Comprehensive Survey and Comparative Assessment of RNA-Binding Residue Predictions with Analysis by RNA Type
Abstract
:1. Introduction
2. Survey of Partner-Agnostic Sequence-Based Predictors of RNA-Binding Residues
3. Materials and Methods
3.1. Selection of Partner-Agnostic Sequence-Based Predictors of RBRs
3.2. Benchmark Dataset
3.3. Assessment of Predictive Performance
4. Predictive Performance of Partner-Agnostic Sequence-Based Predictors of RBRs
4.1. Prediction of RBRs Measured at the Dataset-Level
4.2. Prediction of RBRs for Specific RNA Types Measured at the Dataset-Level
4.3. Cross-Prediction and Over-Prediction of RBRs
4.4. Prediction of RBRs Measured at the Protein-Level
4.5. Impact of Similarity to the Template Datasets
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- The, R.C. RNAcentral: A hub of information for non-coding RNA sequences. Nucleic Acids Res. 2019, 47, D221–D229. [Google Scholar] [CrossRef] [Green Version]
- Coimbatore Narayanan, B.; Westbrook, J.; Ghosh, S.; Petrov, A.I.; Sweeney, B.; Zirbel, C.L.; Leontis, N.B.; Berman, H.M. The Nucleic Acid Database: New features and capabilities. Nucleic Acids Res. 2014, 42, D114–D122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, A.; Joshi, T.; Kulberkyte, E.; Morris, Q.; Workman, C.T. RNA-protein interactions: An overview. Methods Mol. Biol. 2014, 1097, 491–521. [Google Scholar] [CrossRef]
- Noller, H.F. RNA structure: Reading the ribosome. Science 2005, 309, 1508–1514. [Google Scholar] [CrossRef] [Green Version]
- Glisovic, T.; Bachorik, J.L.; Yong, J.; Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 2008, 582, 1977–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansal, P.; Arora, M. RNA Binding Proteins and Non-coding RNA’s in Cardiovascular Diseases. Adv. Exp. Med. Biol. 2020, 1229, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, M.; Takeuchi, O. RNA binding proteins in the control of autoimmune diseases. Immunol. Med. 2019, 42, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Kang, D.; Lee, E.K.; Lee, J.S. Long Noncoding RNAs and RNA-Binding Proteins in Oxidative Stress, Cellular Senescence, and Age-Related Diseases. Oxidative Med. Cell. Longev. 2017, 2017, 2062384. [Google Scholar] [CrossRef] [Green Version]
- Cookson, M.R. RNA-binding proteins implicated in neurodegenerative diseases. Wiley Interdiscip Rev. RNA 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L.; Li, B.; Luo, Y.X.; Lin, Q.; Liu, S.R.; Zhang, X.Q.; Zhou, H.; Yang, J.H.; Qu, L.H. Comprehensive Genomic Characterization of RNA-Binding Proteins across Human Cancers. Cell Rep. 2018, 22, 286–298. [Google Scholar] [CrossRef] [Green Version]
- Marchese, D.; de Groot, N.S.; Lorenzo Gotor, N.; Livi, C.M.; Tartaglia, G.G. Advances in the characterization of RNA-binding proteins. Wiley Interdiscip Rev. RNA 2016, 7, 793–810. [Google Scholar] [CrossRef] [PubMed]
- UniProt, C. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Zhang, J.; Kurgan, L. In Silico Prediction and Validation of Novel RNA Binding Proteins and Residues in the Human Proteome. Proteomics 2018, 18, e1800064. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ma, Z.; Kurgan, L. Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains. Brief. Bioinform. 2019, 20, 1250–1268. [Google Scholar] [CrossRef]
