genetic locus modulates virulence in the pathogen Leptospira interrogans. Infect. Immun. 2014, 82, 2542–2552. [Google Scholar] [CrossRef] [Green Version]
- King, A.M.; Pretre, G.; Bartpho, T.; Sermswan, R.W.; Toma, C.; Suzuki, T.; Eshghi, A.; Picardeau, M.; Adler, B.; Murray, G.L. High-temperature protein G is an essential virulence factor of Leptospira interrogans. Infect. Immun. 2014, 82, 1123–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Murray, G.L.; Seemann, T.; Srikram, A.; Bartpho, T.; Sermswan, R.W.; Adler, B.; Hoke, D.E. Leptospiral LruA is required for virulence and modulates an interaction with mammalian apolipoprotein AI. Infect. Immun. 2013, 81, 3872–3879. [Google Scholar] [CrossRef] [Green Version]
- Eshghi, A.; Lourdault, K.; Murray, G.L.; Bartpho, T.; Sermswan, R.W.; Picardeau, M.; Adler, B.; Snarr, B.; Zuerner, R.L.; Cameron, C.E. Leptospira interrogans catalase is required for resistance to H202 and for virulence. Infect. Immun. 2012, 80, 3892–3899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wunder, E.A.; Figueira, C.P.; Benaroudj, N.; Hu, B.; Tong, B.A.; Trajtenberg, F.; Liu, J.; Reis, M.G.; Charon, N.W.; Buschiazzo, A.; et al. A novel flagellar sheath protein, FcpA, determines filamemt coiling translational motility and virulence for the Leptospira spirochete. Mol. Microbiol. 2016, 101, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Fontana, C.; Lambert, A.; Benaroudj, N.; Gasparini, D.; Gorgette, O.; Cachet, N.; Bomchil, N.; Picardeau, M. Analysis of a spontaneous non-motile and avirulent mutant shows that FliM is required for full endoflagella assembly in Leptospira interrogans. PLoS ONE 2016, 11, e0152916. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.; Picardeau, M.; Haake, D.A.; Sermswan, R.W.; Srikram, A.; Adler, B.; Murray, G.A. FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath. Infect. Immun. 2012, 80, 2019–2025. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.; Sun, A.; Ojcius, D.M.; Wu, S.; Zhao, J.; Yan, J. Inactivation of the fliy gene encoding a flagellar motor switch protein attenuates mobility and virulence of Leptospira interrogans strain Lai. BMC Microbiol. 2009, 9, 253. [Google Scholar] [CrossRef] [Green Version]
- Kassegne, K.; Hu, W.; Ojcius, D.M.; Sun, D.; Ge, Y.; Zhao, J.; Yang, X.F.; Li, L.; Yan, J. Identification of collagenase as a critical virulence factor for invasiveness and transmission of pathogenic Leptospira species. J. Infect. Dis. 2014, 209, 1105–1115. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.-F.; Chen, H.-H.; Ojcius, D.M.; Zhao, X.; Sun, D.; Ge, Y.-M.; Zheng, L.-L.; Lin, X.; Li, L.-J.; Yan, J. Identification of Leptospira interrogans phospholipase C as a novel virulence factor responsible for intracellular free calcium ion elevation during macrophage death. PLoS ONE 2013, 8, e75652. [Google Scholar] [CrossRef] [Green Version]
- Ristow, P.; Bourhy, P.; Cruz McBride, F.W.; Figueira, C.P.; Huerre, M.; Ave, P.; Girons, I.S.; Ko, A.I.; Picardeau, M. The ompA-lone protein Loa22 is essential for leptospiral virulence. PLoS Pathog. 2007, 3, e97. [Google Scholar] [CrossRef]
- Picardeau, M. The family Leptospiraceae. In The Prokaryotes; Rosenberg, E., Delong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 711–729. [Google Scholar]
- Vincent, A.T.; Schiettekatte, O.; Goarant, C.; Neela, V.K.; Bernet, E.; Thibeaux, R.; Ismail, N.; Khalid, M.K.N.M.; Amran, F.; Masuzawa, T.; et al. Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl. Trop. Dis. 2019, 13, e0007270. [Google Scholar] [CrossRef] [Green Version]
- Adler, B.; De la Penã-Moctezuma, A. Leptospira and leptospirosis. Vet. Microbiol. 2009, 140, 287–296. [Google Scholar] [CrossRef]
- Cino, M. New insights into the pathogenicity of leptospires: Evasion of host defences. New Microbiol. 2010, 33, 283–292. [Google Scholar]
- Hake, D.; Levett, P.N. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 2015, 387, 65–97. [Google Scholar] [CrossRef] [Green Version]
