The Role of Micro-RNAs and Circulating Tumor Markers as Predictors of Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer
Abstract
:1. Introduction
2. Clinical Challenges in Rectal Cancer
2.1. Diagnostic Work-Up
2.2. Locally Advanced Rectal Cancer (LARC)
2.3. The Concept of Tumor Regression Rate
2.4. Assessing Clinical Response
2.5. The Watch and Wait Approach
2.6. Factors Associated with Response to Neoadjuvant Chemoradiation in LARC Patients
3. microRNAs in Locally Advanced Rectal Cancer
3.1. microRNAs as Potential Biomarkers in LARC: The beginning of the Investigation
3.2. microRNAs as Predictive Tissue Biomarkers in LARC
4. Circulating Biomarkers to Predict Response to nCRT in LARC
4.1. Circulating microRNAs as Predictors of Responsiveness to nCRT in LARC Patients
4.2. Exosomal microRNAs in LARC
4.3. Circulating Tumor DNA (ctDNA) in LARC
4.4. Circulating Tumor Cells (CTCs) in LARC
4.5. Circulating Derived Tumor-Proteins in LARC
5. Single Nucleotide Polymorphisms (SNPs) at miRNAs in LARC
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
5-FU | 5-Fluorouracil |
Ago2 | Argonaute2 protein |
AJCC | american joint committee on cancer |
ALU | Arthrobacter luteus |
ARID4B | AT-Rich Interaction Domain 4B |
bp | base pair |
c-Myc | Avian myelocytomatosis virus oncogene cellular homolog |
CAPOX | capecitabine and oxaliplatin |
cCR | complete clinical response |
cf | cell-free |
cfDNA | cell-free DNA |
CHEK2 | cell cycle checkpoint kinase 2 |
CI | confidence interval |
CIMP+ | CpG island methylator phenotype positive |
CLE | confocal laser endomicroscopy |
CNVs | copy number variations |
CpG | C phosphate G |
CRC | colorectal cancer |
cT | tumor stage |
CT | computed tomography |
CTC | circulating tumor cell |
ctDNA | circulating DNA |
ctRNA | circulating RNA |
DE | differentially expressed |
DFS | disease-free survival |
DNA | Deoxyribonucleic acid |
DRe | digital rectal examination |
EGFR | epidermal growth factor receptor |
EMA | european medicines agency |
FDA | US food and drug administration |
FFPE | formalin-fixed, paraffin-embedded |
G>C | guanine to cytosine |
GO | gene ontology |
Gy | gray |
HDL | high-density lipoprotein |
HR | hazard ratio |
IGFR | insulin-like growth factor receptor |
IL6ST | interleukin-6 signal transducer |
ISH | in situ hybridisation |
isomiR | miRNA isoform |
IWWD | international watch & wait database |
kb | kilobase |
KEGG | kyoto encyclopedia of genes and genomes |
KRAS2 | kirsten rat sarcoma viral oncogene 2 |
LARC | locally advanced rectal cancer |
LCS-6 | Let-7 complementary site 6 |
let-7 | lethal-7 |
LNA | locked nucleic acid |
lncRNA | long non-codign RNA |
MCC | mutated in colorectal cancers |
miR-SNP | microRNA-related single nucleotide polymorphism |
MIR17HG | miR-17-92a-1 cluster host gene |
miRNA/miR | microRNA |
MKI67 | marker of proliferation Ki67 |
MRI | magnetic resonance imaging |
mRNAs | messenger RNA transcripts |
MSI+ | microsatellite instability positive |
MV | megavolt |
N+ | metastatic perirectal lymph-nodes |
nCRT | neoadjuvant chemoradiation |
NGS | next-generation sequencing |
oncomiR | oncogenic miRNA |
OnCoRe | oncological outcomes after clinical complete response in patients with rectal cancer |
OS | overall survival |
PARP3 | poly (ADP-ribose) polymerase 3 |
pCR | complete pathological response |
PET/CT | positron emission tomography/computed tomography |
PFS | progression-free survival |
RAD23B | RAD23 homolog B |
RC | rectal cancer |
RCT | randomised controlled trials |
RECIST | response evaluation criteria in solid tumors |
RNA | Ribonucleic acid |
ROC | receiver operating characteristic |
RT | radiotherapy |
RT-qPCR | realtime- quantitative polymerase chain reaction |
SATB1 | special AT-rich sequence binding protein 1 |
SELDI-TOF-MS | surface-enhanced laser desorption/ionization-time of flight mass spectrometry |
SMAD3 | SMAD Family Member 3 |
SNP | single nucleotide polymorphism |
SUV | standard uptake value |
T | tesla |
T classification | tumor classification |
T>G | thymine to guanine |
TaTME | transanal surgery |
TME | total mesorectal excision |
TNM system | tumor, node, methastasis system |
TP53 | tumor protein 53 |
TRAF6 | tumor necrosis factor receptor-associated factor 6 |
TRBP | transactivation response element RNA-binding protein |
TRG | tumour regression grade |
TRUS | transrectal ultrasonography |
TYMS | thymidylate synthase |
UTRs | 3′-untranslated regions |
vs | versus |
Wnt | Wingless-related integration site |
References
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. The Lancet 2019. [Google Scholar] [CrossRef]
- Peltrini, R.; Luglio, G.; Cassese, G.; Amendola, A.; Caruso, E.; Sacco, M.; Pagano, G.; Sollazzo, V.; Tufano, A.; Giglio, M.C.; et al. Oncological outcomes and quality of life after rectal cancer surgery. Open Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Dodaro, C.A.; Calogero, A.; Tammaro, V.; Pellegrino, T.; Lionetti, R.; Campanile, S.; Menkulazi, M.; Ciccozzi, M.; Iannicelli, A.M.; Giallauria, F.; et al. Colorectal cancer in the elderly patient: The role of neo-adjuvant therapy. Open Med. Pol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Al-Sukhni, E.; Attwood, K.; Gabriel, E.; Nurkin, S.J. Predictors of circumferential resection margin involvement in surgically resected rectal cancer: A retrospective review of 23,464 patients in the US National Cancer Database. Int. J. Surg. 2016. [Google Scholar] [CrossRef]
