Sensing through Non-Sensing Ocular Ion Channels
Abstract
:1. Introduction
2. Genetic Mutations Switching the “Sensing” Ion Channels to “Non-Sensing” Ones
2.1. Contribution of Nonsense Mutations in Ocular Channelopathies
2.2. TRPM1 (Transient Receptor Protein Melastatin 1; MLSN1)
2.3. CACNA1F (Voltage-Gated Calcium Channel Alpha-1F Subunit)
2.4. CACNA2D4 (Voltage-Gated Calcium Channel Alpha-2/Delta Subunit 4)
2.5. KCNV2 (Voltage-Gated K+ Channel)
2.6. BEST1 (Bestrophin-1; Ca2+ Dependent Cl− Channel)
2.7. KCNJ13 (Inwardly Rectifying K+ Channel)
2.8. CNGA3 and CNGB3 (Cone Specific Cyclic Nucleotide-Gated Channel α and β Subunit)
2.9. CNGA1 and CNGB1 (Rod Specific Cyclic Nucleotide-Gated Channel α and β Subunit)
3. Disease Models Recapitulating Human Channelopathies
3.1. Engineered In Vitro Disease Models
3.2. Engineered In Vivo Disease Models
4. Potential Therapies for Reshaping the Non-Sensing Ocular Ion Channels to Sensing Ones
4.1. Therapeutic Approaches for the Correction of Genes
4.1.1. AAV-Mediated Gene Therapy
4.1.2. CRISPR-Gene Editing
4.1.3. CRISPR-Base Editing
4.2. Therapeutic Approaches for the Correction of RNA (RNA Editing)
4.3. Pharmacological/Small Molecules for the Correction of Proteins
4.3.1. Readthrough Inducing Drugs
4.3.2. Anticodon Engineered tRNA
4.3.3. Proteostasis Regulators and Pharmacological Chaperons
5. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Krizaj, D.; Copenhagen, D.R. Calcium regulation in photoreceptors. Front. Biosci. 2002, 7, d2023–d2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidelberger, R.; Thoreson, W.B.; Witkovsky, P. Synaptic transmission at retinal ribbon synapses. Prog. Retin. Eye Res. 2005, 24, 682–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, R.; Connaughton, V. Bipolar Cell Pathways in the Vertebrate Retina; University of Utah Health Sciences Center: Salt Lake City, UT, USA, 1995. [Google Scholar]
- Protti, D.A.; Llano, I. Calcium Currents and Calcium Signaling in Rod Bipolar Cells of Rat Retinal Slices. J. Neurosci. 1998, 18, 3715–3724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fesenko, E.E.; Kolesnikov, S.S.; Lyubarsky, A.L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 1985, 313, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Yau, K.-W.; Nakatani, K. Light-suppressible, cyclic GMP-sensitive conductance in the plasma membrane of a truncated rod outer segment. Nature 1985, 317, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Haynes, L.W.; Kay, A.R.; Yau, K.-W. Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane. Nature 1986, 321, 66–70. [Google Scholar] [CrossRef]
- Tanaka, J.C.; Furman, R.E.; Cobbs, W.H.; Mueller, P. Incorporation of a retinal rod cGMP-dependent conductance into planar bilayers. Proc. Natl. Acad. Sci. USA 1987, 84, 724–728. [Google Scholar] [CrossRef] [Green Version]
- Haynes, L.W.; Yau, K.W. Single-channel measurement from the cyclic GMP-activated conductance of catfish retinal cones. J. Physiol. 1990, 429, 451–481. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, J.D.; Sanderson, J. The mechanisms of calcium homeostasis and signalling in the lens. Exp. Eye Res. 2009, 88, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Maddala, R.; Nagendran, T.; De Ridder, G.G.; Schey, K.L.; Rao, P.V. L-Type Calcium Channels Play a Critical Role in Maintaining Lens Transparency by Regulating Phosphorylation of Aquaporin-0 and Myosin Light Chain and Expression of Connexins. PLoS ONE 2013, 8, e64676. [Google Scholar] [CrossRef] [Green Version]
- Wimmers, S.; Karl, M.O.; Strauß, O. Ion channels in the RPE. Prog. Retin. Eye Res. 2007, 26, 263–301. [Google Scholar] [CrossRef] [PubMed]
- Candia, O.A.; Zamudio, A. Cl Secretagogues Reduce Basolateral K Permeability in the Rabbit Corneal Epithelium. J. Membr. Biol. 2002, 190, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Roderick, C.; Reinach, P.S.; Wang, L.; Lu, L. Modulation of Rabbit Corneal Epithelial Cell Proliferation by Growth Factor-regulated K+ Channel Activity. J. Membr. Biol. 2003, 196, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Wolosin, J.M.; Candia, O.A. Cl− secretagogues increase basolateral K+ conductance of frog corneal epithelium. Am. J. Physiol. Physiol. 1987, 253, C555–C560. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.; Rae, J.L.; Dewey, J. Inwardly rectifying potassium current in mammalian lens epithelial cells. Am. J. Physiol. Physiol. 1991, 261, C115–C123. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, J.; Liu, W.; Zhu, Y. Potassium ion channels in retinal ganglion cells (Review). Mol. Med. Rep. 2013, 8, 311–319. [Google Scholar] [CrossRef]
- Kumar, M.; Pattnaik, B.R. Focus on Kir7.1: Physiology and channelopathy. Channels 2014, 8, 488–495. [Google Scholar] [CrossRef] [Green Version]
- Reichhart, N.; Strauß, O. Ion channels and transporters of the retinal pigment epithelium. Exp. Eye Res. 2014, 126, 27–37. [Google Scholar] [CrossRef]
- Levin, M.H.; Verkman, A.S. CFTR-Regulated Chloride Transport at the Ocular Surface in Living Mice Measured by Potential Differences. Investig. Opthalmol. Vis. Sci. 2005, 46, 1428–1434. [Google Scholar] [CrossRef]
- Levin, M.; Verkman, A.S. Aquaporins and CFTR in Ocular Epithelial Fluid Transport. J. Membr. Biol. 2006, 210, 105–115. [Google Scholar] [CrossRef]
- Edelman, J.L.; Loo, D.D.; Sachs, G. Characterization of potassium and chloride channels in the basolateral membrane of bovine nonpigmented ciliary epithelial cells. Investig. Ophthalmol. Vis. Sci. 1995, 36, 2706–2716. [Google Scholar]
- Zhang, H.; Wong, C.L.; Shan, S.W.; Li, K.K.; Cheng, A.K.; Lee, K.-L.D.; Ge, J.; To, C.-H.; Do, C. Characterisation of Cl− transporter and channels in experimentally induced myopic chick eyes. Clin. Exp. Optom. 2011, 94, 528–535. [Google Scholar] [CrossRef]
- Shiue, M.H.I.; Gukasyan, H.J.; Kim, K.; Loo, D.D.F.; Lee, V.H.L. Characterization of cyclic AMP-regulated chloride conductance in the pigmented rabbit conjunctival epithelial cells. Can. J. Physiol. Pharm. 2002, 80, 533–540. [Google Scholar] [CrossRef]
- Turner, H.C.; Bernstein, A.; Candia, O.A. Presence of CFTR in the conjunctival epithelium. Curr. Eye Res. 2002, 24, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.C.; Bonanno, J.A. Expression, localization, and functional evaluation of CFTR in bovine corneal endothelial cells. Am. J. Physiol. Physiol. 2002, 282, C673–C683. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Mead, A.; Suzuki, Y.; Sears, M. Basolateral membrane chloride channels in rabbit non-pigmented ciliary epithelium. Investig. Ophthalmol. Vis. Sci. 1996, 37, 670. [Google Scholar]
- Do, C.; Peterson-Yantorno, K.; Mitchell, C.H.; Civan, M.M. cAMP-activated maxi-Cl− channels in native bovine pigmented ciliary epithelial cells. Am. J. Physiol. Physiol. 2004, 287, C1003–C1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reigada, D.; Mitchell, C.H. Release of ATP from retinal pigment epithelial cells involves both CFTR and vesicular transport. Am. J. Physiol. Physiol. 2005, 288, C132–C140. [Google Scholar] [CrossRef]
- Jacob, T.J.C.; Zhang, J.J. Chloride channels in bovine pigmented and non-pigmented ciliary epithelial cells. Investig. Ophthalmol. Vis. Sci. 1996, 37, 2011. [Google Scholar]
- Wilde, A.A.; Amin, A. Channelopathies, genetic testing and risk stratification. Int. J. Cardiol. 2017, 237, 53–55. [Google Scholar] [CrossRef]
- Boon, C.J.; Klevering, B.J.; Leroy, B.P.; Hoyng, C.B.; Keunen, J.E.; Hollander, A.I.D. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog. Retin. Eye Res. 2009, 28, 187–205. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, B.R.; Shahi, P.K.; Marino, M.J.; Liu, X.; York, N.; Brar, S.; Chiang, J.; Pillers, D.-A.M.; Traboulsi, E.I. A NovelKCNJ13Nonsense Mutation and Loss of Kir7.1 Channel Function Causes Leber Congenital Amaurosis (LCA16). Hum. Mutat. 2015, 36, 720–727. [Google Scholar] [CrossRef]
- Hejtmancik, J.F.; Jiao, X.; Li, A.; Sergeev, Y.V.; Ding, X.; Sharma, A.K.; Chan, C.-C.; Medina, I.; Edwards, A.O. Mutations in KCNJ13 Cause Autosomal-Dominant Snowflake Vitreoretinal Degeneration. Expand. Spectr. Baf-Relat. Disord. Novo Var. Smarcc2 Cause Syndr. Intellect. Disabil. Dev. Delay 2008, 82, 174–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergouniotis, P.I.; Davidson, A.E.; Mackay, D.S.; Li, Z.; Yang, X.; Plagnol, V.; Moore, A.T.; Webster, A.R. Recessive Mutations in KCNJ13, Encoding an Inwardly Rectifying Potassium Channel Subunit, Cause Leber Congenital Amaurosis. Am. J. Hum. Genet. 2011, 89, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strom, T.M.; Nyakatura, G.; Apfelstedt-Sylla, E.; Hellebrand, H.; Lorenz, B.; Weber, B.H.F.; Wutz, K.; Gutwillinger, N.; Rüther, K.; Drescher, B.; et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat. Genet. 1998, 19, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Petrukhin, K.; Koisti, M.J.; Bakall, B.; Li, W.; Xie, G.; Marknell, T.; Sandgren, O.; Forsman, K.; Holmgren, G.; Andreasson, S.; et al. Identification of the gene responsible for Best macular dystrophy. Nat. Genet. 1998, 19, 241–247. [Google Scholar] [CrossRef]
- Wycisk, K.A.; Budde, B.; Feil, S.; Skosyrski, S.; Buzzi, F.; Neidhardt, J.; Glaus, E.; Nürnberg, P.; Ruether, K.; Berger, W. Structural and Functional Abnormalities of Retinal Ribbon Synapses due toCacna2d4Mutation. Investig. Opthalmol. Vis. Sci. 2006, 47, 3523–3530. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Cowing, J.A.; Michaelides, M.; Wilkie, S.E.; Jeffery, G.; Jenkins, S.A.; Mester, V.; Bird, A.C.; Robson, A.G.; Holder, G.E.; et al. Mutations in the Gene KCNV2 Encoding a Voltage-Gated Potassium Channel Subunit Cause “Cone Dystrophy with Supernormal Rod Electroretinogram” in Humans. Expand. Spectr. Baf-Relat. Disord. Novo Var. Smarcc2 Cause Syndr. Intellect. Disabil. Dev. Delay 2006, 79, 574–579. [Google Scholar] [CrossRef] [Green Version]