- Chirekaul, W. Leptospirosis. In Manson’s Tropical Diseases, 23rd ed.; Farrar, J., Hotez, P., Junghans, T., Kang, G., Lalloo, D., White, N., Eds.; Saunders Ltd.: Nottingham, UK, 2013; pp. 433–440. [Google Scholar] [CrossRef]
- Verma, A.; Hellwage, J.; Artiushin, S.; Zipfel, P.F.; Kraiczy, P.; Timoney, J.F.; Stevenson, B. LfhA, a novel factor H-binding protein of Leptospira interrogans. Infect. Immun. 2006, 74, 2659–2666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, B.; Choy, H.A.; Pinne, M.; Rotondi, M.L.; Miller, M.C.; DeMoll, E.; Kraiczy, P.; Cooley, A.E.; Creamer, T.P.; Suchard, M.A.; et al. Leptospira interrogans endostatin-like outer membrane proteins bind fibronectin, laminin and regulators of complement. PLoS ONE 2007, 2, e1188. [Google Scholar] [CrossRef] [PubMed]
- Fraga, T.R.; Isaac, L.; Barbosa, A.S. Complement evasion by pathogenic Leptospira. Front. Immunol. 2016, 7, 623. [Google Scholar] [CrossRef]
- Barbosa, A.S.; Monaris, D.; Silva, L.B.; Morais, Z.M.; Vasconcellos, S.A.; Cianciarullo, A.M.; Isaac, L.; Abreu, P. Functional characterization of LcpA, a surface-exposed protein of Leptospira spp. that binds the human complement regulator C4BP. Infect. Immun. 2010, 78, 3207–3216. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, L.B.; Miragaia, L.D.S.; Breda, L.; Abe, C.M.; Schmidt, M.C.B.; Moro-Furlani, A.M.; Monaris, D.; Conde, J.N.; Józsi, M.; Isaac, L.; et al. Pathogenic Leptospira species acquire factor H and vitronectin via the surface protein LcpA. Infect. Immun. 2015, 83, 888–897. [Google Scholar] [CrossRef] [Green Version]
- Vieira, M.L.; Vasconcellos, S.A.; Goncales, A.P.; De Morais, Z.M.; Nascimento, A.L. Plasminogen acquisition and activation at the surface of Leptospira species lead to fibronection degradation. Infect. Immun. 2009, 77, 4092–4101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.; Brissette, C.A.; Bowman, A.A.; Shah, S.T.; Zipfel, P.F.; Stevenson, B. Leptospiral endostatin-like protein A is a bacterial cell surface receptor for human plasminogen. Infect. Immun. 2010, 78, 2053–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castiblanco-Valencia, M.M.; Fraga, T.R.; Pagotto, A.H.; Serrano, S.M.T.; Abreu, P.; Barbosa, A.S.; Isaac, L. Plasmin cleaves fibrinogen and the human complement proteins C3b and C5 in the presence of Leptospira interrogans proteins: A new role of LigA and LigB in invasion and complement immune evasion. Immunobiology 2016, 221, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Figueira, C.P.; Croda, J.; Choy, H.A.; Haake, D.A.; Reis, M.G.; Ko, A.I.; Picardeau, M. Heterologous expression of pathogenic-specific genes ligA and ligB in the saprophyte Leptospira biflexa confers enhanced adhesion to cultured cells and fibronectin. BMC Microbiol. 2011, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Choy, H.A.; Kelley, M.M.; Croda, J.; Matsunaga, J.; Babbitt, J.T.; Ko, A.I.; Picardeau, M.; Haake, D.A. The multifunctional LigB adhesion binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans. PLoS ONE 2011, 6, e16879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nahori, M.-A.; Fournié-Amazouz, E.; Que-Gewirth, N.S.; Balloy, V.; Chignard, M.; Raetz, C.R.H.; Girons, I.S.; Werts, C. Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human cells. J. Immunol. 2005, 175, 6022–6031. [Google Scholar] [CrossRef] [Green Version]
- Chassin, C.; Picardeau, M.; Goujon, J.-M.; Bourhy, P.; Quellard, N.; Darche, S.; Badell, E.; Fanton d’Andon, M.; Winter, N.; Lacroix-Lamandé, S.; et al. TRL4- and TRL2-medaited B cell response control the clearance of the bacterial pathogen, Leptospira interrogans. J. Immunol. 2009, 183, 2669–2677. [Google Scholar] [CrossRef] [Green Version]
- Picardeau, M. Virulence of the zoonotic agent of leptospirosis: Still terra incognita? Nat. Rev. Microbiol. 2017, 15, 297–307. [Google Scholar] [CrossRef]