- De Palma, G.D.; Maione, F.; Esposito, D.; Luglio, G.; Giglio, M.C.; Siciliano, S.; Gennarelli, N.; Cassese, G.; Campione, S.; D’Armiento, F.P.; et al. In vivo assessment of tumour angiogenesis in colorectal cancer: The role of confocal laser endomicroscopy. Colorectal Dis. 2016, 18. [Google Scholar] [CrossRef]
- Cassese, G.; Amendola, A.; Maione, F.; Giglio, M.C.; Pagano, G.; Milone, M.; Aprea, G.; Luglio, G.; De Palma, G.D. Serrated lesions of the colon-rectum: A focus on new diagnostic tools and current management. Gastroenterol. Res. Pract. 2019. [Google Scholar] [CrossRef] [Green Version]
- Beets-Tan, R.G.H.; Lambregts, D.M.J.; Maas, M.; Bipat, S.; Barbaro, B.; Curvo-Semedo, L.; Fenlon, H.M.; Gollub, M.J.; Gourtsoyianni, S.; Halligan, S.; et al. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur. Radiol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Cederquist, L.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Engstrom, P.F.; et al. Rectal cancer, version 2.2018 clinical practice guidelines in Oncology. JNCCN J. Natl. Compr. Cancer Netw. 2018. [Google Scholar] [CrossRef] [Green Version]
- Heald, R.J.; Husband, E.M.; Ryall, R.D.H. The mesorectum in rectal cancer surgery—The clue to pelvic recurrence? Br. J. Surg. 1982. [Google Scholar] [CrossRef]
- Lacy, A.M.; Tasende, M.M.; Delgado, S.; Fernandez-Hevia, M.; Jimenez, M.; De Lacy, B.; Castells, A.; Bravo, R.; Wexner, S.D.; Heald, R.J. Transanal Total Mesorectal Excision for Rectal Cancer: Outcomes after 140 Patients. J. Am. Coll. Surg. 2015, 221, 415–423. [Google Scholar] [CrossRef]
- Kapiteijn, E.; Marijnen, C.A.M.; Nagtegaal, I.D.; Putter, H.; Steup, W.H.; Wiggers, T.; Rutten, H.J.T.; Pahlman, L.; Glimelius, B.; Van Krieken, J.H.J.M.; et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N. Engl. J. Med. 2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeters, K.C.M.J.; Marijnen, C.A.M.; Nagtegaal, I.D.; Kranenbarg, E.K.; Putter, H.; Wiggers, T.; Rutten, H.; Pahlman, L.; Glimelius, B.; Leer, J.W.; et al. The TME trial after a median follow-up of 6 years: Increased local control but no survival benefit in irradiated patients with resectable rectal carcinoma. Ann. Surg. 2007. [Google Scholar] [CrossRef] [PubMed]
- Van Gijn, W.; Marijnen, C.A.M.; Nagtegaal, I.D.; Kranenbarg, E.M.K.; Putter, H.; Wiggers, T.; Rutten, H.J.T.; Påhlman, L.; Glimelius, B.; Van de Velde, C.J.H. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 2011. [Google Scholar] [CrossRef]
- Rödel, C.; Martus, P.; Papadoupolos, T.; Füzesi, L.; Klimpfinger, M.; Fietkau, R.; Liersch, T.; Hohenberger, W.; Raab, R.; Sauer, R.; et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J. Clin. Oncol. 2005. [Google Scholar] [CrossRef]
- Karagkounis, G.; Thai, L.; Mace, A.G.; Wiland, H.; Pai, R.K.; Steele, S.R.; Church, J.M.; Kalady, M.F. Prognostic Implications of Pathological Response to Neoadjuvant Chemoradiation in Pathologic Stage III Rectal Cancer. Ann. Surg. 2019. [Google Scholar] [CrossRef]
- Mandard, A.-M.; Dalibard, F.; Mandard, J.-C.; Marnay, J.; Henry-Amar, M.; Petiot, J.-F.; Roussel, A.; Jacob, J.-H.; Segol, P.; Samama, G.; et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 1994. [Google Scholar] [CrossRef]
- Dworak, O.; Keilholz, L.; Hoffmann, A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int. J. Colorectal Dis. 1997, 12, 19–23. [Google Scholar] [CrossRef]
- Ryan, R.; Gibbons, D.; Hyland, J.M.P.; Treanor, D.; White, A.; Mulcahy, H.E.; O’Donoghue, D.P.; Moriarty, M.; Fennelly, D.; Sheahan, K. Pathological response following long-course neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Histopathology 2005, 47, 141–146. [Google Scholar] [CrossRef]
- Washington, M.K.; Berlin, J.; Branton, P.; Burgart, L.J.; Carter, D.K.; Fitzgibbons, P.L.; Halling, K.; Frankel, W.; Jessup, J.; Kakar, S.; et al. Protocol for the Examination of Specimens From Patients With Primary Carcinoma of the Colon and Rectum. Arch. Pathol. Lab. Med. 2009, 133, 1539–1551. [Google Scholar]
- Martin, S.T.; Heneghan, H.M.; Winter, D.C. Systematic review and meta-Analysis of outcomes following pathological complete response to neoadjuvant chemoradiotherapy for rectal cancer. Br. J. Surg. 2012. [Google Scholar] [CrossRef]
- Iskander, O.; Courtot, L.; Tabchouri, N.; Artus, A.; Michot, N.; Muller, O.; Pabst-Giger, U.; Bourlier, P.; Kraemer-Bucur, A.; Lecomte, T.; et al. Complete pathological response following radiochemotherapy for locally advanced rectal cancer: Short and Long-term Outcome. Anticancer Res. 2019. [Google Scholar] [CrossRef]
- Peng, J.; Lin, J.; Qiu, M.; Wu, X.; Lu, Z.; Chen, G.; Li, L.; Ding, P.; Gao, Y.; Zeng, Z.; et al. Clinical factors of post-chemoradiotherapy as valuable indicators for pathological complete response in locally advanced rectal cancer. Clinics 2016. [Google Scholar] [CrossRef]
- Couch, D.G.; Hemingway, D.M. Complete radiotherapy response in rectal cancer: A review of the evidence. World J. Gastroenterol. 2016. [Google Scholar]
- Wilkins, S.; Haydon, A.; Porter, I.; Oliva, K.; Staples, M.; Carne, P.; McMurrick, P.; Bell, S. Complete Pathological Response after Neoadjuvant Long-Course Chemoradiotherapy for Rectal Cancer and Its Relationship to the Degree of T3 Mesorectal Invasion. Dis. Colon Rectum 2016. [Google Scholar] [CrossRef]
- Habr-Gama, A.; Perez, R.O.; Nadalin, W.; Sabbaga, J.; Ribeiro, U.; Silva, E.; Sousa, A.H.; Campos, F.G.; Kiss, D.R.; Gama-Rodrigues, J.; et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: Long-term results. Ann. Surg. 2004. [Google Scholar]