- Hussels, I.E.; Morton, N.E. Pingelap and Mokil Atolls: Achromatopsia. Am. J. Hum. Genet. 1972, 24, 304–309. [Google Scholar]
- Sundin, O.H.; Yang, J.-M.; Li, Y.; Zhu, D.; Hurd, J.N.; Mitchell, T.N.; Silva, E.D.; Maumenee, I.H. Genetic basis of total colourblindness among the Pingelapese islanders. Nat. Genet. 2000, 25, 289–293. [Google Scholar] [CrossRef]
- Dryja, T.P.; Finn, J.T.; Peng, Y.W.; McGee, T.L.; Berson, E.L.; Yau, K.W. Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 1995, 92, 10177–10181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Sergouniotis, P.I.; Michaelides, M.; Mackay, D.S.; Wright, G.A.; Devery, S.; Moore, A.T.; Holder, G.E.; Robson, A.G.; Webster, A.R. Recessive Mutations of the Gene TRPM1 Abrogate ON Bipolar Cell Function and Cause Complete Congenital Stationary Night Blindness in Humans. Am. J. Hum. Genet. 2009, 85, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, R.S.; Reuter, P.; Sisk, R.A.; Kausar, T.; Shahzad, M.; Maqsood, M.I.; Yousif, A.; Ali, M.; Riazuddin, S.; Wissinger, B.; et al. Homozygous missense variant in the human CNGA3 channel causes cone-rod dystrophy. Eur. J. Hum. Genet. 2014, 23, 473–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.-F.; Huang, F.; Wu, K.-C.; Wu, J.; Chen, J.; Pang, C.-P.; Lu, F.; Qu, J.; Jin, Z.-B. Genotype–phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genet. Med. 2014, 17, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Wycisk, K.A.; Zeitz, C.; Feil, S.; Wittmer, M.; Forster, U.; Neidhardt, J.; Wissinger, B.; Zrenner, E.; Wilke, R.; Kohl, S.; et al. Mutation in the Auxiliary Calcium-Channel Subunit CACNA2D4 Causes Autosomal Recessive Cone Dystrophy. Am. J. Hum. Genet. 2006, 79, 973–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustafson, K.; Duncan, J.L.; Biswas, P.; Soto-Hermida, A.; Matsui, H.; Jakubosky, D.; Suk, J.; Telenti, A.; Frazer, K.A.; Ayyagari, R. Whole Genome Sequencing Revealed Mutations in Two Independent Genes as the Underlying Cause of Retinal Degeneration in an Ashkenazi Jewish Pedigree. Genes 2017, 8, 210. [Google Scholar] [CrossRef] [PubMed]
- Krawczak, M.; Ball, E.V.; Fenton, I.; Stenson, P.D.; Abeysinghe, S.; Thomas, N.; Cooper, D.N. Human Gene Mutation Database? A biomedical information and research resource. Hum. Mutat. 2000, 15, 45–51. [Google Scholar] [CrossRef]
- Lee, H.-L.R.; Dougherty, J.P. Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol. Ther. 2012, 136, 227–266. [Google Scholar] [CrossRef]
- Wissinger, B.; Schaich, S.; Baumann, B.; Bonin, M.; Jägle, H.; Friedburg, C.; Varsányi, B.; Hoyng, C.B.; Dollfus, H.; Heckenlively, J.R.; et al. Large deletions of theKCNV2gene are common in patients with cone dystrophy with supernormal rod response. Hum. Mutat. 2011, 32, 1398–1406. [Google Scholar] [CrossRef]
- Thiagalingam, S.; McGee, T.L.; Weleber, R.G.; Sandberg, M.A.; Trzupek, K.M.; Berson, E.L.; Dryja, T.P. Novel Mutations in theKCNV2Gene in Patients with Cone Dystrophy and a Supernormal Rod Electroretinogram. Ophthalmic Genet. 2007, 28, 135–142. [Google Scholar] [CrossRef]
- AlTalbishi, A.; Zelinger, L.; Zeitz, C.; Hendler, K.; Namburi, P.; Audo, I.; Sheffer, R.; Yahalom, C.; Khateb, S.; Banin, E.; et al. TRPM1 Mutations are the Most Common Cause of Autosomal Recessive Congenital Stationary Night Blindness (CSNB) in the Palestinian and Israeli Populations. Sci. Rep. 2019, 9, 12047–12456. [Google Scholar] [CrossRef] [PubMed]
- Guziewicz, K.E.; Slavik, J.; Lindauer, S.J.P.; Aguirre, G.D.; Zangerl, B. Molecular Consequences of BEST1 Gene Mutations in Canine Multifocal Retinopathy Predict Functional Implications for Human Bestrophinopathies. Investig. Opthalmol. Vis. Sci. 2011, 52, 4497–4505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohl, S.; Varsányi, B.; Antunes, G.A.; Baumann, B.; Hoyng, C.B.; Jägle, H.; Rosenberg, T.; Kellner, U.; Lorenz, B.; Salati, R.; et al. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Eur. J. Hum. Genet. 2004, 13, 302–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Zulfiqar, F.; Riazuddin, S.A.; Xiao, X.; Ahmad, Z.; Hejtmancik, J.F. Autosomal recessive retinitis pigmentosa in a Pakistani family mapped to CNGA1 with identification of a novel mutation. Mol. Vis. 2004, 10, 884–889. [Google Scholar] [PubMed]
- Lejeune, F. Nonsense-mediated mRNA decay at the crossroads of many cellular pathways. BMB Rep. 2017, 50, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Pomares, E.; Burés-Jelstrup, A.; Ruiz-Nogales, S.; Corcóstegui, B.; Gonzàlez-Duarte, R.; Navarro, R. Nonsense-Mediated Decay as the Molecular Cause for Autosomal Recessive Bestrophinopathy in Two Unrelated Families. Investig. Opthalmol. Vis. Sci. 2012, 53, 532–537. [Google Scholar] [CrossRef] [Green Version]
- Farooqi, A.A.; Javeed, M.K.; Javed, Z.; Riaz, A.M.; Mukhtar, S.; Minhaj, S.; Abbas, S.; Bhatti, S. TRPM channels: Same ballpark, different players, and different rules in immunogenetics. Immunogenetics 2011, 63, 773–787. [Google Scholar] [CrossRef]
- Oancea, E.; Vriens, J.; Brauchi, S.; Jun, J.; Splawski, I.; Clapham, D.E. TRPM1 Forms Ion Channels Associated with Melanin Content in Melanocytes. Sci. Signal. 2009, 2, ra21. [Google Scholar] [CrossRef] [Green Version]
- Koike, C.; Obara, T.; Uriu, Y.; Numata, T.; Sanuki, R.; Miyata, K.; Koyasu, T.; Ueno, S.; Funabiki, K.; Tani, A.; et al. TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc. Natl. Acad. Sci. USA 2009, 107, 332–337. [Google Scholar] [CrossRef] [Green Version]
- Schneider, F.M.; Mohr, F.; Behrendt, M.; Oberwinkler, J. Properties and functions of TRPM1 channels in the dendritic tips of retinal ON-bipolar cells. Eur. J. Cell Biol. 2015, 94, 420–427. [Google Scholar] [CrossRef]
- Van Genderen, M.M.; Bijveld, M.M.; Claassen, Y.B.; Florijn, R.J.; Pearring, J.N.; Meire, F.M.; McCall, M.A.; Riemslag, F.C.; Gregg, R.G.; Bergen, A.A.; et al. Mutations in TRPM1 Are a Common Cause of Complete Congenital Stationary Night Blindness. Expand. Spectr. Baf-Relat. Disord. Novo Var. Smarcc2 Cause Syndr. Intellect. Disabil. Dev. Delay 2009, 85, 730–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werblin, F.S.; Dowling, J.E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 1969, 32, 339–355. [Google Scholar] [CrossRef] [PubMed]
- Morgans, C.W.; Brown, R.L.; Duvoisin, R.M. TRPM1: The endpoint of the mGluR6 signal transduction cascade in retinal ON-bipolar cells. BioEssays 2010, 32, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Masu, M.; Iwakabe, H.; Tagawa, Y.; Miyoshi, T.; Yamashita, M.; Fukuda, Y.; Sasaki, H.; Hiroi, K.; Nakamura, Y.; Shigemoto, R.; et al. Specific deficit of the ON response in visual transmission by targeted disruption of the mGIuR6 gene. Cell 1995, 80, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Nomura, A.; Shigemoto, R.; Nakamura, Y.; Okamoto, N.; Mizuno, N.; Nakanishi, S. Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells. Cell 1994, 77, 361–369. [Google Scholar] [CrossRef]
- Cao, Y.; Posokhova, E.; Martemyanov, K.A. TRPM1 forms complexes with nyctalopin in vivo and accumulates in postsynaptic compartment of ON-bipolar neurons in mGluR6 dependent manner. J. Neurosci. 2011, 31, 11521–11526. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Heimel, J.A.; Kamermans, M.; Peachey, N.S.; Gregg, R.G.; Nawy, S. A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J. Neurosci. 2009, 29, 6088–6093. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Rampino, M.A.F.; Carroll, R.C.; Nawy, S. G-protein-mediated inhibition of the Trp channel TRPM1 requires the G dimer. Proc. Natl. Acad. Sci. USA 2012, 109, 8752–8757. [Google Scholar] [CrossRef] [Green Version]
- Shazly, T.A.; Latina, M.A. Neovascular Glaucoma: Etiology, Diagnosis and Prognosis. Semin. Ophthalmol. 2009, 24, 113–121. [Google Scholar] [CrossRef]
- Audo, I.; Kohl, S.; Leroy, B.P.; Munier, F.L.; Guillonneau, X.; Mohand-Saïd, S.; Bujakowska, K.M.; Nandrot, E.F.; Lorenz, B.; Preising, M.; et al. TRPM1 Is Mutated in Patients with Autosomal-Recessive Complete Congenital Stationary Night Blindness. Am. J. Hum. Genet. 2009, 85, 720–729. [Google Scholar] [CrossRef] [Green Version]
- Utz, V.M.; Pfeifer, W.; Longmuir, S.Q.; Olson, R.J.; Wang, K.; Drack, A.V. Presentation of TRPM1-Associated Congenital Stationary Night Blindness in Children. JAMA Ophthalmol. 2018, 136, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Sanuki, R.; Yasuma, T.R.; Onishi, A.; Nishiguchi, K.M.; Koike, C.; Kadowaki, M.; Kondo, M.; Miyake, Y.; Furukawa, T. TRPM1 mutations are associated with the complete form of congenital stationary night blindness. Mol. Vis. 2010, 16, 425–437. [Google Scholar] [PubMed]
- Sui, R.-F.; Zhao, J.-L. Congenital stationary night blindness. Chin. J. Ophthalmol. 2006, 42, 472–475. [Google Scholar]
- Lee, A.; Wang, S.; Williams, B.; Hagen, J.; Scheetz, T.E.; Haeseleer, F. Characterization of Cav1.4 Complexes (α11.4, β2, and α2δ4) in HEK293T Cells and in the Retina. J. Biol. Chem. 2014, 290, 1505–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buraei, Z.; Yang, J. The ß subunit of voltage-gated Ca2+ channels. Physiol. Rev. 2010, 90, 1461–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simms, B.A.; Zamponi, G.W. Neuronal Voltage-Gated Calcium Channels: Structure, Function, and Dysfunction. Neuron 2014, 82, 24–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolphin, A.C. Calcium channel auxiliary α2δ and β subunits: Trafficking and one step beyond. Nat. Rev. Neurosci. 2012, 13, 542–555. [Google Scholar] [CrossRef]
- Dolphin, A.C. The α2δ subunits of voltage-gated calcium channels. Biochim. Biophys. Acta Bba Biomembr. 2013, 1828, 1541–1549. [Google Scholar] [CrossRef] [Green Version]
- Naylor, M.J.; Rancourt, D.E.; Bech-Hansen, N. Isolation and Characterization of a Calcium Channel Gene, Cacna1f, the Murine Orthologue of the Gene for Incomplete X-Linked Congenital Stationary Night Blindness. Genomics 2000, 66, 324–327. [Google Scholar] [CrossRef]