- Yan, J.; Friedrich, S.; Kurgan, L. A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues. Brief. Bioinform. 2016, 17, 88–105. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, Y.; Zhou, Y. Prediction of RNA binding proteins comes of age from low resolution to high resolution. Mol. Biosyst. 2013, 9, 2417–2425. [Google Scholar] [CrossRef] [Green Version]
- Walia, R.R.; Caragea, C.; Lewis, B.A.; Towfic, F.; Terribilini, M.; El-Manzalawy, Y.; Dobbs, D.; Honavar, V. Protein-RNA interface residue prediction using machine learning: An assessment of the state of the art. BMC Bioinform. 2012, 13, 89. [Google Scholar] [CrossRef] [Green Version]
- Puton, T.; Kozlowski, L.; Tuszynska, I.; Rother, K.; Bujnicki, J.M. Computational methods for prediction of protein-RNA interactions. J. Struct. Biol. 2012, 179, 261–268. [Google Scholar] [CrossRef]
- Jung, Y.; El-Manzalawy, Y.; Dobbs, D.; Honavar, V.G. Partner-specific prediction of RNA-binding residues in proteins: A critical assessment. Proteins 2019, 87, 198–211. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.; Westhof, E. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs. PLoS Comput. Biol. 2015, 11, e1004639. [Google Scholar] [CrossRef]
- Nithin, C.; Ghosh, P.; Bujnicki, J.M. Bioinformatics Tools and Benchmarks for Computational Docking and 3D Structure Prediction of RNA-Protein Complexes. Genes 2018, 9, 432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.; Han, K. Predicting protein-binding RNA nucleotides using the feature-based removal of data redundancy and the interaction propensity of nucleotide triplets. Comput. Biol. Med. 2013, 43, 1687–1697. [Google Scholar] [CrossRef] [PubMed]
- Panwar, B.; Raghava, G.P. Identification of protein-interacting nucleotides in a RNA sequence using composition profile of tri-nucleotides. Genomics 2015, 105, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Park, B.; Chae, H.; Lee, W.; Han, K. Predicting protein-binding regions in RNA using nucleotide profiles and compositions. BMC Syst. Biol. 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.C.; Petrey, D.; Deng, L.; Qiang, L.; Shi, Y.; Thu, C.A.; Bisikirska, B.; Lefebvre, C.; Accili, D.; Hunter, T.; et al. Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature 2012, 490, 556–560. [Google Scholar] [CrossRef]
- Tuvshinjargal, N.; Lee, W.; Park, B.; Han, K. PRIdictor: Protein-RNA Interaction predictor. Biosystems 2016, 139, 17–22. [Google Scholar] [CrossRef]
- Muppirala, U.; Lewis, B.A.; Mann, C.M.; Dobbs, D. A Motif-Based Method for Predicting Interfacial Residues in Both the Rna and Protein Components of Protein-Rna Complexes. In Proceedings of the Pacific Symposium, Kohala Coast, HI, USA, 4–8 January 2016; World Scientific Publishing Company: Singapore, 2016; pp. 445–455. [Google Scholar]
- Yan, J.; Kurgan, L. DRNApred, fast sequence-based method that accurately predicts and discriminates DNA- and RNA-binding residues. Nucleic Acids Res. 2017, 45, e84. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.C.; Yan, C.H. A Concurrent Neural Network (CNN) Method for RNA-binding Site Prediction. In Proceedings of the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (Itaic 2019), Chongqing, China, 24–26 May 2019; pp. 567–570. [Google Scholar]