- Gérard, J.P.; Chamorey, E.; Gourgou-Bourgade, S.; Benezery, K.; De Laroche, G.; Mahé, M.A.; Boige, V.; Juzyna, B. Clinical complete response (cCR) after neoadjuvant chemoradiotherapy and conservative treatment in rectal cancer. Findings from the ACCORD 12/PRODIGE 2 randomized trial. Radiother. Oncol. 2015. [Google Scholar] [CrossRef]
- Habr-Gama, A.; Perez, R.O.; Wynn, G.; Marks, J.; Kessler, H.; Gama-Rodrigues, J. Complete clinical response after neoadjuvant chemoradiation therapy for distal rectal cancer: Characterization of clinical and endoscopic findings for standardization. Dis. Colon Rectum 2010. [Google Scholar] [CrossRef]
- Lambregts, D.M.J.; Maas, M.; Bakers, F.C.H.; Cappendijk, V.C.; Lammering, G.; Beets, G.L.; Beets-Tan, R.G.H. Long-term follow-up features on rectal MRI during a wait-and-see approach after a clinical complete response in patients with rectal cancer treated with chemoradiotherapy. Dis. Colon Rectum 2011. [Google Scholar] [CrossRef]
- Perez, R.O.; Habr-Gama, A.; São Julião, G.P.; Lynn, P.B.; Sabbagh, C.; Proscurshim, I.; Campos, F.G.; Gama-Rodrigues, J.; Nahas, S.C.; Buchpiguel, C.A. Predicting complete response to neoadjuvant CRT for distal rectal cancer using sequential PET/CT imaging. Tech. Coloproctol. 2014. [Google Scholar] [CrossRef]
- Peltrini, R.; Sacco, M.; Luglio, G.; Bucci, L. Local excision following chemoradiotherapy in T2–T3 rectal cancer: Current status and critical appraisal. Updat. Surg. 2020. [Google Scholar]
- São Julião, G.P.; Karagkounis, G.; Fernandez, L.M.; Habr-Gama, A.; Vailati, B.B.; Dattani, M.; Kalady, M.F.; Perez, R.O. Conditional Survival in Patients With Rectal Cancer and Complete Clinical Response Managed by Watch and Wait After Chemoradiation. Ann. Surg. 2019. [Google Scholar] [CrossRef] [PubMed]
- Habr-Gama, A.; São Julião, G.P.; Fernandez, L.M.; Vailati, B.B.; Andrade, A.; Araújo, S.E.A.; Gama-Rodrigues, J.; Perez, R.O. Achieving a Complete Clinical Response After Neoadjuvant Chemoradiation That Does Not Require Surgical Resection: It May Take Longer Than You Think! Dis. Colon Rectum 2019. [Google Scholar] [CrossRef] [PubMed]
- Habr-Gama, A.; São Julião, G.P.; Vailati, B.B.; Fernandez, L.M.; Ortega, C.D.; Figueiredo, N.; Gama-Rodrigues, J.; Perez, R.O. Organ Preservation among Patients with Clinically Node-Positive Rectal Cancer: Is It Really More Dangerous? Dis. Colon Rectum 2019. [Google Scholar] [CrossRef] [PubMed]
- Habr-Gama, A.; Sabbaga, J.; Gama-Rodrigues, J.; Julião, G.P.S.; Proscurshim, I.; Aguilar, P.B.; Nadalin, W.; Perez, R.O. Watch and wait approach following extended neoadjuvant chemoradiation for distal rectal cancer: Are we getting closer to anal cancer management? Dis. Colon Rectum 2013. [Google Scholar] [CrossRef]
- On, J.; Aly, E.H. ‘Watch and wait’ in rectal cancer: Summary of the current evidence. Int. J. Colorectal Dis. 2018. [Google Scholar] [CrossRef]
- Peltrini, R.; Caruso, E.; Bucci, L. Local regrowth after ‘Watch and Wait’ strategy: Is salvage surgery enough for disease control? Int. J. Colorectal Dis. 2019. [Google Scholar] [CrossRef]
- van der Valk, M.J.M.; Hilling, D.E.; Bastiaannet, E.; Meershoek-Klein Kranenbarg, E.; Beets, G.L.; Figueiredo, N.L.; Habr-Gama, A.; Perez, R.O.; Renehan, A.G.; van de Velde, C.J.H.; et al. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): An international multicentre registry study. Lancet 2018. [Google Scholar] [CrossRef] [Green Version]
- Renehan, A.G.; Malcomson, L.; Emsley, R.; Gollins, S.; Maw, A.; Myint, A.S.; Rooney, P.S.; Susnerwala, S.; Blower, A.; Saunders, M.P.; et al. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): A propensity-score matched cohort analysis. Lancet Oncol. 2016. [Google Scholar] [CrossRef]
- Habr-Gama, A.; São Julião, G.P.; Gama-Rodrigues, J.; Vailati, B.B.; Ortega, C.; Fernandez, L.M.; Araújo, S.E.A.; Perez, R.O. Baseline T Classification Predicts Early Tumor Regrowth after Nonoperative Management in Distal Rectal Cancer after Extended Neoadjuvant Chemoradiation and Initial Complete Clinical Response. Dis. Colon Rectum 2017. [Google Scholar] [CrossRef]
- Chand, M.; Perez, R.O. MRI linac and how it may potentially lead to more complete response in rectal cancer. Dis. Colon Rectum 2018. [Google Scholar] [CrossRef]
- Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016, 1, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, J.; Peruzzi, P.P.; Lawler, S. MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol. Med. 2014, 20, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, S.; Tong, Y.; Steitz, J.A. Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science 2007, 318, 1931–1934. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Witmer, P.D.; Casey, E.; Valle, D.; Sukumar, S. DNA methylation regulates MicroRNA expression. Cancer Biol. Ther. 2007, 6, 1284–1288. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, W.K.K.; Wu, C.W.; Sung, J.J.Y.; Yu, J.; Ng, S.S.M. MicroRNA dysregulation in colorectal cancer: A clinical perspective. Br. J. Cancer 2011, 104, 893–898. [Google Scholar] [CrossRef] [Green Version]
- Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar] [CrossRef]
- Niveditha, D.; Jasoria, M.; Narayan, J.; Majumder, S.; Mukherjee, S.; Chowdhury, R.; Chowdhury, S. Common and Unique microRNAs in Multiple Carcinomas Regulate Similar Network of Pathways to Mediate Cancer Progression. Sci. Rep. 2020, 10, 2331. [Google Scholar] [CrossRef] [Green Version]
- Lan, H.; Lu, H.; Wang, X.; Jin, H. MicroRNAs as Potential Biomarkers in Cancer: Opportunities and Challenges. Available online: https://www.hindawi.com/journals/bmri/2015/125094/ (accessed on 3 September 2020).