- Barnes, S.; Kelly, M.E.M. Calcium channels at the photoreceptor synapse. Adv. Exp. Med. Biol. 2002, 514, 465–476. [Google Scholar] [CrossRef]
- Boycott, K.; Maybaum, T.; Naylor, M.; Weleber, R.; Robitaille, J.; Miyake, Y.; Bergen, A.; Pierpont, M.; Pearce, W.; Bech-Hansen, N. A summary of 20 CACNA1F mutations identified in 36 families with incomplete X-linked congenital stationary night blindness, and characterization of splice variants. Qual. Life Res. 2001, 108, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Kimchi, A.; Meiner, V.; Silverstein, S.; Macarov, M.; Mor-Shaked, H.; Blumenfeld, A.; Audo, I.; Zeitz, C.; Mechoulam, H.; Banin, E.; et al. An Ashkenazi Jewish founder mutation in CACNA1F causes retinal phenotype in both hemizygous males and heterozygous female carriers. Ophthalmic Genet. 2019, 40, 443–448. [Google Scholar] [CrossRef]
- Bech-Hansen, N.T.; Naylor, M.J.; Maybaum, T.A.; Pearce, W.G.; Koop, B.F.; Fishman, G.A.; Mets, M.; Musarella, M.A.; Boycott, K.M. Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat. Genet. 1998, 19, 264–267. [Google Scholar] [CrossRef]
- Waldner, D.M.; Sierra, N.C.G.; Bonfield, S.; Nguyen, L.; Dimopoulos, I.S.; Sauvé, Y.; Stell, W.K.; Bech-Hansen, N.T. Cone dystrophy and ectopic synaptogenesis in a Cacna1f loss of function model of congenital stationary night blindness (CSNB2A). Channels 2018, 12, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Wutz, K.; Sauer, C.; Zrenner, E.; Lorenz, B.; Alitalo, T.; Broghammer, M.; Hergersberg, M.; De La Chapelle, A.; Weber, B.H.F.; Wissinger, B.; et al. Thirty distinct CACNA1F mutations in 33 families with incomplete type of XLCSNB and Cacna1f expression profiling in mouse retina. Eur. J. Hum. Genet. 2002, 10, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijveld, M.M.; Florijn, R.J.; Bergen, A.A.B.; Born, L.I.V.D.; Kamermans, M.; Prick, L.; Riemslag, F.C.C.; Van Schooneveld, M.J.; Kappers, A.M.L.; Van Genderen, M. Genotype and Phenotype of 101 Dutch Patients with Congenital Stationary Night Blindness. Ophthalmology 2013, 120, 2072–2081. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Chen, T.; Liu, B.; Xue, J.H.; Zhang, L.; Xia, F.; Pang, J.-J.; Zhang, Z.M. Visual Signal Pathway Reorganization in the Cacna1f Mutant Rat Model. Investig. Opthalmol. Vis. Sci. 2013, 54, 1988–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, Y.; Witkovsky, P. Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. Neuroscience 1997, 78, 1209–1216. [Google Scholar] [CrossRef]
- Tachibana, M.; Okada, T.; Arimura, T.; Kobayashi, K.; Piccolino, M. Dihydropyridine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish retina. J. Neurosci. 1993, 13, 2898–2909. [Google Scholar] [CrossRef] [Green Version]
- Mansergh, F.; Orton, N.C.; Vessey, J.P.; LaLonde, M.R.; Stell, W.K.; Tremblay, F.; Barnes, S.; Rancourt, D.E.; Bech-Hansen, N.T. Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum. Mol. Genet. 2005, 14, 3035–3046. [Google Scholar] [CrossRef] [Green Version]
- Hemara-Wahanui, A.; Berjukow, S.; Hope, C.I.; Dearden, P.K.; Wu, S.-B.; Wilson-Wheeler, J.; Sharp, D.M.; Lundon-Treweek, P.; Clover, G.M.; Hoda, J.-C.; et al. A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proc. Natl. Acad. Sci. USA 2005, 102, 7553–7558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalkanen, R.; Mäntyjärvi, M.; Tobias, R.; Isosomppi, J.; Sankila, E.-M.; Alitalo, T.; Bech-Hansen, N.T. X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J. Med. Genet. 2006, 43, 699–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauke, J.; Schild, A.; Neugebauer, A.; Lappa, A.; Fricke, J.; Fauser, S.; Rößler, S.; Pannes, A.; Zarrinnam, D.; Altmüller, J.; et al. A Novel Large In-Frame Deletion within the CACNA1F Gene Associates with a Cone-Rod Dystrophy 3-Like Phenotype. PLoS ONE 2013, 8, e76414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Zhang, Q.; Li, S.; Guan, L.; Xiao, X.; Zhang, J.; Jia, X.; Sun, W.; Zhu, Z.; Gao, Y.; et al. Exome Sequencing of 47 Chinese Families with Cone-Rod Dystrophy: Mutations in 25 Known Causative Genes. PLoS ONE 2013, 8, e65546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalkanen, R.; Tobias, R.; Mäntyjärvi, M.; De La Chapelle, A.; Bech-Hansen, N.T.; Sankila, E.-M.; Forsius, H.; Alitalo, T. A Novel CACNA1F Gene Mutation Causes Aland Island Eye Disease. Investig. Opthalmol. Vis. Sci. 2007, 48, 2498–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, L.P.D.S.; Liu, J.; Solomon, A.; Rodriguez, A.; Brecha, N.C. Expression of voltage-gated calcium channel α(2)δ(4) subunits in the mouse and rat retina. J. Comp. Neurol. 2013, 521, 2486–2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoreson, W.B.; Nitzan, R.; Miller, R.F. Reducing extracellular Cl− suppresses dihydropyridine-sensitive Ca2+ currents and synaptic transmission in amphibian photoreceptors. J. Neurophysiol. 1997, 77, 2175–2190. [Google Scholar] [CrossRef]
- Mercer, A.J.; Thoreson, W.B. The dynamic architecture of photoreceptor ribbon synapses: Cytoskeletal, extracellular matrix, and intramembrane proteins. Vis. Neurosci. 2011, 28, 453–471. [Google Scholar] [CrossRef]
- Kerov, V.; Laird, J.G.; Joiner, M.-L.A.; Knecht, S.; Soh, D.; Hagen, J.; Gardner, S.H.; Gutierrez, W.R.; Yoshimatsu, T.; Bhattarai, S.; et al. α2δ-4 Is Required for the Molecular and Structural Organization of Rod and Cone Photoreceptor Synapses. J. Neurosci. 2018, 38, 6145–6160. [Google Scholar] [CrossRef] [Green Version]
- Ba-Abbad, R.; Arno, G.; Carss, K.; Stirrups, K.; Penkett, C.; Moore, A.T.; Michaelides, M.; Raymond, F.L.; Webster, A.R.; Holder, G.E. Mutations in CACNA2D4 Cause Distinctive Retinal Dysfunction in Humans. Ophthalmology 2016, 123, 668–671. [Google Scholar] [CrossRef]
- Liu, X.; Kerov, V.; Haeseleer, F.; Majumder, A.; Artemyev, N.O.; Baker, S.A.; Lee, A. Dysregulation of Ca(v)1.4 channels disrupts the maturation of photoreceptor synaptic ribbons in congenital stationary night blindness type 2. Channels 2013, 7, 514–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoflach, D.; Kerov, V.; Sartori, S.B.; Obermair, G.J.; Schmuckermair, C.; Liu, X.; Sothilingam, V.; Garrido, M.G.; Baker, S.A.; Glosmann, M.; et al. Cav1.4 IT mouse as model for vision impairment in human congenital stationary night blindness type 2. Channels 2013, 7, 503–513. [Google Scholar] [CrossRef] [Green Version]
- Regus-Leidig, H.; Atorf, J.; Feigenspan, A.; Kremers, J.; Maw, M.A.; Brandstätter, J.H. Photoreceptor Degeneration in Two Mouse Models for Congenital Stationary Night Blindness Type 2. PLoS ONE 2014, 9, e86769. [Google Scholar] [CrossRef] [PubMed]
- Ruether, K.; Grosse, J.; Matthiessen, E.; Hoffmann, K.; Hartmann, C. Abnormalities of the photoreceptor-bipolar cell synapse in a substrain of C57BL/10 mice. Investig. Ophthalmol. Vis. Sci. 2000, 41, 4039–4047. [Google Scholar]
- Caputo, A.; Piano, I.; Demontis, G.C.; Bacchi, N.; Casarosa, S.; Della Santina, L.; Gargini, C. TMEM16A is associated with voltage-gated calcium channels in mouse retina and its function is disrupted upon mutation of the auxiliary α2δ4 subunit. Front. Cell. Neurosci. 2015, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacchi, N.; Messina, A.; Burtscher, V.; Dassi, E.; Provenzano, G.; Bozzi, Y.; Demontis, G.C.; Koschak, A.; Denti, M.A.; Casarosa, S. A New Splicing Isoform of Cacna2d4 Mimicking the Effects of c.2451insC Mutation in the Retina: Novel Molecular and Electrophysiological Insights. Investig. Opthalmology Vis. Sci. 2015, 56, 4846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raven, M.A.; Orton, N.C.; Nassar, H.; Williams, G.A.; Stell, W.K.; Jacobs, G.H.; Bech-Hansen, N.T.; Reese, B.E. Early afferent signaling in the outer plexiform layer regulates development of horizontal cell morphology. J. Comp. Neurol. 2008, 506, 745–758. [Google Scholar] [CrossRef]
- Zabouri, N.; Haverkamp, S. Calcium Channel-Dependent Molecular Maturation of Photoreceptor Synapses. PLoS ONE 2013, 8, e63853. [Google Scholar] [CrossRef] [Green Version]
- Czirják, G.; Tóth, Z.E.; Enyedi, P. Characterization of the Heteromeric Potassium Channel Formed by Kv2.1 and the Retinal Subunit Kv8.2 in Xenopus Oocytes. J. Neurophysiol. 2007, 98, 1213–1222. [Google Scholar] [CrossRef] [Green Version]
- Ottschytsch, N.; Raes, A.; Van Hoorick, D.; Snyders, D.J. Obligatory heterotetramerization of three previously uncharacterized Kv channel -subunits identified in the human genome. Proc. Natl. Acad. Sci. USA 2002, 99, 7986–7991. [Google Scholar] [CrossRef] [Green Version]
- Shealy, R.T.; Murphy, A.D.; Ramarathnam, R.; Jakobsson, E.; Subramaniam, S. Sequence-Function Analysis of the K+-Selective Family of Ion Channels Using a Comprehensive Alignment and the KcsA Channel Structure. Biophys. J. 2003, 84, 2929–2942. [Google Scholar] [CrossRef] [Green Version]
- Gayet-Primo, J.; Yaeger, D.B.; Khanjian, R.A.; Puthussery, T. Heteromeric KV2/KV8.2 Channels Mediate Delayed Rectifier Potassium Currents in Primate Photoreceptors. J. Neurosci. 2018, 38, 3414–3427. [Google Scholar] [CrossRef] [Green Version]
- Wissinger, B.; Dangel, S.; Jägle, H.; Hansen, L.; Baumann, B.; Rudolph, G.; Wolf, C.; Bonin, M.; Koeppen, K.; Ladewig, T.; et al. Cone Dystrophy with Supernormal Rod Response Is Strictly Associated with Mutations inKCNV2. Investig. Opthalmol. Vis. Sci. 2008, 49, 751–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelinger, L.; Wissinger, B.; Eli, D.; Kohl, S.; Sharon, D.; Banin, E. Cone Dystrophy with Supernormal Rod Response. Ophthalmology 2013, 120, 2338–2343. [Google Scholar] [CrossRef]
- Michaelides, M.; Holder, G.E.; Webster, A.R.; Hunt, D.M.; Bird, A.C.; Fitzke, F.W.; Mollon, J.D.; Moore, A.T. A detailed phenotypic study of “cone dystrophy with supernormal rod ERG”. Br. J. Ophthalmol. 2005, 89, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Alexander, K.R.; Fishman, G.A. Supernormal scotopic ERG in cone dystrophy. Br. J. Ophthalmol. 1984, 68, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Robson, A.G.; Holder, G.E. Pathognomonic (Diagnostic) ERGs A Review and Update. Retina 2013, 33, 5–12. [Google Scholar] [CrossRef]