- Su, H.; Liu, M.; Sun, S.; Peng, Z.; Yang, J. Improving the prediction of protein-nucleic acids binding residues via multiple sequence profiles and the consensus of complementary methods. Bioinformatics 2019, 35, 930–936. [Google Scholar] [CrossRef]
- Pan, X.Y.; Shen, H.B. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks. Bioinformatics 2018, 34, 3427–3436. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Liu, D.; Wang, Z.; Wen, T.; Deng, L. A boosting approach for prediction of protein-RNA binding residues. BMC Bioinform. 2017, 18, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pai, P.P.; Dash, T.; Mondal, S. Sequence-based discrimination of protein-RNA interacting residues using a probabilistic approach. J. Theor. Biol. 2017, 418, 77–83. [Google Scholar] [CrossRef] [PubMed]
- El-Manzalawy, Y.; Abbas, M.; Malluhi, Q.; Honavar, V. FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues. PLoS ONE 2016, 11, e0158445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Wang, X.; Zou, C.; He, Z.; Liu, W.; Li, H. Accurate prediction of RNA-binding protein residues with two discriminative structural descriptors. BMC Bioinform. 2016, 17, 231. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wang, J.; Sun, J.; Liu, R. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues. PLoS ONE 2015, 10, e0133260. [Google Scholar] [CrossRef]
- Li, S.L.; Yamashita, K.; Amada, K.M.; Standley, D.M. Quantifying sequence and structural features of protein-RNA interactions. Nucleic Acids Res. 2014, 42, 10086–10098. [Google Scholar] [CrossRef]
- Walia, R.R.; Xue, L.C.; Wilkins, K.; El-Manzalawy, Y.; Dobbs, D.; Honavar, V. RNABindRPlus: A Predictor that Combines Machine Learning and Sequence Homology-Based Methods to Improve the Reliability of Predicted RNA-Binding Residues in Proteins. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Fernandez, M.; Kumagai, Y.; Standley, D.M.; Sarai, A.; Mizuguchi, K.; Ahmad, S. Prediction of dinucleotide-specific RNA-binding sites in proteins. BMC Bioinform. 2011, 12 (Suppl. 13), S5. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.C.; Fang, Y.P.; Xiao, J.M.; Li, M.L. Identification of RNA-binding sites in proteins by integrating various sequence information. Amino Acids 2011, 40, 239–248. [Google Scholar] [CrossRef]
- Choi, S.; Han, K. Prediction of RNA-binding amino acids from protein and RNA sequences. BMC Bioinform. 2011, 12. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Guo, J.; Wu, J.S.; Liu, H.D.; Yu, J.F.; Xie, J.M.; Sun, X.A. Prediction of RNA-binding residues in proteins from primary sequence using an enriched random forest model with a novel hybrid feature. Proteins Struct. Funct. Bioinform. 2011, 79, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yang, Y.; Zhou, Y. Highly accurate and high-resolution function prediction of RNA binding proteins by fold recognition and binding affinity prediction. RNA Biol. 2011, 8, 988–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, M.B.; Langlois, R.; Lu, H. NAPS: A residue-level nucleic acid-binding prediction server. Nucleic Acids Res. 2010, 38, W431–W435. [Google Scholar] [CrossRef] [Green Version]
- do Amaral, M.J.; Araujo, T.S.; Diaz, N.C.; Accornero, F.; Polycarpo, C.R.; Cordeiro, Y.; Cabral, K.M.S.; Almeida, M.S. Phase Separation and Disorder-to-Order Transition of Human Brain Expressed X-Linked 3 (hBEX3) in the Presence of Small Fragments of tRNA. J. Mol. Biol. 2020, 432, 2319–2348. [Google Scholar] [CrossRef]