- Slattery, M.L.; Wolff, E.; Hoffman, M.D.; Pellatt, D.F.; Milash, B.; Wolff, R.K. MicroRNAs and colon and rectal cancer: Differential expression by tumor location and subtype. Genes. Chromosomes Cancer 2011, 50, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Gaedcke, J.; Grade, M.; Camps, J.; Søkilde, R.; Kaczkowski, B.; Schetter, A.J.; Difilippantonio, M.J.; Harris, C.C.; Ghadimi, B.M.; Møller, S.; et al. The rectal cancer microRNAome –microRNA expression in rectal cancer and matched normal mucosa. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012, 18, 4919–4930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micro-RNAs miR125b and miR137 are Frequently Upregulated in Response to Capecitabine Chemoradiotherapy of Rectal Cancer. Available online: https://www.spandidos-publications.com/ijo/33/3/541 (accessed on 25 August 2020).
- Drebber, U.; Lay, M.; Wedemeyer, I.; Vallböhmer, D.; Bollschweiler, E.; Brabender, J.; Mönig, S.P.; Hölscher, A.H.; Dienes, H.P.; Odenthal, M. Altered levels of the onco-microRNA 21 and the tumor-supressor microRNAs 143 and 145 in advanced rectal cancer indicate successful neoadjuvant chemoradiotherapy. Int. J. Oncol. 2011, 39, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Findlay, V.J.; Wang, C.; Nogueira, L.M.; Hurst, K.; Quirk, D.; Ethier, S.P.; Staveley O’Carroll, K.F.; Watson, D.K.; Camp, E.R. SNAI2 modulates colorectal cancer 5-fluorouracil sensitivity through miR145 repression. Mol. Cancer Ther. 2014, 13, 2713–2726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Vittoria Scarpati, G.; Falcetta, F.; Carlomagno, C.; Ubezio, P.; Marchini, S.; De Stefano, A.; Singh, V.K.; D’Incalci, M.; De Placido, S.; Pepe, S. A specific miRNA signature correlates with complete pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1113–1119. [Google Scholar] [CrossRef]
- Ma, W.; Yu, J.; Qi, X.; Liang, L.; Zhang, Y.; Ding, Y.; Lin, X.; Li, G.; Ding, Y. Radiation-induced microrna-622 causes radioresistance in colorectal cancer cells by down-regulating Rb. Oncotarget 2015, 6, 15984–15994. [Google Scholar] [CrossRef]
- Svoboda, M.; Sana, J.; Fabian, P.; Kocakova, I.; Gombosova, J.; Nekvindova, J.; Radova, L.; Vyzula, R.; Slaby, O. MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat. Oncol. Lond. Engl. 2012, 7, 195. [Google Scholar] [CrossRef] [Green Version]
- Kheirelseid, E.A.H.; Miller, N.; Chang, K.H.; Curran, C.; Hennessey, E.; Sheehan, M.; Newell, J.; Lemetre, C.; Balls, G.; Kerin, M.J. miRNA expressions in rectal cancer as predictors of response to neoadjuvant chemoradiation therapy. Int. J. Colorectal Dis. 2013, 28, 247–260. [Google Scholar] [CrossRef]
- Hotchi, M.; Shimada, M.; Kurita, N.; Iwata, T.; Sato, H.; Morimoto, S.; Yoshikawa, K.; Higashijima, J.; Miyatani, T. microRNA expression is able to predict response to chemoradiotherapy in rectal cancer. Mol. Clin. Oncol. 2013, 1, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Molinari, C.; Salvi, S.; Foca, F.; Teodorani, N.; Saragoni, L.; Puccetti, M.; Passardi, A.; Tamberi, S.; Avanzolini, A.; Lucci, E.; et al. miR-17-92a-1 cluster host gene (MIR17HG) evaluation and response to neoadjuvant chemoradiotherapy in rectal cancer. OncoTargets Ther. 2016, 9, 2735–2742. [Google Scholar] [CrossRef] [Green Version]
- Beroukhim, R.; Mermel, C.H.; Porter, D.; Wei, G.; Raychaudhuri, S.; Donovan, J.; Barretina, J.; Boehm, J.S.; Dobson, J.; Urashima, M.; et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010, 463, 899–905. [Google Scholar] [CrossRef]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W.; et al. Global variation in copy number in the human genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakao, T.; Iwata, T.; Hotchi, M.; Yoshikawa, K.; Higashijima, J.; Nishi, M.; Takasu, C.; Eto, S.; Teraoku, H.; Shimada, M. Prediction of response to preoperative chemoradiotherapy and establishment of individualized therapy in advanced rectal cancer. Oncol. Rep. 2015, 34, 1961–1967. [Google Scholar] [CrossRef] [PubMed]
- Caramés, C.; Cristóbal, I.; Moreno, V.; del Puerto, L.; Moreno, I.; Rodriguez, M.; Marín, J.P.; Correa, A.V.; Hernández, R.; Zenzola, V.; et al. MicroRNA-21 predicts response to preoperative chemoradiotherapy in locally advanced rectal cancer. Int. J. Colorectal Dis. 2015, 30, 899–906. [Google Scholar] [CrossRef]
- Caramés, C.; Cristobal, I.; Moreno, V.; Marín, J.P.; González-Alonso, P.; Torrejón, B.; Minguez, P.; Leon, A.; Martín, J.I.; Hernández, R.; et al. MicroRNA-31 Emerges as a Predictive Biomarker of Pathological Response and Outcome in Locally Advanced Rectal Cancer. Int. J. Mol. Sci. 2016, 17, 878. [Google Scholar] [CrossRef] [PubMed]