- Robson, A.G.; Webster, A.R.; Michaelides, M.; Downes, S.M.; Cowing, J.A.; Hunt, D.M.; Moore, A.T.; Holder, G.E. “Cone dystrophy with supernormal rod electroretinogram”: A comprehensive genotype/phenotype study including fundus autofluorescence and extensive electrophysiology. Retina 2010, 30, 51–62. [Google Scholar] [CrossRef]
- Xu, D.; Su, D.; Nusinowitz, S.; Sarraf, D. Central ellipsoid loss associated with cone dystrophy and KCNV2 mutation. Retin. Cases Brief. Rep. 2018, 12, S59–S62. [Google Scholar] [CrossRef]
- Agange, N.; Sarraf, D. Occult macular dystrophy with mutations in the RP1L1 and KCNV2 genes. Retin. Cases Brief. Rep. 2017, 11, S65–S67. [Google Scholar] [CrossRef]
- Vincent, A.; Wright, T.; Garcia-Sanchez, Y.; Kisilak, M.; Campbell, M.; Westall, C.; Héon, E. Phenotypic characteristics including in vivo cone photoreceptor mosaic in KCNV2-related “cone dystrophy with supernormal rod electroretinogram”. Investig. Opthalmol. Vis. Sci. 2013, 54, 898–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedburg, C.; Wissinger, B.; Schambeck, M.; Bonin, M.; Kohl, S.; Lorenz, B. Long-Term Follow-Up of the Human Phenotype in Three Siblings with Cone Dystrophy Associated with a Homozygousp.G461RMutation ofKCNV2. Investig. Opthalmol. Vis. Sci. 2011, 52, 8621–8629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Salah, S.; Kamei, S.; Sénéchal, A.; Lopez, S.; Bazalgette, C.; Bazalgette, C.; Eliaou, C.M.; Zanlonghi, X.; Hamel, C. Novel KCNV2 Mutations in Cone Dystrophy with Supernormal Rod Electroretinogram. Am. J. Ophthalmol. 2008, 145, 1099–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergouniotis, P.I.; Holder, G.E.; Robson, A.G.; Michaelides, M.; Webster, A.R.; Moore, A.T. High-resolution optical coherence tomography imaging inKCNV2retinopathy. Br. J. Ophthalmol. 2011, 96, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Oishi, M.; Oishi, A.; Gotoh, N.; Ogino, K.; Higasa, K.; Iida, K.; Makiyama, Y.; Morooka, S.; Matsuda, F.; Yoshimura, N. Next-generation sequencing-based comprehensive molecular analysis of 43 Japanese patients with cone and cone-rod dystrophies. Mol. Vis. 2016, 22, 150–160. [Google Scholar] [PubMed]
- Huang, L.; Xiao, X.; Li, S.; Jia, X.; Wang, P.; Sun, W.; Xu, Y.; Xin, W.; Guo, X.; Zhang, Q. Molecular genetics of cone-rod dystrophy in Chinese patients: New data from 61 probands and mutation overview of 163 probands. Exp. Eye Res. 2016, 146, 252–258. [Google Scholar] [CrossRef]
- Abdelkader, E.; Yasir, Z.H.; Khan, A.M.; Raddadi, O.; Khandekar, R.; Alateeq, N.; Nowilaty, S.; Alshahrani, N.; Schatz, P. Analysis of retinal structure and function in cone dystrophy with supernormal rod response. Doc. Ophthalmol. 2020, 141, 23–32. [Google Scholar] [CrossRef]
- Kutsuma, T.; Katagiri, S.; Hayashi, T.; Yoshitake, K.; Iejima, D.; Gekka, T.; Kohzaki, K.; Mizobuchi, K.; Baba, Y.; Terauchi, R.; et al. Novel biallelic loss-of-function KCNV2 variants in cone dystrophy with supernormal rod responses. Doc. Ophthalmol. 2019, 138, 229–239. [Google Scholar] [CrossRef]
- Zobor, D.; Kohl, S.; Wissinger, B.; Zrenner, E.; Jagle, H. Rod and Cone Function in Patients with KCNV2 Retinopathy. PLoS ONE 2012, 7, e46762. [Google Scholar] [CrossRef]
- Hart, N.S.; Mountford, J.K.; Voigt, V.; Fuller-Carter, P.; Barth, M.; Nerbonne, J.M.; Hunt, D.M.; Carvalho, L.S. The Role of the Voltage-Gated Potassium Channel Proteins Kv8.2 and Kv2.1 in Vision and Retinal Disease: Insights from the Study of Mouse Gene Knock-Out Mutations. eNeuro 2019, 6. [Google Scholar] [CrossRef]
- Marmorstein, A.D.; Marmorstein, L.Y.; Rayborn, M.; Wang, X.; Hollyfield, J.G.; Petrukhin, K. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc. Natl. Acad. Sci. USA 2000, 97, 12758–12763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esumi, N.; Oshima, Y.; Li, Y.; Campochiaro, P.A.; Zack, D.J.; Ferguson, P.L.; Shaw, G.S. Analysis of theVMD2Promoter and Implication of E-box Binding Factors in Its Regulation. J. Biol. Chem. 2004, 279, 19064–19073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esumi, N.; Kachi, S.; Campochiaro, P.A.; Zack, D.J. VMD2Promoter Requires Two Proximal E-box Sites for Its Activityin Vivoand Is Regulated by the MITF-TFE Family. J. Biol. Chem. 2006, 282, 1838–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esumi, N.; Kachi, S.; Hackler, L.; Masuda, T.; Yang, Z.; Campochiaro, P.A.; Zack, D.J. BEST1 expression in the retinal pigment epithelium is modulated by OTX family members. Hum. Mol. Genet. 2008, 18, 128–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milenkovic, V.M.; Rivera, A.; Horling, F.; Weber, B.H.F. Insertion and Topology of Normal and Mutant Bestrophin-1 in the Endoplasmic Reticulum Membrane. J. Biol. Chem. 2006, 282, 1313–1321. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Tsunenari, T.; Yau, K.-W.; Nathans, J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc. Natl. Acad. Sci. USA 2002, 99, 4008–4013. [Google Scholar] [CrossRef] [Green Version]
- Stanton, J.B.; Goldberg, A.F.; Hoppe, G.; Marmorstein, L.Y.; Marmorstein, A.D. Hydrodynamic properties of porcine bestrophin-1 in Triton X-100. Biochim. Biophys. Acta Bba Biomembr. 2006, 1758, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartzell, H.C.; Qu, Z.; Yu, K.; Xiao, Q.; Chien, L.-T. Molecular Physiology of Bestrophins: Multifunctional Membrane Proteins Linked to Best Disease and Other Retinopathies. Physiol. Rev. 2008, 88, 639–672. [Google Scholar] [CrossRef]
- Xiao, Q.; Prussia, A.; Yu, K.; Cui, Y.-Y.; Hartzell, H.C. Regulation of Bestrophin Cl Channels by Calcium: Role of the C Terminus. J. Gen. Physiol. 2008, 132, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Hartzell, H.C.; Putzier, I.; Arreola, J. Calcium-activated chloride channels. Annu. Rev. Physiol. 2005, 67, 719–758. [Google Scholar] [CrossRef] [Green Version]
- Qu, Z.; Wei, R.W.; Mann, W.; Hartzell, H.C. Two Bestrophins Cloned fromXenopus laevisOocytes Express Ca2+-activated Cl-Currents. J. Biol. Chem. 2003, 278, 49563–49572. [Google Scholar] [CrossRef] [Green Version]
- Qu, Z.; Chien, L.-T.; Cui, Y.; Hartzell, H.C. The Anion-Selective Pore of the Bestrophins, a Family of Chloride Channels Associated with Retinal Degeneration. J. Neurosci. 2006, 26, 5411–5419. [Google Scholar] [CrossRef] [PubMed]
- Tsunenari, T.; Sun, H.; Williams, J.; Cahill, H.; Smallwood, P.; Yau, K.-W.; Nathans, J. Structure-Function Analysis of the Bestrophin Family of Anion Channels. J. Biol. Chem. 2003, 278, 41114–41125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.; Cui, Y.; Hartzell, H.C. The Bestrophin Mutation A243V, Linked to Adult-Onset Vitelliform Macular Dystrophy, Impairs Its Chloride Channel Function. Investig. Opthalmol. Vis. Sci. 2006, 47, 4956–4961. [Google Scholar] [CrossRef]
- Yu, K.; Qu, Z.; Cui, Y.; Hartzell, H.C. Chloride Channel Activity of Bestrophin Mutants Associated with Mild or Late-Onset Macular Degeneration. Investig. Opthalmol. Vis. Sci. 2007, 48, 4694–4705. [Google Scholar] [CrossRef]
- Soria, R.B.; Spitzner, M.; Schreiber, R.; Kunzelmann, K. Bestrophin-1 Enables Ca2+-activated Cl−Conductance in Epithelia. J. Biol. Chem. 2006, 284, 29405–29412. [Google Scholar] [CrossRef] [Green Version]
- Hartzell, H.C.; Qu, Z.; Putzier, I.; Artinian, L.; Chien, L.-T.; Cui, Y. Looking Chloride Channels Straight in the Eye: Bestrophins, Lipofuscinosis, and Retinal Degeneration. Physiology 2005, 20, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Chien, L.-T.; Zhang, Z.-R.; Hartzell, H.C. Single Cl− Channels Activated by Ca2+ in Drosophila S2 Cells Are Mediated By Bestrophins. J. Gen. Physiol. 2006, 128, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Qu, Z.; Hartzell, H.C. Bestrophin Cl− channels are highly permeable to HCO3−. Am. J. Physiol. Physiol. 2008, 294, C1371–C1377. [Google Scholar] [CrossRef] [Green Version]
- Dickson, V.K.; Pedi, L.; Long, S.B. Structure and insights into the function of a Ca2+-activated Cl− channel. Nature 2014, 516, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.A.; Bachman, L.A.; Gilles, B.J.; Cross, S.D.; Stelzig, K.E.; Resch, Z.T.; Marmorstein, L.Y.; Pulido, J.S.; Marmorstein, A.D. Autosomal Recessive Bestrophinopathy Is Not Associated With the Loss of Bestrophin-1 Anion Channel Function in a Patient With a Novel BEST1 Mutation. Investig. Opthalmol. Vis. Sci. 2015, 56, 4619–4630. [Google Scholar] [CrossRef] [Green Version]
- Chien, L.-T.; Hartzell, H.C. Rescue of Volume-regulated Anion Current by Bestrophin Mutants with Altered Charge Selectivity. J. Gen. Physiol. 2008, 132, 537–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chien, L.-T.; Hartzell, H.C. Drosophila Bestrophin-1 Chloride Current Is Dually Regulated by Calcium and Cell Volume. J. Gen. Physiol. 2007, 130, 513–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mladenova, K.; Petrova, S.; Andreeva, T.D.; Moskova-Doumanova, V.; Topouzova-Hristova, T.; Kalvachev, Y.; Balashev, K.; Bhattacharya, S.S.; Chakarova, C.; Lalchev, Z.; et al. Effects of Ca2+ ions on bestrophin-1 surface films. Colloids Surf. B Biointerfaces 2017, 149, 226–232. [Google Scholar] [CrossRef]
- Milenkovic, A.; Milenkovic, V.M.; Wetzel, C.H.; Weber, B.H.F. BEST1 protein stability and degradation pathways differ between autosomal dominant Best disease and autosomal recessive bestrophinopathy accounting for the distinct retinal phenotypes. Hum. Mol. Genet. 2018, 27, 1630–1641. [Google Scholar] [CrossRef]
- Nordström, S.; Thorburn, W. Dominantly inherited macular degeneration (Best’s disease) in a homozygous father with 11 children. Clin. Genet. 2008, 18, 211–216. [Google Scholar] [CrossRef]
- Rosenthal, R.; Bakall, B.; Kinnick, T.; Peachey, N.; Wimmers, S.; Wadelius, C.; Marmorstein, A.; Strauss, O. Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J. 2006, 20, 178–180. [Google Scholar] [CrossRef] [Green Version]