- Bonhomme, D.; Santecchia, I.; Vernel-Pauillac, F.; Caroff, M.; Germon, P.; Ben Adler, G.M.; Boneca, I.G.; Werts, C. Leptospiral LPS escapes mouse TLR4 internalization and TRIF-assosiated antimicrobial responses through O antigen and associated lipoproteins. BioRxiv 2020. [Google Scholar] [CrossRef]
- Eshighi, A.; Henderson, J.; Trent, M.S.; Picardeau, M. Leptospira interrogans lpxD homologue is required for thermal acclimatization and virulence. Infect. Immun. 2015, 83, 4314–4321. [Google Scholar] [CrossRef] [Green Version]
- Zolkiewski, M. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. J. Biol. Chem. 1999, 274, 28083–28086. [Google Scholar] [CrossRef] [Green Version]
- Goloubinoff, P.; Mogk, A.; Ben-Zvi, A.P.; Tomoyasu, T.; Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 1999, 96, 13732–13737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogk, A.; Tomoyasu, T.; Goloubinoff, P.; Rűdiger, S.; Röder, D.; Langen, H.; Bukau, B. Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 1999, 18, 6934–6949. [Google Scholar] [CrossRef]
- Lee, S.; Sowa, M.E.; Watanabe, Y.; Sigler, P.B.; Chiu, W.; Yoshida, M.; Tsai, F.T. The structure of ClpB: A molecular chaperone that rescues proteins from an aggregated state. Cell 2003, 115, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Weibezahn, J.; Tessarz, P.; Schlieker, C.; Zahn, R.; Maglica, Z.; Lee, S.; Zentgraf, H.; Weber-Ban, E.U.; Dougan, D.A.; Tsai, F.T.; et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 2004, 119, 653–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, M.E.; Nagy, M.; Kedzierska, S.; Zolkiewski, M. The amino-terminal domain of ClpB supports binding to strongly aggregated proteins. J. Biol. Chem. 2005, 280, 34940–34945. [Google Scholar] [CrossRef] [Green Version]
- Nagy, N.; Guenther, I.; Akoyev, V.; Barnett, M.E.; Zavodszky, M.I.; Kedzierska-Mieszkowska, S.; Zolkiewski, M. Synergistic cooperation between two ClpB isoforms in aggregate reactivation. J. Mol. Biol. 2010, 396, 697–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squires, C.L.; Pedersen, S.; Ross, B.M.; Squires, C. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 1991, 173, 4254–4262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kedzierska, S.; Akoev, V.; Barnett, M.E.; Zolkiewski, M. Structure and function of the middle domain of ClpB from Escherichia coli. Biochemistry 2003, 42, 14242–14248. [Google Scholar] [CrossRef] [Green Version]
- Zolkiewski, M.; Kessel, M.; Ginsburg, A.; Maurizi, M.R. Nucleotide-dependent oligomerization of ClpB from Escherichia coli. Protein Sci. 1999, 8, 1899–1903. [Google Scholar] [CrossRef]
- Akoev, V.; Gogol, E.P.; Barnett, M.E.; Zolkiewski, M. Nucleotide-induced switch in oligomerization of the AAA+ ATPase ClpB. Protein Sci. 2004, 13, 567–574. [Google Scholar] [CrossRef]
- Lin, J.; Lucius, A.L. Examination of the dynamic assembly equilibrium for E. coli ClpB. Proteins 2015, 83, 2008–2024. [Google Scholar] [CrossRef] [PubMed]
- Miot, M.; Reidy, M.; Doyle, S.M.; Hoskins, J.R.; Johnston, D.M.; Genest, O.; Vitery, M.D.C.; Masison, D.C.; Wickner, S. Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proc. Natl. Acad. Sci. USA 2011, 108, 6915–6920. [Google Scholar] [CrossRef] [Green Version]
- DeSantis, M.E.; Shorter, J. The elusive middle domain of Hsp104 and ClpB: Location and function. Biochim. Biophys. Acta 2012, 1823, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Avellaneda, M.J.; Franke, K.B.; Sunderlikova, V.; Bukau, B.; Mogk, A.; Trans, S.J. Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature 2020, 578, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Kannan, T.R.; Musatovova, O.; Gowda, P.; Baseman, J.B. Characterization of a unique ClpB protein of Mycoplasma pneumoniae and its impact on growth. Infect. Immun. 2008, 76, 5082–5092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capestany, C.A.; Tribble, G.D.; Maeda, K.; Demuth, D.R.; Lament, R.J. Role of the Clp system in stress tolerance, biofilm formation, and intracellular invasion in Porphyromonas gingivalis. J. Bacteriol. 2008, 190, 1436–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chastanet, A.; Derre, I.; Nair, S.; Msadek, T. ClpB, a novel number of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. J. Bacteriol. 2004, 186, 1165–1174. [Google Scholar] [CrossRef] [Green Version]