- Conde-Muiño, R.; Cano, C.; Sánchez-Martín, V.; Herrera-Merchan, A.; Comino, A.; Medina, P.P.; Palma, P.; Cuadros, M. Correction: Preoperative chemoradiotherapy for rectal cancer: The sensitizer role of the association between miR-375 and c-Myc. Oncotarget 2020, 11, 1202. [Google Scholar] [CrossRef]
- Campayo, M.; Navarro, A.; Benítez, J.C.; Santasusagna, S.; Ferrer, C.; Monzó, M.; Cirera, L. miR-21, miR-99b and miR-375 combination as predictive response signature for preoperative chemoradiotherapy in rectal cancer. PLoS ONE 2018, 13, e0206542. [Google Scholar] [CrossRef]
- Eriksen, A.H.M.; Sørensen, F.B.; Andersen, R.F.; Jakobsen, A.; Hansen, T.F. Association between the expression of microRNAs and the response of patients with locally advanced rectal cancer to preoperative chemoradiotherapy. Oncol. Lett. 2017, 14, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, T.; Sasaki, T.; Ikeda, K.; Tsukada, Y.; Nishizawa, Y.; Ito, M. Predicting prognosis according to preoperative chemotherapy response in patients with locally advanced lower rectal cancer. BMC Cancer 2019, 19, 1222. [Google Scholar] [CrossRef] [Green Version]
- Lopes-Ramos, C.; Koyama, F.C.; Habr-Gama, A.; Salim, A.C.M.; Bettoni, F.; Asprino, P.F.; França, G.S.; Gama-Rodrigues, J.; Parmigiani, R.B.; Perez, R.O.; et al. Comprehensive evaluation of the effectiveness of gene expression signatures to predict complete response to neoadjuvant chemoradiotherapy and guide surgical intervention in rectal cancer. Cancer Genet. 2015, 208, 319–326. [Google Scholar] [CrossRef]
- D’Angelo, E.; Zanon, C.; Sensi, F.; Digito, M.; Rugge, M.; Fassan, M.; Scarpa, M.; Pucciarelli, S.; Nitti, D.; Agostini, M. miR-194 as predictive biomarker of responsiveness to neoadjuvant chemoradiotherapy in patients with locally advanced rectal adenocarcinoma. J. Clin. Pathol. 2018, 71, 344–350. [Google Scholar] [CrossRef]
- Du, B.; Wang, X.; Wu, D.; Wang, T.; Yang, X.; Wang, J.; Shi, X.; Chen, L.; Zhang, W. MicroRNA expression profiles identify biomarkers for predicting the response to chemoradiotherapy in rectal cancer. Mol. Med. Rep. 2018, 18, 1909–1916. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Liu, L.; Zhou, N.; Shen, J.; Sun, Q.; Zhu, Y.; Chen, M. miR-519b-3p promotes responsiveness to preoperative chemoradiotherapy in rectal cancer patients by targeting ARID4B. Gene 2018, 655, 84–90. [Google Scholar] [CrossRef]
- Machackova, T.; Trachtova, K.; Prochazka, V.; Grolich, T.; Farkasova, M.; Fiala, L.; Sefr, R.; Kiss, I.; Skrovina, M.; Dosoudil, M.; et al. Tumor microRNAs Identified by Small RNA Sequencing as Potential Response Predictors in Locally Advanced Rectal Cancer Patients Treated With Neoadjuvant Chemoradiotherapy. Cancer Genom. Proteom. 2020, 17, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A.; Ceccaroli, C.; Geretto, M.; Ruggieri, F.G.; Schenone, S.; Di Maria, E. Predicting Response to Neoadjuvant Therapy in Colorectal Cancer Patients the Role of Messenger-and Micro-RNA Profiling. Cancers 2020, 12, 1652. [Google Scholar] [CrossRef]
- De Rubis, G.; Rajeev Krishnan, S.; Bebawy, M. Liquid Biopsies in Cancer Diagnosis, Monitoring, and Prognosis. Trends Pharmacol. Sci. 2019, 40, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Marcuello, M.; Vymetalkova, V.; Neves, R.P.L.; Duran-Sanchon, S.; Vedeld, H.M.; Tham, E.; van Dalum, G.; Flügen, G.; Garcia-Barberan, V.; Fijneman, R.J.A.; et al. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol. Aspects Med. 2019, 69, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Peng, R.; Wang, J.; Qin, Z.; Xue, L. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clin. Epigenetics 2018, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011, 13, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef] [Green Version]
- Gibbings, D.J.; Ciaudo, C.; Erhardt, M.; Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 2009, 11, 1143–1149. [Google Scholar] [CrossRef]
- O’Brien, K.; Breyne, K.; Ughetto, S.; Laurent, L.C.; Breakefield, X.O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 2020, 21, 585–606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, S.; Li, L.; Li, M.; Guo, C.; Yao, J.; Mi, S. Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genom. Proteom. Bioinform. 2015, 13, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizian, A.; Kramer, F.; Jo, P.; Wolff, H.A.; Beißbarth, T.; Skarupke, R.; Bernhardt, M.; Grade, M.; Ghadimi, B.M.; Gaedcke, J. Preoperative Prediction of Lymph Node Status by Circulating Mir-18b and Mir-20a During Chemoradiotherapy in Patients with Rectal Cancer. World J. Surg. 2015, 39, 2329–2335. [Google Scholar] [CrossRef]