- Marmorstein, A.D.; Kinnick, T.R.; Stanton, J.B.; Johnson, A.A.; Lynch, R.M.; Marmorstein, L.Y. Bestrophin-1 influences transepithelial electrical properties and Ca2+ signaling in human retinal pigment epithelium. Mol. Vis. 2015, 21, 347–359. [Google Scholar]
- Zhang, Y.; Stanton, J.B.; Wu, J.; Yu, K.; Hartzell, H.C.; Peachey, N.S.; Marmorstein, L.Y.; Marmorstein, A.D. Suppression of Ca2+ signaling in a mouse model of Best disease. Hum. Mol. Genet. 2010, 19, 1108–1118. [Google Scholar] [CrossRef] [Green Version]
- Davidson, A.E.; Millar, I.D.; Burgess-Mullan, R.; Maher, G.J.; Urquhart, J.E.; Brown, P.D.; Black, G.C.; Manson, F.D. Functional Characterization of Bestrophin-1 Missense Mutations Associated with Autosomal Recessive Bestrophinopathy. Investig. Opthalmol. Vis. Sci. 2011, 52, 3730–3736. [Google Scholar] [CrossRef] [Green Version]
- Davidson, A.E.; Millar, I.D.; Urquhart, J.E.; Burgess-Mullan, R.; Shweikh, Y.; Parry, N.; O’Sullivan, J.; Maher, G.J.; McKibbin, M.; Downes, S.M.; et al. Missense Mutations in a Retinal Pigment Epithelium Protein, Bestrophin-1, Cause Retinitis Pigmentosa. Am. J. Hum. Genet. 2009, 85, 581–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, A.A.; Lee, Y.-S.; Chadburn, A.J.; Tammaro, P.; Manson, F.D.; Marmorstein, L.Y.; Marmorstein, A.D. Disease-causing mutations associated with four bestrophinopathies exhibit disparate effects on the localization, but not the oligomerization, of Bestrophin-1. Exp. Eye Res. 2014, 121, 74–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, A.A.; Lee, Y.-S.; Stanton, J.B.; Yu, K.; Hartzell, C.H.; Marmorstein, L.Y.; Marmorstein, A.D. Differential effects of Best disease causing missense mutations on bestrophin-1 trafficking. Hum. Mol. Genet. 2013, 22, 4688–4697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milenkovic, V.M.; Röhrl, E.; Weber, B.H.F.; Strauß, O. Disease-associated missense mutations in bestrophin-1 affect cellular trafficking and anion conductance. J. Cell Sci. 2011, 124, 2988–2996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Kittredge, A.; Ward, N.; Ji, C.; Chen, S.; Yang, T. ATP activates bestrophin ion channels through direct interaction. Nat. Commun. 2018, 9, 3126. [Google Scholar] [CrossRef]
- Marmorstein, A.D.; Johnson, A.A.; Bachman, L.A.; Andrews-Pfannkoch, C.; Knudsen, T.; Gilles, B.J.; Hill, M.; Gandhi, J.K.; Marmorstein, L.Y.; Pulido, J.S. Mutant Best1 Expression and Impaired Phagocytosis in an iPSC Model of Autosomal Recessive Bestrophinopathy. Sci. Rep. 2018, 8, 4487. [Google Scholar] [CrossRef]
- Marmorstein, L.Y.; Wu, J.; McLaughlin, P.; Yocom, J.; Karl, M.O.; Neussert, R.; Wimmers, S.; Stanton, J.B.; Gregg, R.G.; Strauss, O.; et al. The Light Peak of the Electroretinogram Is Dependent on Voltage-gated Calcium Channels and Antagonized by Bestrophin (Best-1). J. Gen. Physiol. 2006, 127, 577–589. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Jan, Y.-N.; Jan, L.Y. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 1995, 15, 1441–1447. [Google Scholar] [CrossRef] [Green Version]
- Döring, F.; Derst, C.; Wischmeyer, E.; Karschin, C.; Schneggenburger, R.; Daut, J.; Karschin, A. The Epithelial Inward Rectifier Channel Kir7.1 Displays Unusual K+ Permeation Properties. J. Neurosci. 1998, 18, 8625–8636. [Google Scholar]
- Yang, N.; Pan, A.; Swaminathan, A.; Kumar, G.; Hughes, B.A. Expression and localization of the inwardly rectifying potassium channel Kir7.1 in native bovine retinal pigment epithelium. Investig. Opthalmol. Vis. Sci. 2003, 44, 3178–3185. [Google Scholar] [CrossRef] [Green Version]
- Ookata, K.; Tojo, A.; Suzuki, Y.; Nakamura, N.; Kimura, K.; Wilcox, C.S.; Hirose, S. Localization of inward rectifier potassium channel Kir7.1 in the basolateral membrane of distal nephron and collecting duct. J. Am. Soc. Nephrol. 2000, 11, 1987–1994. [Google Scholar] [PubMed]
- Yang, D.; Swaminathan, A.; Zhang, X.; Hughes, B.A. Expression of Kir7.1 and a novel Kir7.1 splice variant in native human retinal pigment epithelium. Exp. Eye Res. 2008, 86, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, N.; Suzuki, Y.; Sakuta, H.; Ookata, K.; Kawahara, K.; Hirose, S. Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial cells: Implication for a functional coupling with Na+,K+-ATPase. Biochem. J. 1999, 342, 329. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, B.R.; Tokarz, S.; Asuma, M.P.; Schroeder, T.; Sharma, A.; Mitchell, J.C.; Edwards, A.O.; Pillers, D.-A.M. Snowflake Vitreoretinal Degeneration (SVD) Mutation R162W Provides New Insights into Kir7.1 Ion Channel Structure and Function. PLoS ONE 2013, 8, e71744. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, X.; Wang, H.; Sharma, A.K.; Edwards, A.O.; Hughes, B.A. Characterization of the R162W Kir7.1 mutation associated with snowflake vitreoretinopathy. Am. J. Physiol. Physiol. 2012, 304, C440–C449. [Google Scholar] [CrossRef] [Green Version]
- Fazzi, E.; Signorini, S.G.; Scelsa, B.; Bova, S.M.; Lanzi, G. Leber’s congenital amaurosis: An update. Eur. J. Paediatr. Neurol. 2003, 7, 13–22. [Google Scholar] [CrossRef]
- Galvin, J.A.; Fishman, G.A.; Stone, E.M.; Koenekoop, R.K. Evaluation of genotype–phenotype associations in Leber congenital Amaurosis. Retina 2005, 25, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.O.; Robertson, J.E. Hereditary Vitreoretinal Degenerations. In Retina, 4th ed.; Elsevier Inc.: Philadelphia, PA, USA, 2006; Volume 1, pp. 519–538. ISBN 0323025986. [Google Scholar]
- Gheiler, M.; Pollack, A.; Uchenik, D.; Godel, V.; Oliver, M. Hereditary snowflake vitreoretinal degeneration. Birth Defects Orig. Artic. Ser. 1982, 18, 577–580. [Google Scholar]
- Iwashita, M.; Watanabe, M.; Ishii, M.; Chen, T.; Johnson, S.L.; Kurachi, Y.; Okada, N.; Kondo, S. Pigment Pattern in jaguar/obelix Zebrafish Is Caused by a Kir7.1 Mutation: Implications for the Regulation of Melanosome Movement. PLoS Genet. 2006, 2, e197. [Google Scholar] [CrossRef]
- Perez-Roustit, S.; Marquette, V.; Bocquet, B.; Kaplan, J.; Perrault, I.; Meunier, I.; Hamel, C. Leber congenital amaurosis with large retinal pigment clumps caused by compound heterozygous mutations in KCNJ13. Retin. Cases Brief. Rep. 2017, 11, 221–226. [Google Scholar] [CrossRef]
- Khan, A.O.; Bergmann, C.; Neuhaus, C.; Bolz, H.J. A Distinct Vitreo-retinal Dystrophy with Early-onset Cataract from Recessive KCNJ13 Mutations. Ophthalmic Genet. 2014, 36, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Carrington, S.J.; Hernandez, C.C.; Swale, D.R.; Aluko, O.A.; Denton, J.S.; Cone, R.D. G protein–coupled receptors differentially regulate glycosylation and activity of the inwardly rectifying potassium channel Kir7.1. J. Biol. Chem. 2018, 293, 17739–17753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahi, P.K.; Liu, X.; Aul, B.; Moyer, A.; Pattnaik, A.; Denton, J.; Pillers, D.-A.M.; Pattnaik, B.R. Abnormal Electroretinogram after Kir7.1 Channel Suppression Suggests Role in Retinal Electrophysiology. Sci. Rep. 2017, 7, 10651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, H.; Chen, Y.; Li, Y.; Chen, R.; Mardon, G. CRISPR-engineered mosaicism rapidly reveals that loss of Kcnj13 function in mice mimics human disease phenotypes. Sci. Rep. 2015, 5, 8366. [Google Scholar] [CrossRef] [Green Version]
- Roman, D.; Zhong, H.; Yaklichkin, S.; Chen, R.; Mardon, G. Conditional loss of Kcnj13 in the retinal pigment epithelium causes photoreceptor degeneration. Exp. Eye Res. 2018, 176, 219–226. [Google Scholar] [CrossRef]
- Kanzaki, Y.; Fujita, H.; Sato, K.; Hosokawa, M.; Matsumae, H.; Shiraga, F.; Morizane, Y.; Ohuchi, H. KCNJ13 Gene Deletion Impairs Cell Alignment and Phagocytosis in Retinal Pigment Epithelium Derived from Human-Induced Pluripotent Stem Cells. Investig. Opthalmol. Vis. Sci. 2020, 61, 38. [Google Scholar] [CrossRef]
- Shuart, N.G.; Haitin, Y.; Camp, S.S.; Black, K.D.; Zagotta, W.N. Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels. Nat. Commun. 2011, 2, 457. [Google Scholar] [CrossRef] [Green Version]
- Michalakis, S.; Reisert, J.; Geiger, H.; Wetzel, C.H.; Zong, X.; Bradley, J.; Spehr, M.; Hüttl, S.; Gerstner, A.; Pfeifer, A.; et al. Loss of CNGB1 Protein Leads to Olfactory Dysfunction and Subciliary Cyclic Nucleotide-gated Channel Trapping. J. Biol. Chem. 2006, 281, 35156–35166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Molday, L.L.; Molday, R.S.; Sarfare, S.S.; Woodruff, M.L.; Fain, G.L.; Kraft, T.W.; Pittler, S.J. Knockout of GARPs and the β-subunit of the rod cGMP-gated channel disrupts disk morphogenesis and rod outer segment structural integrity. J. Cell Sci. 2009, 122, 1192–1200. [Google Scholar] [CrossRef] [Green Version]
- Gerstner, A.; Zong, X.; Hofmann, F.; Biel, M. Molecular Cloning and Functional Characterization of a New Modulatory Cyclic Nucleotide-Gated Channel Subunit from Mouse Retina. J. Neurosci. 2000, 20, 1324–1332. [Google Scholar] [CrossRef]
- Biel, M.; Zong, X.; Hofmann, F. Cyclic Nucleotide-Gated Cation Channels. Trends Cardiovasc. Med. 1996, 6, 274–280. [Google Scholar] [CrossRef]
- Kaupp, U.B.; Seifert, R. Cyclic Nucleotide-Gated Ion Channels. Physiol. Rev. 2002, 82, 769–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wissinger, B.; Gamer, D.; Jägle, H.; Giorda, R.; Marx, T.; Mayer, S.; Tippmann, S.; Broghammer, M.; Jurklies, B.; Rosenberg, T.; et al. CNGA3 Mutations in Hereditary Cone Photoreceptor Disorders. Am. J. Hum. Genet. 2001, 69, 722–737. [Google Scholar] [CrossRef] [Green Version]
- Thiadens, A.A.H.J.; Roosing, S.; Collin, R.W.; Van Moll-Ramirez, N.; Van Lith-Verhoeven, J.J.; Van Schooneveld, M.J.; Hollander, A.I.D.; Born, L.I.V.D.; Hoyng, C.B.; Cremers, F.P.M.; et al. Comprehensive Analysis of the Achromatopsia Genes CNGA3 and CNGB3 in Progressive Cone Dystrophy. Ophthalmology 2010, 117, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.K.; Van Cauwenbergh, C.; Rother, C.; Baumann, B.; Reuter, P.; De Baere, E.; Wissinger, B.; Kohl, S.; ACHM Study Group. CNGB3 mutation spectrum including copy number variations in 552 achromatopsia patients. Hum. Mutat. 2017, 38, 1579–1591. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Dong, F.; Li, H.; Li, H.; Yang, L.; Sui, R. Novel CNGA3 mutations in Chinese patients with achromatopsia. Br. J. Ophthalmol. 2015, 99, 571–576. [Google Scholar] [CrossRef]