- Ugidos, N.; Mena, J.; Baquero, S.; Alloza, I.; Azkargorta, M.; Elortza, F.; Vandenbroeck, K. Interactome of the Autoimmune Risk Protein ANKRD55. Front. Immunol. 2019, 10, 2067. [Google Scholar] [CrossRef]
- Bhardwaj, T.; Saumya, K.U.; Kumar, P.; Sharma, N.; Gadhave, K.; Uversky, V.N.; Giri, R. Japanese Encephalitis Virus: Exploring the dark proteome and disorder-function paradigm. FEBS J. 2020. [Google Scholar] [CrossRef]
- Katuwawala, A.; Oldfield, C.J.; Kurgan, L. Accuracy of protein-level disorder predictions. Brief. Bioinform. 2020. [Google Scholar] [CrossRef]
- Jeong, E.; Chung, I.F.; Miyano, S. A neural network method for identification of RNA-interacting residues in protein. Genome Inform. 2004, 15, 105–116. [Google Scholar]
- Wang, L.J.; Brown, S.J. BindN: A web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res. 2006, 34, W243–W248. [Google Scholar] [CrossRef] [Green Version]
- Terribilini, M.; Sander, J.D.; Lee, J.H.; Zaback, P.; Jernigan, R.L.; Honavar, V.; Dobbs, D. RNABindR: A server for analyzing and predicting RNA-binding sites in proteins. Nucleic Acids Res. 2007, 35, W578–W584. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Huang, C.; Yang, M.Q.; Yang, J.Y. BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Syst. Biol. 2010, 4 (Suppl. 1), S3. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhang, H.; Chen, K.; Ruan, J.; Shen, S.; Kurgan, L. Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility. Curr. Protein Pept. Sci. 2010, 11, 609–628. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.P.; Wu, L.Y.; Wang, Y.; Zhang, X.S.; Chen, L.N. Prediction of protein-RNA binding sites by a random forest method with combined features. Bioinformatics 2010, 26, 1616–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, Y.; Spriggs, R.V.; Nakamura, H.; Jones, S. PiRaNhA: A server for the computational prediction of RNA-binding residues in protein sequences. Nucleic Acids Res. 2010, 38, W412–W416. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chiu, L.Y.; Huang, C.C.; Huang, C.K. Predicting RNA-binding residues from evolutionary information and sequence conservation. BMC Genom. 2010, 11. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Gromiha, A.M.; Raghava, G.P.S. Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins 2008, 71, 189–194. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, Z.; Shen, G.; Xu, J. PRINTR: Prediction of RNA binding sites in proteins using SVM and profiles. Amino Acids 2008, 35, 295–302. [Google Scholar] [CrossRef]
- Cheng, C.W.; Su, E.C.Y.; Hwang, J.K.; Sung, T.Y.; Hsu, W.L. Predicting RNA-binding sites of proteins using support vector machines and evolutionary information. BMC Bioinform. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Roy, A.; Zhang, Y. BioLiP: A semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res. 2013, 41, D1096–D1103. [Google Scholar] [CrossRef] [Green Version]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef]
- Zhang, J.; Kurgan, L. Review and comparative assessment of sequence-based predictors of protein-binding residues. Brief. Bioinform. 2018, 19, 821–837. [Google Scholar] [CrossRef]