- D’Angelo, E.; Fassan, M.; Maretto, I.; Pucciarelli, S.; Zanon, C.; Digito, M.; Rugge, M.; Nitti, D.; Agostini, M. Serum miR-125b is a non-invasive predictive biomarker of the pre-operative chemoradiotherapy responsiveness in patients with rectal adenocarcinoma. Oncotarget 2016, 7, 28647–28657. [Google Scholar] [CrossRef] [PubMed]
- Hiyoshi, Y.; Akiyoshi, T.; Inoue, R.; Murofushi, K.; Yamamoto, N.; Fukunaga, Y.; Ueno, M.; Baba, H.; Mori, S.; Yamaguchi, T. Serum miR-143 levels predict the pathological response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Oncotarget 2017, 8, 79201–79211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mjelle, R.; Sellæg, K.; Sætrom, P.; Thommesen, L.; Sjursen, W.; Hofsli, E. Identification of metastasis-associated microRNAs in serum from rectal cancer patients. Oncotarget 2017, 8, 90077–90089. [Google Scholar] [CrossRef]
- Yu, J.; Li, N.; Wang, X.; Ren, H.; Wang, W.; Wang, S.; Song, Y.; Liu, Y.; Li, Y.; Zhou, X.; et al. Circulating serum microRNA-345 correlates with unfavorable pathological response to preoperative chemoradiotherapy in locally advanced rectal cancer. Oncotarget 2016, 7, 64233–64243. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.H.-S.; Ip, E.; Chua, W.; Ng, W.; Henderson, C.; Shin, J.-S.; Harris, B.H.L.; Barberis, A.; Cowley, M.; De Souza, P.L.; et al. Serum microRNA expression during neoadjuvant chemoradiation for rectal cancer. J. Clin. Oncol. 2017, 35, e15081. [Google Scholar] [CrossRef]
- Meltzer, S.; Bjørnetrø, T.; Lyckander, L.G.; Flatmark, K.; Dueland, S.; Samiappan, R.; Johansen, C.; Kalanxhi, E.; Ree, A.H.; Redalen, K.R. Circulating Exosomal miR-141-3p and miR-375 in Metastatic Progression of Rectal Cancer. Transl. Oncol. 2019, 12, 1038–1044. [Google Scholar] [CrossRef]
- Jin, G.; Liu, Y.; Zhang, J.; Bian, Z.; Yao, S.; Fei, B.; Zhou, L.; Yin, Y.; Huang, Z. A panel of serum exosomal microRNAs as predictive markers for chemoresistance in advanced colorectal cancer. Cancer Chemother. Pharmacol. 2019, 84, 315–325. [Google Scholar] [CrossRef]
- Baek, D.W.; Kim, K.H.; Kang, B.W.; Kim, H.J.; Park, S.Y.; Park, J.S.; Choi, G.S.; Baek, J.H.; Hur, K.; Kim, J.G. Exosomal microRNA-199b-5p as a potential circulating biomarker to predict response of preoperative chemoradiotherapy for locally advanced rectal cancer. J. Clin. Oncol. 2019, 37, e15161. [Google Scholar] [CrossRef]
- Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer 2017, 17, 223–238. [Google Scholar] [CrossRef]
- Vizza, E.; Corrado, G.; De Angeli, M.; Carosi, M.; Mancini, E.; Baiocco, E.; Chiofalo, B.; Patrizi, L.; Zampa, A.; Piaggio, G.; et al. Serum DNA integrity index as a potential molecular biomarker in endometrial cancer. J. Exp. Clin. Cancer Res. CR 2018, 37, 1–9. [Google Scholar]
- Walker, J.A.; Kilroy, G.E.; Xing, J.; Shewale, J.; Sinha, S.K.; Batzer, M.A. Human DNA quantitation using Alu element-based polymerase chain reaction. Anal. Biochem. 2003, 315, 122–128. [Google Scholar] [CrossRef]
- Umetani, N.; Kim, J.; Hiramatsu, S.; Reber, H.A.; Hines, O.J.; Bilchik, A.J.; Hoon, D.S.B. Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: Direct quantitative PCR for ALU repeats. Clin. Chem. 2006, 52, 1062–1069. [Google Scholar] [CrossRef] [Green Version]
- Fawzy, A.; Sweify, K.M.; El-Fayoumy, H.M.; Nofal, N. Quantitative analysis of plasma cell-free DNA and its DNA integrity in patients with metastatic prostate cancer using ALU sequence. J. Egypt. Natl. Cancer Inst. 2016, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [Green Version]
- Dasari, A.; Morris, V.K.; Allegra, C.J.; Atreya, C.; Benson, A.B.; Boland, P.; Chung, K.; Copur, M.S.; Corcoran, R.B.; Deming, D.A.; et al. ctDNA applications and integration in colorectal cancer: An NCI Colon and Rectal–Anal Task Forces whitepaper. Nat. Rev. Clin. Oncol. 2020, 1–14. [Google Scholar] [CrossRef]
- Zitt, M.; Müller, H.M.; Rochel, M.; Schwendinger, V.; Zitt, M.; Goebel, G.; DeVries, A.; Margreiter, R.; Oberwalder, M.; Zeillinger, R.; et al. Circulating Cell-Free DNA in Plasma of Locally Advanced Rectal Cancer Patients Undergoing Preoperative Chemoradiation: A Potential Diagnostic Tool for Therapy Monitoring. Available online: https://www.hindawi.com/journals/dm/2008/598071/ (accessed on 29 August 2020).