- Meibom, K.L.; Dubail, I.; Dupuis, M.; Barel, M.; Lenčo, J.; Stulík, J.; Golovliov, I.; Sjöstedt, A.; Charbit, A. The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice. Mol. Microbiol. 2008, 67, 1384–1401. [Google Scholar] [CrossRef]
- Krajewska, J.; Arent, Z.; Więckowski, D.; Zolkiewski, M.; Kędzierska-Mieszkowska, S. Immunoreactivity of the AAA+ chaperone ClpB from Leptospira interrogans with sera from Leptospira-infected animals. BMC Microbiol. 2016, 16, 151. [Google Scholar] [CrossRef]
- Ferreria, H.B.; De Castro, L.A. A preliminary survey of M. hyopneumoniae virulence factors based on comparative genomic analysis. Genet. Mol. Biol. 2007, 30, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Amemiya, K.; Meyers, J.L.; DeShazer, D.; Riggins, R.N.; Halasohoris, S.; England, M.; Ribot, W.; Norris, S.; Waag, D.M. Detection of the host immune response to Burkholderia mallei heat-shock proteins GroEL and DnaK in a glanders patient and infected mice. Diagn. Microbiol. Infect. Dis. 2007, 59, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Havlasová, J.; Hernychová, L.; Brychta, M.; Hubálek, M.; Lenčo, J.; Larsson, P.; Lundqvist, M.; Forsman, M.; Kročová, Z.; Stulík, J.; et al. Proteomic analysis of anti-Francisella tularensis LVS antibody response in murine model of tularemia. Proteomics 2005, 5, 2090–2103. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, J.; Modrak-Wójcik, A.; Arent, Z.; Więckowski, D.; Zolkiewski, M.; Bzowska, A.; Kędzierska-Mieszkowska, S. Characterization of the molecular chaperone ClpB from the pathogenic spirochaete Leptospira interrogans. PLoS ONE 2017, 12, e0181118. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Motohashi, K.; Yoshida, M. Roles of the two ATP binding sites of ClpB from Thermus thermophilus. J. Biol. Chem. 2002, 277, 5804–5809. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, S.; Yoshida, H.; Mizunoe, Y.; Tsuruno, K.; Nakayama, J.; Sonomoto, K. Structural and functional conversion of molecular chaperone ClpB from the Gram-positive halophilic lactic acid bacterium Tetragenococcus halophilus mediated by ATP and stress. J. Bacteriol. 2006, 188, 8070–8078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuczynska-Wisnik, D.; Cheng, C.; Ganta, R.R.; Żółkiewski, M. Protein aggregation in Ehrlichia chaffeensis during infection of mammalian Wells. FEMS Microbiol. Lett. 2017, 364, 1–5. [Google Scholar] [CrossRef]
- Dong, S.; Hu, W.; Me, Y.; Ojcius, D.M.; Lin, X.; Yan, J. A leptospiral AAA+ chaperone-Ntn peptidase complex, HslUV, contributes to the intracellular survival of Leptospira interrogans in hosts and the transmission of leptospirosis. Emerg. Microbes Infect. 2017, 6, e105. [Google Scholar] [CrossRef] [Green Version]
- Krajewska, J.; Arent, Z.; Zolkiewski, M.; Kędzierska-Mieszkowska, S. Isolation and identification of putative protein substrate of the AAA+ chaperone chaperone ClpB from pathogenic spirochaete Leptospira interrogans. Int. J. Mol. Sci. 2018, 19, 1234. [Google Scholar] [CrossRef] [Green Version]
- Patarakul, K.; Lo, M.; Adler, B. Global transcriptomic response of Leptospira interrogans serovar Copenhageni upon exposure to serum. BMC Microbiol. 2010, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Lata, K.S.; Sharma, P.; Bhairappanavar, S.B.; Soni, S.; Das, J. Inferring pathogen-host interactions between Leptospira interrogans and Homo sapiens using network theory. Sci. Rep. 2019, 9, 1434. [Google Scholar] [CrossRef] [Green Version]