- Dai, G.; Varnum, M.D. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions. Am. J. Physiol. Physiol. 2013, 305, C147–C159. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.; Collin, R.W.; Shah, S.T.A.; Shah, A.A.; Khan, M.I.; Hussain, A.; Sadeque, A.; Strom, T.M.; Thiadens, A.A.; Roosing, S.; et al. Novel CNGA3 and CNGB3 mutations in two Pakistani families with achromatopsia. Mol. Vis. 2010, 16, 774–781. [Google Scholar]
- Arshad, M.W.; Lee, Y.; Malik, M.A.; Khan, J.; Khan, A.; Kareem, A.; Kang, C.; Shabbir, M.I. Identification of Novel Mutation in CNGA3 gene by Whole-Exome Sequencing and In-Silico Analyses for Genotype-Phenotype Assessment with Autosomal Recessive Achromatopsia in Pakistani families. J. Pak. Med. Assoc. 2019, 69, 183–189. [Google Scholar]
- Sharpe, L.T.; Stockman, A.; Jägle, H.; Nathans, J. Opsin genes, cone photopigments, color vision and colorblindness. In Color Vision: From Genes to Perception; Cambrigde University Press: Cambridge, UK, 1999. [Google Scholar]
- Kohl, S.; Baumann, B.; Broghammer, M.; Jägle, H.; Sieving, P.; Kellner, U.; Spegal, R.; Anastasi, M.; Zrenner, E.; Sharpe, L.T.; et al. Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum. Mol. Genet. 2000, 9, 2107–2116. [Google Scholar] [CrossRef]
- Reeves, B.C. Night Vision: Basic, Clinical and Applied Aspects. Neurochem. Int. 1991, 19, 383–384. [Google Scholar] [CrossRef]
- Kohl, S.; Marx, T.; Giddings, I.; Jagle, H.; Jacobson, S.G.; Apfelstedt-Sylla, E.; Zrenner, E.; Sharpe, L.T.; Wissinger, B. Total colourblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel. Nat. Genet. 1998, 19, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Pittler, S.J.; Huang, X.; Oliveira, L.; Berson, E.L.; Dryja, T.P. Autosomal recessive retinitis pigmentosa caused by mutations in the α subunit of rod cGMP phosphodiesterase. Nat. Genet. 1995, 11, 468–471. [Google Scholar] [CrossRef]
- Goto-Omoto, S.; Hayashi, T.; Gekka, T.; Kubo, A.; Takeuchi, T.; Kitahara, K. Compound heterozygous CNGA3 mutations (R436W, L633P) in a Japanese patient with congenital achromatopsia. Vis. Neurosci. 2006, 23, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Michaelides, M.; Aligianis, I.; Ainsworth, J.; Mollon, J.D.; Maher, E.; Moore, A.; Hunt, D.M. Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. J. Med. Genet. 2004, 41, e20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Täger, J.; Kohl, S.; Birch, D.; Wheaton, D.K.; Wissinger, B.; Reuter, P. An early nonsense mutation facilitates the expression of a short isoform of CNGA3 by alternative translation initiation. Exp. Eye Res. 2018, 171, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Dutrow, E.V.; Miyadera, K.; Delemotte, L.; MacDermaid, C.M.; Reinstein, S.L.; Crumley, W.R.; Dixon, C.J.; Casal, M.L.; Klein, M.L.; et al. Canine CNGA3 Gene Mutations Provide Novel Insights into Human Achromatopsia-Associated Channelopathies and Treatment. PLoS ONE 2015, 10, e0138943. [Google Scholar] [CrossRef] [PubMed]
- Nishiguchi, K.M.; Sandberg, M.A.; Gorji, N.; Berson, E.L.; Dryja, T.P. Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases. Hum. Mutat. 2005, 25, 248–258. [Google Scholar] [CrossRef]
- Michaelides, M.; Aligianis, I.A.; Ainsworth, J.R.; Good, P.; Mollon, J.D.; Maher, E.R.; Moore, A.T.; Hunt, D.M. Progressive cone dystrophy associated with mutation in CNGB3. Investig. Opthalmol. Vis. Sci. 2004, 45, 1975–1982. [Google Scholar] [CrossRef] [Green Version]
- Bright, S.R.; Brown, T.E.; Varnum, M.D. Disease-associated mutations in CNGB3 produce gain of function alterations in cone cyclic nucleotide-gated channels. Mol. Vis. 2005, 11, 1141–1150. [Google Scholar]
- Burkard, M.; Kohl, S.; Krätzig, T.; Tanimoto, N.; Brennenstuhl, C.; Bausch, A.E.; Junger, K.; Reuter, P.; Sothilingam, V.; Beck, S.C.; et al. Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel–associated retinopathy. J. Clin. Investig. 2018, 128, 5663–5675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matulef, K.; Zagotta, W.N. Cyclic Nucleotide-Gated Ion Channels. Annu. Rev. Cell Dev. Biol. 2003, 19, 23–44. [Google Scholar] [CrossRef] [PubMed]
- Craven, K.B.; Zagotta, W.N. CNG and HCN channels: Two Peas, One Pod. Annu. Rev. Physiol. 2006, 68, 375–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzolini, M.; Arcangeletti, M.; Marchesi, A.; Napolitano, L.M.R.; Grosa, D.; Maity, S.; Anselmi, C.; Torre, V. The gating mechanism in cyclic nucleotide-gated ion channels. Sci. Rep. 2018, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Pepe, I.M. Recent advances in our understanding of rhodopsin and phototransduction. Prog. Retin. Eye Res. 2001, 20, 733–759. [Google Scholar] [CrossRef]
- Bareil, C.; Hamel, C.; Delague, V.; Arnaud, B.; Demaille, J.; Claustres, M. Segregation of a mutation in CNGB1 encoding the β-subunit of the rod cGMP-gated channel in a family with autosomal recessive retinitis pigmentosa. Qual. Life Res. 2001, 108, 328–334. [Google Scholar] [CrossRef]
- Hull, S.; Attanasio, M.; Arno, G.; Carss, K.; Robson, A.G.; Thompson, D.A.; Plagnol, V.; Michaelides, M.; Holder, G.E.; Henderson, R.; et al. Clinical Characterization of CNGB1-Related Autosomal Recessive Retinitis Pigmentosa. JAMA Ophthalmol. 2017, 135, 137–144. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, Y.; Lei, X.; Deng, Q.; Tong, Y.; Du, L.; Shen, Y. A Novel CNGA1 Gene Mutation (c.G622A) of Autosomal Recessive Retinitis Pigmentosa Leads to the CNGA1 Protein Reduction on Membrane. Biochem. Genet. 2019, 57, 540–554. [Google Scholar] [CrossRef]
- Jin, X.; Qu, L.-H.; Hou, B.-K.; Xu, H.-W.; Meng, X.-H.; Pang, C.-P.; Yin, Z.-Q. Novel compound heterozygous mutation in the CNGA1 gene underlie autosomal recessive retinitis pigmentosa in a Chinese family. Biosci. Rep. 2016, 36, e00289. [Google Scholar] [CrossRef] [Green Version]
- Leconte, L.; Barnstable, C.J. Impairment of rod cGMP-gated channel α-subunit expression leads to photoreceptor and bipolar cell degeneration. Investig. Ophthalmol. Vis. Sci. 2000, 41, 917–926. [Google Scholar]
- Walsh, G. Biopharmaceutical benchmarks 2018. Nat. Biotechnol. 2018, 36, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, D.E.; Hikita, S.T.; Rowland, T.J.; Friedrich, A.M.; Hinman, C.R.; Johnson, L.V.; Clegg, D.O. Derivation of Functional Retinal Pigmented Epithelium from Induced Pluripotent Stem Cells. Stem Cells 2009, 27, 2427–2434. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Reynolds, J.; Garcia, T.; Cifuentes, H.; Chew, S.; Zeng, X.; Lamba, D.A. Generation of Transplantable Retinal Photoreceptors from a Current Good Manufacturing Practice-Manufactured Human Induced Pluripotent Stem Cell Line. Stem Cells Transl. Med. 2017, 7, 210–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kittredge, A.; Ji, C.; Zhang, Y.; Yang, T. Differentiation, Maintenance, and Analysis of Human Retinal Pigment Epithelium Cells: A Disease-in-a-dish Model for BEST1 Mutations. J. Vis. Exp. 2018, 138, e57791. [Google Scholar] [CrossRef]
- Guziewicz, K.E.; Zangerl, B.; Lindauer, S.J.; Mullins, R.F.; Sandmeyer, L.S.; Grahn, B.H.; Stone, E.M.; Acland, G.M.; Aguirre, G.D. Bestrophin gene mutations cause canine multifocal retinopathy: A novel animal model for best disease. Investig. Opthalmol. Vis. Sci. 2007, 48, 1959–1967. [Google Scholar] [CrossRef]
- Guziewicz, K.E.; Cideciyan, A.V.; Beltran, W.A.; Komaromy, A.M.; Dufour, V.; Swider, M.; Iwabe, S.; Sumaroka, A.; Kendrick, B.T.; Ruthel, G.; et al. BEST1 gene therapy corrects a diffuse retina-wide microdetachment modulated by light exposure. Proc. Natl. Acad. Sci. USA 2018, 115, E2839–E2848. [Google Scholar] [CrossRef] [Green Version]
- Carter, D.A.; Smart, M.J.K.; Letton, W.; Ramsden, C.M.; Nommiste, B.; Chen, L.L.; Fynes, K.; Muthiah, M.N.; Goh, P.; Lane, A.; et al. Mislocalisation of BEST1 in iPSC-derived retinal pigment epithelial cells from a family with autosomal dominant vitreoretinochoroidopathy (ADVIRC). Sci. Rep. 2016, 6, 33792. [Google Scholar] [CrossRef] [Green Version]
- Morgans, C.W.; Zhang, J.; Jeffrey, B.G.; Nelson, S.M.; Burke, N.S.; Duvoisin, R.M.; Brown, R.L. TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc. Natl. Acad. Sci. USA 2009, 106, 19174–19178. [Google Scholar] [CrossRef] [Green Version]
- Blodi, C.F.; Stone, E.M. Best’s vitelliform dystrophy. Ophthalmic Paediatr. Genet. 1990, 11, 49–59. [Google Scholar]
- Baumann, L.; Gerstner, A.; Zong, X.; Biel, M.; Wahl-Schott, C. Functional Characterization of the L-type Ca2+ Channel Cav1.4 1 from Mouse Retina. Investig. Opthalmol. Vis. Sci. 2004, 45, 708–713. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.H.; Oh, P.Y.; Ingber, D.E.; Huang, S. Multistable and multistep dynamics in neutrophil differentiation. BMC Cell Biol. 2006, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doering, C.J.; Rehak, R.; Bonfield, S.; Peloquin, J.B.; Stell, W.K.; Mema, S.C.; Sauve, Y.; McRory, J.E. Modified Cav1.4 Expression in the Cacna1fnob2 Mouse Due to Alternative Splicing of an ETn Inserted in Exon 2. PLoS ONE 2008, 3, e2538. [Google Scholar] [CrossRef] [PubMed]
- Lodha, N.; Bonfield, S.; Orton, N.; Doering, C.; McRory, J.; Mema, S.C.; Rehak, R.; Sauve, Y.; Tobias, R.; Stell, W.; et al. Congenital Stationary Night Blindness in Mice—A Tale of Two Cacna1f Mutants. In Adv Exp Med Bio; Springer Science and Business Media LLC: Berlin, Germany, 2010; Volume 664, pp. 549–558. [Google Scholar]