- Zhang, J.; Kurgan, L. SCRIBER: Accurate and partner type-specific prediction of protein-binding residues from proteins sequences. Bioinformatics 2019, 35, i343–i353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Kurgan, L. Review and comparative assessment of similarity-based methods for prediction of drug-protein interactions in the druggable human proteome. Brief. Bioinform. 2018. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Kurgan, L. DFLpred: High-throughput prediction of disordered flexible linker regions in protein sequences. Bioinformatics 2016, 32, i341–i350. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Bahadur, R.P. A structural perspective of RNA recognition by intrinsically disordered proteins. Cell. Mol. Life Sci. 2016, 73, 4075–4084. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Hu, G.; Yang, J.; Peng, Z.; Uversky, V.N.; Kurgan, L. In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces. FEBS Lett. 2015, 589, 2561–2569. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Uversky, V.N.; Kurgan, L. Disordered nucleiome: Abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea. Proteomics 2016, 16, 1486–1498. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Wu, Z.; Oldfield, C.; Wang, C.; Kurgan, L. Quality Assessment for the Putative Intrinsic Disorder in Proteins. Bioinformatics 2018. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Hu, G.; Wang, K.; Kurgan, L. Exploratory Analysis of Quality Assessment of Putative Intrinsic Disorder in Proteins. In Proceedings of the 16th International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 11–15 June 2017; Springer: Cham, Switzerland, 2017; Volume LNAI 10245, pp. 722–732. [Google Scholar]
- Katuwawala, A.; Oldfield, C.; Kurgan, L. DISOselect: Disorder predictor selection at the protein level. Protein Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.L.; Kurgan, L. Comprehensive comparative assessment of in-silico predictors of disordered regions. Curr. Protein Pept. Sci. 2012, 13, 6–18. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Kurgan, L. Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. J. Biomol. Struct. Dyn. 2014, 32, 448–464. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Kurgan, L. On the complementarity of the consensus-based disorder prediction. In Proceedings of the Pacific Symposium, Kohala Coast, HI, USA, 3–7 January 2012; World Scientific Publishing Company: Singapore, 2012; pp. 176–187. [Google Scholar]
- Xue, B.; Dunbrack, R.L.; Williams, R.W.; Dunker, A.K.; Uversky, V.N. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta 2010, 1804, 996–1010. [Google Scholar] [CrossRef] [Green Version]
- Necci, M.; Piovesan, D.; Dosztanyi, Z.; Tosatto, S.C.E. MobiDB-lite: Fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 2017, 33, 1402–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barik, A.; Katuwawala, A.; Hanson, J.; Paliwal, K.; Zhou, Y.; Kurgan, L. DEPICTER: Intrinsic Disorder and Disorder Function Prediction Server. J. Mol. Biol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, L.P.; Bujnicki, J.M. MetaDisorder: A meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinform. 2012, 13, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhang, T.; Chen, K.; Kedarisetti, K.D.; Mizianty, M.J.; Bao, Q.; Stach, W.; Kurgan, L. Critical assessment of high-throughput standalone methods for secondary structure prediction. Brief. Bioinform. 2011, 12, 672–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Marcus, M.; Kurgan, L. Comprehensively designed consensus of standalone secondary structure predictors improves Q3 by over 3%. J. Biomol. Struct. Dyn. 2014, 32, 36–51. [Google Scholar] [CrossRef]