- Zininga, T.; Shonhai, A. Are heat shock proteins druggable candidates? Am. J. Biochem. Biotechnol. 2014, 10, 208–210. [Google Scholar] [CrossRef] [Green Version]
- Shonhai, A. Role of Hsp70s in development and pathogenicity of Plasmodium species. In Heat Shock Proteins of Malaria; Shonhai, A., Blatch, G.L., Eds.; Springer: London, UK, 2014; pp. 47–70. [Google Scholar]
- Zininga, T.; Shonhai, A. Small molecule inhibitors targeting the heat shock protein system of human obligate protozoan parasites. Int. J. Mol. Sci. 2019, 20, 5930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Factor Name | Description/Function during Infection |
---|---|
LPS (lipopolysaccharides) | Cell wall component; a key virulence factor that is involved in this pathogen’s adaptation to temperature changes |
Adenylate/guanylate cyclase (AGC) | Its activity elevates intracellular cAMP in macrophages, therefore AGC may reduce the host innate TNF response |
ClpB | Molecular chaperone Hsp100; probably contributes to adaptive response of pathogenic Leptospira spp. to the host-induced stress; possible participation in phagosomal escape and dissemination of this pathogen in the host tissues |
FlaA2, FliY, FliM, FcpA | Flagellar components responsible for pathogen motility that is essential for its entry and dissemination in host tissues |
HtpG | Molecular chaperone Hsp90 essential for virulence in the hamster model of acute leptospirosis; its function during infection is unknown; due to its chaperone activity, it may contribute to adaptive response of pathogenic Leptospira spp. to the host-induced stress |
HemO (heme oxygenase) | Heme-degrading enzyme required for iron acquisition; iron is essential for successful leptospiral colonization of mammalian hosts |
KatE | Catalase, located in the periplasmic space of Leptospira spp. cell wall that contributes to ROS resistance; it is possible that KatE participates in escape of the pathogen from neutrophils and macrophages by detoxification of the ROS produced by these phagocytes |
LB139 (sensor protein) | Regulates gene expression, including genes encoding proteins required for motility and chemotaxis |
LoA22 (OmpA-like protein) | Outer membrane protein of unknown function; it plays an important role in the acute model of infection |
LruA | Lipoprotein mainly located in the inner membrane of the leptospiral cell; it interacts with ApoA-I, a component of the host innate immune system |
Mce (mammalian cell entry protein), ColA (collagenase A) | Outer membrane proteins which are most likely involved in invasion and transmission of Leptospira spp. |
Phospholipase C * (PI-PLC) LB361 gene product) | Hydrolyzes phosphatidylinositol-4,5-bis phosphate; it contributes to increased intracellular level of free calcium ions, causing death of infected macrophages |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kędzierska-Mieszkowska, S.; Arent, Z. AAA+ Molecular Chaperone ClpB in Leptospira interrogans: Its Role and Significance in Leptospiral Virulence and Pathogenesis of Leptospirosis. Int. J. Mol. Sci. 2020, 21, 6645. https://doi.org/10.3390/ijms21186645
Kędzierska-Mieszkowska S, Arent Z. AAA+ Molecular Chaperone ClpB in Leptospira interrogans: Its Role and Significance in Leptospiral Virulence and Pathogenesis of Leptospirosis. International Journal of Molecular Sciences. 2020; 21(18):6645. https://doi.org/10.3390/ijms21186645
Chicago/Turabian StyleKędzierska-Mieszkowska, Sabina, and Zbigniew Arent. 2020. "AAA+ Molecular Chaperone ClpB in Leptospira interrogans: Its Role and Significance in Leptospiral Virulence and Pathogenesis of Leptospirosis" International Journal of Molecular Sciences 21, no. 18: 6645. https://doi.org/10.3390/ijms21186645
APA StyleKędzierska-Mieszkowska, S., & Arent, Z. (2020). AAA+ Molecular Chaperone ClpB in Leptospira interrogans: Its Role and Significance in Leptospiral Virulence and Pathogenesis of Leptospirosis. International Journal of Molecular Sciences, 21(18), 6645. https://doi.org/10.3390/ijms21186645