- Jia, S.; Muto, A.; Orisme, W.; Henson, H.E.; Parupalli, C.; Ju, B.; Baier, H.; Taylor, M.R. Zebrafish Cacna1fa is required for cone photoreceptor function and synaptic ribbon formation. Hum. Mol. Genet. 2014, 23, 2981–2994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyagi, S.; Ribera, A.B.; Bannister, R. Zebrafish as a Model System for the Study of Severe Cav2.1 (α1A) Channelopathies. Front. Mol. Neurosci. 2020, 12. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, D.K.; Glasauer, S.M.K.; Mateos, J.M.; Barmettler, G.; Ziegler, U.; Neuhauss, S.C. A New Zebrafish Model for CACNA2D4-Dysfunction. Investig. Opthalmol. Vis. Sci. 2019, 60, 5124–5135. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, S.; Burgos, J.; López-Cayuqueo, K.I.; Lai, K.-M.V.; Valenzuela, D.M.; Cid, L.P.; Sepúlveda, F.V. Cleft Palate, Moderate Lung Developmental Retardation and Early Postnatal Lethality in Mice Deficient in the Kir7.1 Inwardly Rectifying K+ Channel. PLoS ONE 2015, 10, e0139284. [Google Scholar] [CrossRef] [Green Version]
- Uyhazi, K.E.; Bennett, J. Blinded by the light: A nonhuman primate model of achromatopsia. J. Clin. Investig. 2019, 129, 513–515. [Google Scholar] [CrossRef] [Green Version]
- Shahi, P.K.; Hermans, D.; Sinha, D.; Brar, S.; Moulton, H.; Stulo, S.; Borys, K.D.; Capowski, E.; Pillers, D.-A.M.; Gamm, D.; et al. Gene Augmentation and Readthrough Rescue Channelopathy in an iPSC-RPE Model of Congenital Blindness. Am. J. Hum. Genet. 2019, 104, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Scalabrino, M.L.; Boye, S.L.; Fransen, K.M.H.; Noel, J.M.; Dyka, F.M.; Min, S.H.; Ruan, Q.; De Leeuw, C.N.; Simpson, E.M.; Gregg, R.G.; et al. Intravitreal delivery of a novel AAV vector targets ON bipolar cells and restores visual function in a mouse model of complete congenital stationary night blindness. Hum. Mol. Genet. 2015, 24, 6229–6239. [Google Scholar] [CrossRef] [Green Version]
- Sinha, D.; Steyer, B.G.; Shahi, P.K.; Mueller, K.; Valiauga, R.; Edwards, K.L.; Bacig, C.; Steltzer, S.S.; Srinivasan, S.; Abdeen, A.; et al. Human iPSC modeling reveals mutation-specific responses to gene therapy in Best disease. bioRxiv 2020, 796581. [Google Scholar] [CrossRef]
- Uggenti, C.; Briant, K.; Streit, A.-K.; Thomson, S.; Koay, Y.H.; Baines, R.A.; Swanton, E.; Manson, F.D. Restoration of mutant bestrophin-1 expression, localisation and function in a polarised epithelial cell model. Dis. Model. Mech. 2016, 9, 1317–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalakis, S.; Mühlfriedel, R.; Tanimoto, N.; Krishnamoorthy, V.; Koch, S.; Fischer, M.D.; Becirovic, E.; Bai, L.; Huber, G.; Beck, S.C.; et al. Restoration of Cone Vision in the CNGA3−/−Mouse Model of Congenital Complete Lack of Cone Photoreceptor Function. Mol. Ther. 2010, 18, 2057–2063. [Google Scholar] [CrossRef]
- Banin, E.; Gootwine, E.; Obolensky, A.; Ezra-Elia, R.; Ejzenberg, A.; Zelinger, L.; Honig, H.; Rosov, A.; Yamin, E.; Sharon, O.; et al. Gene Augmentation Therapy Restores Retinal Function and Visual Behavior in a Sheep Model of CNGA3 Achromatopsia. Mol. Ther. 2015, 23, 1423–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, L.S.; Xu, J.; Pearson, R.A.; Smith, A.J.; Bainbridge, J.W.; Morris, L.M.; Fliesler, S.J.; Ding, X.-Q.; Ali, R.R. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Hum. Mol. Genet. 2011, 20, 3161–3175. [Google Scholar] [CrossRef]
- Pang, J.-J.; Deng, W.-T.; Dai, X.; Lei, B.; Everhart, E.; Umino, Y.; Li, J.; Zhang, K.; Mao, S.; Boye, S.L.; et al. AAV-Mediated Cone Rescue in a Naturally Occurring Mouse Model of CNGA3-Achromatopsia. PLoS ONE 2012, 7, e35250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, S.; Sothilingam, V.; Garrido, M.G.; Tanimoto, N.; Becirovic, E.; Seide, C.; Beck, S.C.; Seeliger, M.W.; Biel, M.; Mühlfriedel, R.; et al. Gene therapy restores vision and delays degeneration in the CNGB1−/−mouse model of retinitis pigmentosa. Hum. Mol. Genet. 2012, 21, 4486–4496. [Google Scholar] [CrossRef] [Green Version]
- Michalakis, S.; Koch, S.; Sothilingam, V.; Garrido, M.G.; Tanimoto, N.; Schulze, E.; Becirovic, E.; Koch, F.; Seide, C.; Beck, S.C.; et al. Gene Therapy Restores Vision and Delays Degeneration in the CNGB1−/−Mouse Model of Retinitis Pigmentosa. Adv. Exp. Med. Biol. 2014, 801, 733–739. [Google Scholar] [CrossRef] [Green Version]
- Russell, S.; Bennett, J.; Wellman, J.A.; Chung, D.C.; Yu, Z.-F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; McCague, S.; et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 2017, 390, 849–860. [Google Scholar] [CrossRef]
- Cukras, C.; Wiley, H.E.; Jeffrey, B.G.; Sen, H.N.; Turriff, A.; Zeng, Y.; Vijayasarathy, C.; Marangoni, D.; Ziccardi, L.; Kjellstrom, S.; et al. Retinal AAV8-RS1 Gene Therapy for X-Linked Retinoschisis: Initial Findings from a Phase I/IIa Trial by Intravitreal Delivery. Mol. Ther. 2018, 26, 2282–2294. [Google Scholar] [CrossRef] [Green Version]
- Michel, U.; Malik, I.; Ebert, S.; Bähr, M.; Kügler, S. Long-term in vivo and in vitro AAV-2-mediated RNA interference in rat retinal ganglion cells and cultured primary neurons. Biochem. Biophys. Res. Commun. 2005, 326, 307–312. [Google Scholar] [CrossRef]
- Jacobson, S.G.; Cideciyan, A.V.; Ratnakaram, R.; Heon, E.; Schwartz, S.B.; Roman, A.J.; Peden, M.C.; Aleman, T.S.; Boye, S.L.; Sumaroka, A.; et al. Gene Therapy for Leber Congenital Amaurosis Caused by RPE65 Mutations. Arch. Ophthalmol. 2012, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, J.; Wellman, J.; Marshall, K.A.; McCague, S.; Ashtari, M.; DiStefano-Pappas, J.; Elci, O.U.; Chung, D.C.; Sun, J.; Wright, J.F.; et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: A follow-on phase 1 trial. Lancet 2016, 388, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Li, Y.; Kittredge, A.; Hopiavuori, A.; Ward, N.; Yao, P.; Fukuda, Y.; Zhang, Y.; Tsang, S.H.; Yang, T. Investigation and Restoration of BEST1 Activity in Patient-derived RPEs with Dominant Mutations. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hafez, M.; Hausner, G. Homing endonucleases: DNA scissors on a mission. Genome 2012, 55, 553–569. [Google Scholar] [CrossRef] [Green Version]
- Stoddard, B.L. Homing endonucleases from mobile group I introns: Discovery to genome engineering. Mob. DNA 2014, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D. Genome Engineering With Zinc-Finger Nucleases. Genetics 2011, 188, 773–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boch, J. TALEs of genome targeting. Nat. Biotechnol. 2011, 29, 135–136. [Google Scholar] [CrossRef]
- Boch, J.; Scholze, H.; Schornack, S.; Landgraf, A.; Hahn, S.; Kay, S.; Lahaye, T.; Nickstadt, A.; Bonas, U. Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science 2009, 326, 1509–1512. [Google Scholar] [CrossRef]
- Bhaya, D.; Davison, M.; Barrangou, R. CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation. Annu. Rev. Genet. 2011, 45, 273–297. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Bikard, D.; Cox, D.; Zhang, F.; Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 2013, 31, 233–239. [Google Scholar] [CrossRef]
- Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.-C.; Chang, C.-Y.; Yarmishyn, A.A.; Mao, Y.-S.; Yang, Y.-P.; Wang, M.-L.; Hsu, C.-C.; Yang, H.-Y.; Hwang, D.-K.; Chen, S.-J.; et al. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina. Acta Biomater. 2019, 101, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Tian, S.; Xuan, Y.; Zhang, S. Lipid and polymer mediated CRISPR/Cas9 gene editing. J. Mater. Chem. B 2020, 8, 4369–4386. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.; Yang, P.; Ban, Q.; Yang, Y.; Wang, M.; Chien, C.; Chen, S.; Sun, N.; Zhu, Y.; Liu, H.; et al. Dual Supramolecular Nanoparticle Vectors Enable CRISPR/Cas9-Mediated Knockin of Retinoschisin 1 Gene—A Potential Nonviral Therapeutic Solution for X-Linked Juvenile Retinoschisis. Adv. Sci. 2020, 7, 1903432. [Google Scholar] [CrossRef] [PubMed]
- Rossmiller, B.; Iwata, T. Optimized Homology Directed Repair for Treatment of Inherited Retinal Diseases Using the CRISPR/Cas9. IOVS 2017, 58, 4469. [Google Scholar]
- Hsu, P.D.; Scott, D.A.; Weinstein, J.A.; Ran, F.A.; Konermann, S.; Agarwala, V.; Li, Y.; Fine, E.J.; Wu, X.; Shalem, O.; et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 2013, 31, 827–832. [Google Scholar] [CrossRef]
- Varnum, M.D.; Meighan, P.C.; Hunter, S.S.; Morey, L.M.; Sherpa, T. Novel CNG Channelopathy Model Generated using CRISPR/Cas9-Mediated Genome Editing in Zebrafish. Biophys. J. 2018, 114, 490a. [Google Scholar] [CrossRef]
- Chatterjee, P.; Jakimo, N.; Lee, J.; Amrani, N.; Rodríguez, T.; Koseki, S.R.T.; Tysinger, E.; Qing, R.; Hao, S.; Sontheimer, E.J.; et al. An engineered ScCas9 with broad PAM range and high specificity and activity. Nat. Biotechnol. 2020. [Google Scholar] [CrossRef]
- Walton, R.T.; Christie, K.; Whittaker, M.N.; Kleinstiver, B.P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 2020, 368, 290–296. [Google Scholar] [CrossRef]
- Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I.; Liu, D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017, 551, 464–471. [Google Scholar] [CrossRef]
- Eid, A.; Alshareef, S.; Mahfouz, M.M. CRISPR base editors: Genome editing without double-stranded breaks. Biochem. J. 2018, 475, 1955–1964. [Google Scholar] [CrossRef] [PubMed]
- Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533, 420–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, H.A.; Liu, D.R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 2018, 19, 770–788. [Google Scholar] [CrossRef] [PubMed]
- Marx, V. Base editing a CRISPR way. Nat. Methods 2018, 15, 767–770. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Bass, B.L. RNA Editing by Adenosine Deaminases That Act on RNA. Annu. Rev. Biochem. 2002, 71, 817–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogg, M.; Paro, S.; Keegan, L.P.; O’Connell, M.A. RNA Editing by Mammalian ADARs. Epigenet. Cancer Part A 2011, 73, 87–120. [Google Scholar]