- Kieslich, C.A.; Smadbeck, J.; Khoury, G.A.; Floudas, C.A. conSSert: Consensus SVM Model for Accurate Prediction of Ordered Secondary Structure. J. Chem. Inf. Model. 2016, 56, 455–461. [Google Scholar] [CrossRef]
Ref. | Year Released | No. of Predictors Surveyed | No. of Predictors Assessed Empirically | Evaluates or Analyzes | |||
---|---|---|---|---|---|---|---|
Cross-Prediction between RNA and DNA | Specific Types of RNAs | Protein-Level Performance and Complementarity | Dependence on Sequence Similarity For Homology-Based Predictions | ||||
This article | 28 | 6 | Yes | Yes | Yes | Yes | |
[19] | 2019 | 9 | 6 | No | No | No | No |
[14] | 2019 | 18 | 4 | Yes | No | No | No |
[15] | 2016 | 16 | 3 | Yes | No | No | No |
[20] | 2015 | 17 | 8 | Yes | No | No | No |
[16] | 2013 | 10 | 8 | Yes | No | No | No |
[17] | 2012 | 13 | 3 | No | No | No | No |
[18] | 2012 | 7 | 7 | No | No | No | No |
Ref. | Name | Year Published | Model Type | Citations | Impact Factor | Availa-Bility | Webpage | Webserver Available at the Time of Analysis | |
---|---|---|---|---|---|---|---|---|---|
Total | Annual | ||||||||
[30] | CNN model | 2019 | Convolutional NN | 0 | 0 | N/A | N | N/A | N/A |
[31] | NucBind | 2019 | SVM+HT | 5 | 5 | 4.5 | W | http://yanglab.nankai.edu.cn/NucBind/ | yes |
[32] | iDeepE | 2018 | Convolutional NN | 47 | 23 | 4.5 | S | https://github.com/xypan1232/iDeepE/ | N/A |
[29] | DRNApred | 2017 | Logistic regression | 51 | 17 | 11.2 | W | http://biomine.cs.vcu.edu/servers/DRNApred/ | yes |
[33] | PredRBR | 2017 | Gradient boosted DT | 28 | 13 | 2.5 | S | http://dlab.org.cn/PredRBR/ | N/A |
[34] | DORAEMON | 2017 | Bayesian classifier | 5 | 2 | 1.9 | S | https://github.com/ABCgrp/DORAEMON/ | N/A |
[35] | FastRNABindR | 2016 | SVM | 9 | 2 | 2.8 | W | http://ailab.ist.psu.edu/FastRNABindR/ | yes |
[36] | RNAProSite | 2016 | RF | 14 | 3 | 2.5 | W | http://lilab.ecust.edu.cn/NABind/ | no |
[37] | SNBRFinder | 2015 | SVM+HT | 13 | 3 | 2.8 | W | http://ibi.hzau.edu.cn/SNBRFinder/ | no |
[38] | aaRNA | 2014 | Feedforward NN+HT | 31 | 5 | 11.2 | W | http://sysimm.ifrec.osaka-u.ac.jp/aarna/ | yes |
[39] | RNABindRPlus | 2014 | SVM+HT | 63 | 10 | 2.8 | W | http://ailab1.ist.psu.edu/RNABindRPlus/ | yes |
[40] | SRCpred | 2011 | Feedforward NN | 34 | 4 | 2.5 | W | http://tardis.nibio.go.jp/netasa/srcpred/ | no |
[41] | PredictRBP | 2011 | SVM | 33 | 4 | 2.5 | S | http://cic.scu.edu.cn/bioinformatics/Predict_RBP.rar | N/A |
[42] | SVM model | 2011 | SVM | 24 | 3 | 2.5 | N | N/A | N/A |
[43] | PRBR | 2011 | RF | 62 | 7 | 2.5 | W | http://www.cbi.seu.edu.cn/PRBR/ | no |
[44] | SPOT-Seq-RNA | 2011 | HT | 52 | 6 | 5.5 | W | http://sparks-lab.org/server/SPOT-Seq-RNA/ | no |
[45] | NAPS | 2010 | DT | 64 | 6 | 11.2 | W | http://proteomics.bioengr.uic.edu/NAPS/ | no |
[54] | RBRpred | 2010 | SVM | 52 | 5 | 1.9 | N | N/A | N/A |
[55] | PRNA | 2010 | RF | 134 | 13 | 4.5 | S | http://www.aporc.org/doc/wiki/PRNA/ | N/A |