- Carpinetti, P.; Donnard, E.; Bettoni, F.; Asprino, P.; Koyama, F.; Rozanski, A.; Sabbaga, J.; Habr-Gama, A.; Parmigiani, R.B.; Galante, P.A.F.; et al. The use of personalized biomarkers and liquid biopsies to monitor treatment response and disease recurrence in locally advanced rectal cancer after neoadjuvant chemoradiation. Oncotarget 2015. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Pucciarelli, S.; Enzo, M.V.; Del Bianco, P.; Briarava, M.; Bedin, C.; Maretto, I.; Friso, M.L.; Lonardi, S.; Mescoli, C.; et al. Circulating Cell-Free DNA: A Promising Marker of Pathologic Tumor Response in Rectal Cancer Patients Receiving Preoperative Chemoradiotherapy. Ann. Surg. Oncol. 2011, 18, 2461–2468. [Google Scholar] [CrossRef]
- Schou, J.V.; Larsen, F.O.; Sørensen, B.S.; Abrantes, R.; Boysen, A.K.; Johansen, J.S.; Jensen, B.V.; Nielsen, D.L.; Spindler, K.L. Circulating cell-free DNA as predictor of treatment failure after neoadjuvant chemo-radiotherapy before surgery in patients with locally advanced rectal cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Tie, J.; Cohen, J.D.; Wang, Y.; Li, L.; Christie, M.; Simons, K.; Elsaleh, H.; Kosmider, S.; Wong, R.; Yip, D.; et al. Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: A prospective biomarker study. Gut 2019, 68, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Khakoo, S.; Carter, P.D.; Brown, G.; Valeri, N.; Picchia, S.; Bali, M.A.; Shaikh, R.; Jones, T.; Begum, R.; Rana, I.; et al. MRI Tumor Regression Grade and Circulating Tumor DNA as Complementary Tools to Assess Response and Guide Therapy Adaptation in Rectal Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, M.; Shaikh, A.; Lo, H.C.; Arpino, G.; Placido, S.D.; Zhang, X.H.; Cristofanilli, M.; Schiff, R.; Trivedi, M.V. Perspective on Circulating Tumor Cell Clusters: Why It Takes a Village to Metastasize. Cancer Res. 2018, 78, 845–852. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Xia, B.-R.; Jin, W.-L.; Lou, G. Circulating tumor cells in precision oncology: Clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int. 2019, 19, 341. [Google Scholar] [CrossRef] [Green Version]
- Amintas, S.; Bedel, A.; Moreau-Gaudry, F.; Boutin, J.; Buscail, L.; Merlio, J.-P.; Vendrely, V.; Dabernat, S.; Buscail, E. Circulating Tumor Cell Clusters: United We Stand Divided We Fall. Int. J. Mol. Sci. 2020, 21, 2653. [Google Scholar] [CrossRef] [Green Version]
- San Juan, B.P.; Garcia-Leon, M.J.; Rangel, L.; Goetz, J.G.; Chaffer, C.L. The Complexities of Metastasis. Cancers 2019, 11, 1575. [Google Scholar] [CrossRef] [Green Version]
- Hinz, S.; Röder, C.; Tepel, J.; Hendricks, A.; Schafmayer, C.; Becker, T.; Kalthoff, H. Cytokeratin 20 positive circulating tumor cells are a marker for response after neoadjuvant chemoradiation but not for prognosis in patients with rectal cancer. BMC Cancer 2015, 15, 953. [Google Scholar] [CrossRef] [Green Version]
- Seyedin, S.N.; Callaghan, C.M.; Poellmann, M.; Bu, J.; Wang, A.Z.; Hong, S.; Caster, J.M. Assessing Changes in Circulating Tumor Cells (CTCs) during Preoperative Chemoradiotherapy for Gastrointestinal Malignancies Using a Nanotechnology-Based CTC Capture System. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, S113–S114. [Google Scholar] [CrossRef]
- Sun, W.; Sun, Y.; Zhu, M.; Wang, Z.; Zhang, H.; Xin, Y.; Jiang, G.; Guo, X.; Zhang, Z.; Liu, Y. The role of plasma cell-free DNA detection in predicting preoperative chemoradiotherapy response in rectal cancer patients. Oncol. Rep. 2014, 31, 1466–1472. [Google Scholar] [CrossRef] [Green Version]
- Troncarelli Flores, B.C.; Souza, E.; Silva, V.; Ali Abdallah, E.; Mello, C.A.L.; Gobo Silva, M.L.; Gomes Mendes, G.; Camila Braun, A.; Aguiar Junior, S.; Thomé Domingos Chinen, L. Molecular and Kinetic Analyses of Circulating Tumor Cells as Predictive Markers of Treatment Response in Locally Advanced Rectal Cancer Patients. Cells 2019, 8, 641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, F.M.; Gallagher, W.M.; Fox, E.; Stephens, R.B.; Rexhepaj, E.; Petricoin, E.F.; Liotta, L.; Kennedy, M.J.; Reynolds, J.V. Combination of SELDI-TOF-MS and data mining provides early-stage response prediction for rectal tumors undergoing multimodal neoadjuvant therapy. Ann. Surg. 2007, 245, 259–266. [Google Scholar] [CrossRef] [PubMed]
- do Canto, L.M.; Cury, S.S.; Barros-Filho, M.C.; Kupper, B.E.C.; de Souza Begnami, M.D.F.; Scapulatempo-Neto, C.; Carvalho, R.F.; Marchi, F.A.; Olsen, D.A.; Madsen, J.S.; et al. Locally advanced rectal cancer transcriptomic-based secretome analysis reveals novel biomarkers useful to identify patients according to neoadjuvant chemoradiotherapy response. Sci. Rep. 2019, 9, 8702. [Google Scholar] [CrossRef] [PubMed]
- Haraksingh, R.R.; Snyder, M.P. Impacts of Variation in the Human Genome on Gene Regulation. J. Mol. Biol. 2013, 425, 3970–3977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brody, T. Chapter 19—Biomarkers. In Clinical Trials (Second Edition); Brody, T., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 377–419. ISBN 978-0-12-804217-5. [Google Scholar]
- Horvat, M.; Potočnik, U.; Repnik, K.; Kavalar, R.; Štabuc, B. Single Nucleotide Polymorphisms as Prognostic and Predictive Factors of Adjuvant Chemotherapy in Colorectal Cancer of Stages I and II. Available online: https://www.hindawi.com/journals/grp/2016/2139489/ (accessed on 28 August 2020).