- Jinek, M.; East, A.; Cheng, A.; Lin, S.; Ma, E.; Doudna, J.A. RNA-programmed genome editing in human cells. eLife 2013, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannion, N.; Arieti, F.; Gallo, A.; Keegan, L.P.; O’Connell, M.A. New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins. Biomolecules 2015, 5, 2338–2362. [Google Scholar] [CrossRef] [Green Version]
- Nishikura, K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 2015, 17, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.T.; Kellner, M.J.; Regev, A.; et al. RNA targeting with CRISPR–Cas13. Nature 2017, 550, 280–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, D.B.T.; Gootenberg, J.S.; Abudayyeh, O.O.; Franklin, B.; Kellner, M.J.; Joung, J.; Zhang, F. RNA editing with CRISPR-Cas13. Science 2017, 358, 1019–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keeling, K.M.; Bedwell, D.M. Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases. Wiley Interdiscip. Rev. RNA 2011, 2, 837–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keeling, K.M.; Wang, D.; Conard, S.E.; Bedwell, D.M. Suppression of premature termination codons as a therapeutic approach. Crit. Rev. Biochem. Mol. Biol. 2012, 47, 444–463. [Google Scholar] [CrossRef] [Green Version]
- Linde, L.; Kerem, B. Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet. 2008, 24, 552–563. [Google Scholar] [CrossRef]
- Nagel-Wolfrum, K.; Möller, F.; Penner, I.; Wolfrum, U. Translational read-through as an alternative approach for ocular gene therapy of retinal dystrophies caused by in-frame nonsense mutations. Vis. Neurosci. 2014, 31, 309–316. [Google Scholar] [CrossRef]
- Diop, D.; Chauvin, C.; Jean-Jean, O. Aminoglycosides and other factors promoting stop codon readthrough in human cells. Comptes Rendus Biol. 2007, 330, 71–79. [Google Scholar] [CrossRef]
- Goldmann, T.; Overlack, N.; Möller, F.; Belakhov, V.V.; Van Wyk, M.; Baasov, T.; Wolfrum, U.; Nagel-Wolfrum, K. A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation. EMBO Mol. Med. 2012, 4, 1186–1199. [Google Scholar] [CrossRef]
- Nudelman, I.; Glikin, D.; Smolkin, B.; Hainrichson, M.; Belakhov, V.V.; Baasov, T. Repairing faulty genes by aminoglycosides: Development of new derivatives of geneticin (G418) with enhanced suppression of diseases-causing nonsense mutations. Bioorganic Med. Chem. 2010, 18, 3735–3746. [Google Scholar] [CrossRef]
- Nudelman, I.; Rebibo-Sabbah, A.; Cherniavsky, M.; Belakhov, V.V.; Hainrichson, M.; Chen, F.; Schacht, J.; Pilch, D.S.; Ben-Yosef, T.; Baasov, T. Development of Novel Aminoglycoside (NB54) with Reduced Toxicity and Enhanced Suppression of Disease-Causing Premature Stop Mutations. J. Med. Chem. 2009, 52, 2836–2845. [Google Scholar] [CrossRef] [Green Version]
- Rowe, S.M.; Tang, L.; Xue, X.; Biswas, S.; Du, M.; Belakhov, V.; Kandasamy, J.; Chen, F.; Schacht, J.; Baasov, T.; et al. The synthetic aminoglycoside NB124 suppresses cftr premature termination codons more effectively than gentamicin and prior synthetic derivatives. Pediatr. Pulmonol. 2012, 47, 290. [Google Scholar]
- Shulman, E.; Belakhov, V.V.; Wei, G.; Kendall, A.; Meyron-Holtz, E.G.; Ben-Shachar, D.; Schacht, J.; Baasov, T. Designer Aminoglycosides That Selectively Inhibit Cytoplasmic Rather than Mitochondrial Ribosomes Show Decreased Ototoxicity. J. Biol. Chem. 2013, 289, 2318–2330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, E.M.; Barton, E.R.; Zhuo, J.; Tomizawa, Y.; Friesen, W.J.; Trifillis, P.; Paushkin, S.; Patel, M.; Trotta, C.R.; Hwang, S.; et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007, 447, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Guérin, K.; Gregory-Evans, C.; Hodges, M.D.J.; Moosajee, M.; Mackay, D.S.; Gregory-Evans, K.; Flannery, J.G. Systemic aminoglycoside treatment in rodent models of retinitis pigmentosa. Exp. Eye Res. 2008, 87, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Campofelice, A.; Lentini, L.; Di Leonardo, A.; Melfi, R.; Tutone, M.; Pace, A.; Pibiri, I. Strategies against Nonsense: Oxadiazoles as Translational Readthrough-Inducing Drugs (TRIDs). Int. J. Mol. Sci. 2019, 20, 3329. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Chen, M.; Xu, J.; Luo, J.-H. Relationships Among Stop Codon Usage Bias, Its Context, Isochores, and Gene Expression Level in Various Eukaryotes. J. Mol. Evol. 2005, 61, 437–444. [Google Scholar] [CrossRef]
- Goldmann, T.; Rebibo-Sabbah, A.; Overlack, N.; Nudelman, I.; Belakhov, V.V.; Baasov, T.; Ben-Yosef, T.; Wolfrum, U.; Nagel-Wolfrum, K. Beneficial Read-Through of a USH1C Nonsense Mutation by Designed Aminoglycoside NB30 in the Retina. Investig. Opthalmol. Vis. Sci. 2010, 51, 6671–6680. [Google Scholar] [CrossRef]
- Goldmann, T.; Overlack, N.; Wolfrum, U.; Nagel-Wolfrum, K. PTC124-Mediated Translational Readthrough of a Nonsense Mutation Causing Usher Syndrome Type 1C. Hum. Gene 2011, 22, 537–547. [Google Scholar] [CrossRef]
- Keeling, K.M.; Wang, D.; Dai, Y.; Murugesan, S.; Chenna, B.C.; Clark, J.; Belakhov, V.V.; Kandasamy, J.; Velu, S.E.; Baasov, T.; et al. Attenuation of Nonsense-Mediated mRNA Decay Enhances In Vivo Nonsense Suppression. PLoS ONE 2013, 8, e60478. [Google Scholar] [CrossRef] [Green Version]
- Keeling, K.M. Nonsense Suppression as an Approach to Treat Lysosomal Storage Diseases. Diseases 2016, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Lentini, L.; Melfi, R.; Cancemi, P.; Pibiri, I.; Di Leonardo, A. Caffeine boosts Ataluren’s readthrough activity. Heliyon 2019, 5, e01963. [Google Scholar] [CrossRef] [Green Version]
- Shalev, M.; Baasov, T. When proteins start to make sense: Fine-tuning of aminoglycosides for PTC suppression therapy. MedChemComm 2014, 5, 1092–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lueck, J.D.; Yoon, J.S.; Perales-Puchalt, A.; Mackey, A.L.; Infield, D.T.; Behlke, M.A.; Pope, M.R.; Weiner, D.B.; Skach, W.R.; McCray, P.B., Jr.; et al. Engineered transfer RNAs for suppression of premature termination codons. Nat. Commun. 2019, 10, 822. [Google Scholar] [CrossRef] [Green Version]
- Lueck, J.D.; Mackey, A.L.; Infield, D.T.; Pope, M.R.; McCray, P.B.; Ahern, C.A. Engineered Transfer RNA Suppression of CFTR Nonsense Mutations. Biophys. J. 2018, 114, 487a. [Google Scholar] [CrossRef]
- Guerriero, C.J.; Brodsky, J.L. The Delicate Balance Between Secreted Protein Folding and Endoplasmic Reticulum-Associated Degradation in Human Physiology. Physiol. Rev. 2012, 92, 537–576. [Google Scholar] [CrossRef]
- Kim, Y.E.; Hipp, M.S.; Bracher, A.; Hayer-Hartl, M.; Hartl, F.U. Molecular Chaperone Functions in Protein Folding and Proteostasis. Annu. Rev. Biochem. 2013, 82, 323–355. [Google Scholar] [CrossRef] [PubMed]
Gene (#OMIM) | Location | Disease (OMIM) | Substitution Leading to PTC * |
---|---|---|---|
KCNJ13 (#603208) | 2q37.1 | Leber congenital amaurosis-16 (#614186) | p.W53X, p.R166X |
KCNV2 (#607604) | 9p24.2 | Retinal cone dystrophy 3B (#610356) | p.K3X, p.W46X, p.Y53X, p.Y54X, p.E73X, p.Q76X, p.E80X, p.Q109X, p.C113X, p.E143X, p.Q145X, p.E148X, p.C177X, p.W188X, p.Q223X, p.K260X, p.Q287X, p.E306X, p.G461X |
CACNA2D4 (#608171) | 12p13.33 | Retinal cone dystrophy 4 (#610478) | p.R628X, p.Y802X |
CACNA1F (#300110) | Xp11.23 | Aland Island eye disease, Cone-rod dystrophy, X-linked 3 (#300600), Night blindness (#300476), congenital stationary (incomplete), 2A, X-linked (#300071) | p.R50X, p.R82X, p.E278X, p.Q325X, p.W349X, p.R379X, p.Q439X, p.R625X, p.R691X, p.R830X, p.R895X, p.R958X, p.R969X, p.R972X, p.R978X, p.S1114X, p.R1299X, p.Q1359X, p.W1451X, p.K1602X, p.R1827X |
TRPM1 (#603576) | 15q13.3 | Night blindness, congenital stationary (complete) 1C, (#613216) | p.Q11X, p.K294X, p.Y774X, p.W856X, p.R877X, p.S882X, p.E1032X, p.Y1035X |
BEST1 (#607854) | 11q12.3 | Bestrophinopathy (#611809), Macular dystrophy (#153700), vitelliform 2 (#193220), Microcornea, rod-cone dystrophy, cataract, and posterior staphyloma (#613194), Retinitis pigmentosa-50 (#613194), Retinitis pigmentosa concentric (#613194), Vitreoretinochoroidopathy (#193220) | p.Y5X, p.W24X, p.Y29X, p.K149X, p.R200X, p.W287X, p.R356X, p.S517X |
CNGA3 (#600053) | 2q11.2 | Achromatopsia 2 (#216900) | p.S21X, p.R23X, p.W171X, p.Q196X, p.R221X, p.W316X, p.E344X, p.W358X, p.W440X, p.R499X, p.Q537X, p.Q655X, p.K659X |
CNGB3 (#605080) | 8q21.3 | Achromatopsia 3 (#262300), Macular degeneration (#248200) | p.Q38X, p.Q131X, p.R203X, p.R216X, p.W234X, p.E336X, p.R355X, p.W373X, p.Y398X, p.E419X, p.R478X, p.W487X, p.Y545X, p.Q556X |
CNGA1 (#123825) | 4p12 | Retinitis pigmentosa 49 (#613756) | p.R32X, p.C39X, p.E80X, p.K143X, p.L174X, p.R424X, p.R514X, p.R560X, p.R629X |
CNGB1 (#600724) | 16q21 | Retinitis pigmentosa 45 (#613767) | p.C632X, p.Y787X, p.Y836X, p.W920X |
Gene | Therapy In Vitro/In Vivo | References |
---|---|---|
KCNJ13 | AAV gene therapy in iPSC-RPE in vitro | [242] |
Read through in iPSC-RPE in vitro | [242] | |
TRPM1 | AAV gene therapy in mice | [243] |
BEST1 | AAV2-gene therapy in dogs | [229] |
Gene augmentation and CRISPR-gene editing in iPSC-RPE | [244] | |
Pharmacological chaperons in culture cells (MDCK/HEK293) | [245] | |
CNGA3 | AAV5-mediated gene therapy in mice AAV5-mediated gene augmentation in sheep | [246,247] |
NGB3 | AAV-gene therapy in mice | [248,249] |
CNGB1 | AAV-gene therapy in mice | [250,251] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabra, M.; Pattnaik, B.R. Sensing through Non-Sensing Ocular Ion Channels. Int. J. Mol. Sci. 2020, 21, 6925. https://doi.org/10.3390/ijms21186925
Kabra M, Pattnaik BR. Sensing through Non-Sensing Ocular Ion Channels. International Journal of Molecular Sciences. 2020; 21(18):6925. https://doi.org/10.3390/ijms21186925
Chicago/Turabian StyleKabra, Meha, and Bikash Ranjan Pattnaik. 2020. "Sensing through Non-Sensing Ocular Ion Channels" International Journal of Molecular Sciences 21, no. 18: 6925. https://doi.org/10.3390/ijms21186925
APA StyleKabra, M., & Pattnaik, B. R. (2020). Sensing through Non-Sensing Ocular Ion Channels. International Journal of Molecular Sciences, 21(18), 6925. https://doi.org/10.3390/ijms21186925