[56] | PiRaNhA | 2010 | SVM | 69 | 7 | 11.2 | W | http://www.bioinformatics.sussex.ac.uk/PIRANHA/ | no |
[53] | BindN+ | 2010 | SVM | 168 | 17 | 2.1 | W | http://bioinfo.ggc.org/bindn+/ | yes |
[57] | ProteRNA | 2010 | SVM | 22 | 2 | 3.5 | N | N/A | N/A |
[58] | Pprint | 2008 | SVM | 247 | 21 | 2.5 | W | http://crdd.osdd.net/raghava/pprint/ | yes |
[59] | PRINTR | 2008 | SVM | 71 | 6 | 2.5 | W | http://210.42.106.80/printr/ | no |
[60] | RNAProB | 2008 | SVM | 119 | 10 | 2.5 | N | N/A | N/A |
[52] | RNABindR | 2007 | Naive Bayes | 198 | 15 | 11.2 | W | http://bindr.gdcb.iastate.edu/RNABindR/ | no |
[51] | BindN | 2006 | SVM | 416 | 30 | 11.2 | W | http://bioinformatics.ksu.edu/bindn/ | no |
[50] | NN model | 2004 | Feedforward NN | 79 | 5 | N/A | N | N/A | N/A |
RNA Type | Predictor | AUC | AULCratio | MCC | F1 | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|
All RBRs | RNABindRPlus | 0.869 | 25.9 | 0.414 | 0.437 | 0.444 | 0.976 |
aaRNA | 0.848= | 17.8+ | 0.344+ | 0.370 | 0.370 | 0.974 | |
BindN+ | 0.803+ | 10.3+ | 0.233+ | 0.263 | 0.263 | 0.970 | |
FastRNABindR | 0.792+ | 17.1+ | 0.312+ | 0.339 | 0.341 | 0.972 | |
NucBind | 0.775+ | 16.0+ | 0.307+ | 0.335 | 0.333 | 0.973 | |
DRNApred | 0.608+ | 4.1+ | 0.097+ | 0.132 | 0.132 | 0.964 | |
rRNA | RNABindRPlus | 0.893 | 30.2 | 0.441 | 0.458 | 0.518 | 0.976 |
aaRNA | 0.870= | 20.5+ | 0.356+ | 0.377 | 0.418 | 0.974 | |
BindN+ | 0.829+ | 12.0+ | 0.246+ | 0.271 | 0.303 | 0.970 | |
FastRNABindR | 0.820+ | 20.5+ | 0.334+ | 0.355 | 0.400 | 0.972 | |
NucBind | 0.790+ | 18.7+ | 0.325+ | 0.347 | 0.385 | 0.973 | |
DRNApred | 0.601+ | 4.5+ | 0.095+ | 0.126 | 0.141 | 0.964 | |
mRNA | RNABindRPlus | 0.869 | 2.3 | 0.009 | 0.003 | 0.091 | 0.976 |
aaRNA | 0.637+ | 12.4– | 0.034– | 0.009 | 0.295 | 0.974 | |
BindN+ | 0.798+ | 7.2– | 0.020– | 0.005 | 0.205 | 0.970 | |
FastRNABindR | 0.814+ | 7.8– | 0.025– | 0.007 | 0.227 | 0.972 | |
NucBind | 0.844= | 10.6– | 0.030– | 0.008 | 0.273 | 0.973 | |
DRNApred | 0.383+ | 4.0= | 0.006= | 0.002 | 0.091 | 0.964 | |
snRNA | RNABindRPlus | 0.806 | 13.1 | 0.068 | 0.046 | 0.222 | 0.976 |
aaRNA | 0.777= | 8.6= | 0.065= | 0.043 | 0.222 | 0.974 | |
BindN+ | 0.716+ | 2.7+ | 0.018+ | 0.015 | 0.088 | 0.970 | |
FastRNABindR | 0.769+ | 5.5+ | 0.040+ | 0.028 | 0.150 | 0.972 | |
NucBind | 0.685+ | 5.9+ | 0.038= | 0.027 | 0.144 | 0.973 | |
DRNApred | 0.535+ | 0.9+ | −0.002+ | 0.004 | 0.029 | 0.964 | |
SRP | RNABindRPlus | 0.774 | 29.6 | 0.058 | 0.017 | 0.426 | 0.976 |
aaRNA | 0.880= | 7.8+ | 0.025= | 0.008 | 0.204 | 0.974 | |
BindN+ | 0.625+ | 4.3+ | 0.013+ | 0.004 | 0.130 | 0.970 | |
FastRNABindR | 0.288+ | 0.3+ | −0.001+ | 0.001 | 0.019 | 0.972 | |
NucBind | 0.608+ | 21.4= | 0.037= | 0.011 | 0.296 | 0.973 | |
DRNApred | 0.543+ | 15.2= | 0.051= | 0.013 | 0.463 | 0.964 | |
IRES | RNABindRPlus | 0.818 | 7.3 | 0.023 | 0.006 | 0.216 | 0.976 |
aaRNA | 0.921– | 8.5= | 0.022= | 0.006 | 0.216 | 0.974 | |
BindN+ | 0.729+ | 4.5= | 0.008+ | 0.002 | 0.108 | 0.970 | |
FastRNABindR | 0.758+ | 0.7+ | 0.000+ | 0.001 | 0.027 | 0.972 | |
NucBind | 0.780= | 0.7+ | 0.000+ | 0.001 | 0.027 | 0.973 | |
DRNApred | 0.855= | 15.5= | 0.031= | 0.007 | 0.351 | 0.964 | |
tRNA | RNABindRPlus | 0.745 | 5.4 | 0.029 | 0.027 | 0.095 | 0.976 |
aaRNA | 0.735= | 5.1= | 0.043= | 0.036 | 0.133 | 0.974 | |