- Ryan, B.M.; Robles, A.I.; Harris, C.C. Genetic variation in microRNA networks: The implications for cancer research. Nat. Rev. Cancer 2010, 10, 389–402. [Google Scholar] [CrossRef]
- Sclafani, F.; Chau, I.; Cunningham, D.; Lampis, A.; Hahne, J.C.; Ghidini, M.; Lote, H.; Zito, D.; Tabernero, J.; Glimelius, B.; et al. Sequence variation in mature microRNA-608 and benefit from neo-adjuvant treatment in locally advanced rectal cancer patients. Carcinogenesis 2016, 37, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Sclafani, F.; Chau, I.; Cunningham, D.; Peckitt, C.; Lampis, A.; Hahne, J.C.; Braconi, C.; Tabernero, J.; Glimelius, B.; Cervantes, A.; et al. Prognostic role of the LCS6 KRAS variant in locally advanced rectal cancer: Results of the EXPERT-C trial. Ann. Oncol. 2015, 26, 1936–1941. [Google Scholar] [CrossRef]
- Dreussi, E.; Pucciarelli, S.; De Paoli, A.; Polesel, J.; Canzonieri, V.; Agostini, M.; Friso, M.L.; Belluco, C.; Buonadonna, A.; Lonardi, S.; et al. Predictive role of microRNA-related genetic polymorphisms in the pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Oncotarget 2016, 7, 19781–19793. [Google Scholar] [CrossRef]
- Kazandjian, D.; Blumenthal, G.M.; Yuan, W.; He, K.; Keegan, P.; Pazdur, R. FDA Approval of Gefitinib for the Treatment of Patients with Metastatic EGFR Mutation-Positive Non-Small Cell Lung Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 1307–1312. [Google Scholar] [CrossRef] [Green Version]
- Solassol, I.; Pinguet, F.; Quantin, X. FDA- and EMA-Approved Tyrosine Kinase Inhibitors in Advanced EGFR-Mutated Non-Small Cell Lung Cancer: Safety, Tolerability, Plasma Concentration Monitoring, and Management. Biomolecules 2019, 9, 668. [Google Scholar] [CrossRef] [Green Version]
- Greig, S.L. Osimertinib: First Global Approval. Drugs 2016, 76, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N.; Dhillon, S. Epi proColon® 2.0 CE: A Blood-Based Screening Test for Colorectal Cancer. Mol. Diagn. Ther. 2017, 21, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Riethdorf, S.; O’Flaherty, L.; Hille, C.; Pantel, K. Clinical applications of the CellSearch platform in cancer patients. Adv. Drug Deliv. Rev. 2018, 125, 102–121. [Google Scholar] [CrossRef] [PubMed]
Scale | TRG | Description |
---|---|---|
Mandard | 1 | complete regression, no viable cancer cells, fibrosis extending through the different layers of the esophageal wall |
2 | rare residual cancer cells scattered through the fibrosis | |
3 | increased number of residual cancer cells, fibrosis predominates | |
4 | residual cancer outgrowing fibrosis | |
5 | absence of regressive changes | |
Dworak | 0 | no regression |
1 | minimal response, dominant tumor mass, fibrosis and/or vasculopathy | |
2 | moderate response, dominant fibrotic changes and a few easy-to-find tumor cells or groups | |
3 | near-complete response with few microscopically difficult-to-find tumor cells in fibrotic tissue with or without mucous substance | |
4 | complete response, no tumor cells and only fibrotic mass or acellular mucin pools | |
Ryan | 0 | complete response, no viable cancer cells |
1 | near-complete response, single cells or rare small group of cancer cells | |
2 | partial response, residual cancer with evident tumor regression, but more than single cells or rare small groups of cancer cells | |
3 | poor or no response, extensive residual cancer with no evident tumor regression |
miRNA | Biological Source | Level of Expression to Predict Good Response to nCRT |
---|---|---|
miR-18b and miR-20a | plasma | high |
miR-125b | serum | low |
miR-143 | serum | low |
miR-100-5p | serum | low |
miR-345 | serum | low |
miR-125b-1, miR-1183 and miR-130a | serum | high |
miR-301a-3p | plasma exosomes | high |
miR-21-5p, miR-1246, miR-1229-5p and miR-96-5p | serum exosomes | low |
miR-199b-5p | serum exosomes | high |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Palma, F.D.E.; Luglio, G.; Tropeano, F.P.; Pagano, G.; D’Armiento, M.; Kroemer, G.; Maiuri, M.C.; De Palma, G.D. The Role of Micro-RNAs and Circulating Tumor Markers as Predictors of Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Int. J. Mol. Sci. 2020, 21, 7040. https://doi.org/10.3390/ijms21197040
De Palma FDE, Luglio G, Tropeano FP, Pagano G, D’Armiento M, Kroemer G, Maiuri MC, De Palma GD. The Role of Micro-RNAs and Circulating Tumor Markers as Predictors of Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. International Journal of Molecular Sciences. 2020; 21(19):7040. https://doi.org/10.3390/ijms21197040
Chicago/Turabian StyleDe Palma, Fatima Domenica Elisa, Gaetano Luglio, Francesca Paola Tropeano, Gianluca Pagano, Maria D’Armiento, Guido Kroemer, Maria Chiara Maiuri, and Giovanni Domenico De Palma. 2020. "The Role of Micro-RNAs and Circulating Tumor Markers as Predictors of Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer" International Journal of Molecular Sciences 21, no. 19: 7040. https://doi.org/10.3390/ijms21197040
APA StyleDe Palma, F. D. E., Luglio, G., Tropeano, F. P., Pagano, G., D’Armiento, M., Kroemer, G., Maiuri, M. C., & De Palma, G. D. (2020). The Role of Micro-RNAs and Circulating Tumor Markers as Predictors of Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. International Journal of Molecular Sciences, 21(19), 7040. https://doi.org/10.3390/ijms21197040