BindN+ | 0.689+ | 3.7= | 0.030= | 0.026 | 0.111 | 0.970 | |
FastRNABindR | 0.739= | 5.2= | 0.040= | 0.033 | 0.131 | 0.972 | |
NucBind | 0.751= | 3.1= | 0.025= | 0.024 | 0.090 | 0.973 | |
DRNApred | 0.742= | 1.8= | 0.016= | 0.017 | 0.084 | 0.964 |
Predictor | PPR on RNA-Binding Proteins | PPR on DNA-Binding Proteins | RatioRNA/DNA | PPR on Non-RNA Binding Proteins | RatioRNA/Non-RNA |
---|---|---|---|---|---|
DRNApred | 0.084 | 0.013 | 6.6 | 0.018 | 4.6 |
RNABindRPlus | 0.103 = | 0.017+ | 6.0+ | 0.011 = | 9.6= |
NucBind | 0.083 = | 0.019+ | 4.3+ | 0.018 = | 4.5= |
aaRNA | 0.083 = | 0.026+ | 3.2+ | 0.019 = | 4.4= |
FastRNABindR | 0.084 = | 0.028+ | 3.1+ | 0.019 = | 4.5= |
BindN+ | 0.067 + | 0.032+ | 2.1+ | 0.026 + | 2.5+ |
Benchmark Proteins Sharing a Given Range of Similarity to Templates of aaRNA | AUC | MCC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
aaRNA | RNABindRPlus | BindN + | FastRNABindR | NucBind | DRNApred | aaRNA | RNABindRPlus | BindN + | FastRNABindR | NucBind | DRNApred | |
Below 30% | 0.66 | 0.85 – | 0.76 = | 0.83 – | 0.77 = | 0.65 = | 0.27 | 0.33 – | 0.18 + | 0.22 = | 0.25 = | 0.10 + |
30–50% | 0.83 | 0.92 – | 0.86 = | 0.90 – | 0.85 = | 0.72 + | 0.36 | 0.45 – | 0.22 + | 0.40 – | 0.31 + | 0.25 + |
50–80% | 0.90 | 0.86 + | 0.78 + | 0.83 + | 0.77 + | 0.66 + | 0.36 | 0.37 = | 0.19 + | 0.28 + | 0.21 + | 0.10 + |
Above 80% | 0.86 | 0.86 = | 0.81 + | 0.75 + | 0.78 + | 0.56 + | 0.34 | 0.42 – | 0.26 + | 0.32 = | 0.35 = | 0.09 + |
Benchmark proteins sharing a given range of similarity to templates of RNABindRPlus | RNABindRPlus | aaRNA | BindN + | FastRNABindR | NucBind | DRNApred | RNABindRPlus | aaRNA | BindN+ | FastRNABindR | NucBind | DRNApred |
Below 30% | 0.84 | 0.82 = | 0.79 + | 0.74 + | 0.80 + | 0.57 + | 0.29 | 0.32 – | 0.18 + | 0.20 + | 0.22 + | 0.06 + |
30–50% | 0.90 | 0.86 + | 0.83 + | 0.86 + | 0.80 + | 0.62 + | 0.49 | 0.35 + | 0.30 + | 0.38 + | 0.42 + | 0.10 + |
50–80% | 0.88 | 0.82 + | 0.79 + | 0.78 + | 0.67 + | 0.42 + | 0.47 | 0.33 + | 0.24 + | 0.35 + | 0.31 + | −0.10 + |
Above 80% | 0.89 | 0.84 + | 0.80 + | 0.85 + | 0.75 + | 0.67 + | 0.62 | 0.37 + | 0.31 + | 0.54 + | 0.43 + | 0.20 + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Hu, G.; Wu, Z.; Su, H.; Yang, J.; Kurgan, L. Comprehensive Survey and Comparative Assessment of RNA-Binding Residue Predictions with Analysis by RNA Type. Int. J. Mol. Sci. 2020, 21, 6879. https://doi.org/10.3390/ijms21186879
Wang K, Hu G, Wu Z, Su H, Yang J, Kurgan L. Comprehensive Survey and Comparative Assessment of RNA-Binding Residue Predictions with Analysis by RNA Type. International Journal of Molecular Sciences. 2020; 21(18):6879. https://doi.org/10.3390/ijms21186879
Chicago/Turabian StyleWang, Kui, Gang Hu, Zhonghua Wu, Hong Su, Jianyi Yang, and Lukasz Kurgan. 2020. "Comprehensive Survey and Comparative Assessment of RNA-Binding Residue Predictions with Analysis by RNA Type" International Journal of Molecular Sciences 21, no. 18: 6879. https://doi.org/10.3390/ijms21186879
APA StyleWang, K., Hu, G., Wu, Z., Su, H., Yang, J., & Kurgan, L. (2020). Comprehensive Survey and Comparative Assessment of RNA-Binding Residue Predictions with Analysis by RNA Type. International Journal of Molecular Sciences, 21(18), 6879. https://doi.org/10.3390/ijms21186879