In Situ Gelling Systems Using Pluronic F127 Enhance Corneal Permeability of Indomethacin Nanocrystals
Abstract
:1. Introduction
2. Results
2.1. Design of IMC-NC-Incorporating ISG
2.2. Stability of Ophthalmic IMC-NC Formulations
2.3. Release of IMC from Ophthalmic IMC-NC Formulations
2.4. Drug Behavior in Rabbits Instilled with IMC-NC-Incorporating ISG
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Chemicals
4.3. Preparation of Ophthalmic IMC-NC Formulations
4.4. Characteristics of Ophthalmic IMC-NC Formulations
4.5. Diffusion of Ophthalmic IMC-NC Formulations
4.6. Corneal Toxicity of Ophthalmic IMC-NC Formulations
4.7. Changes in IMC Content in LF and Blood
4.8. Transcorneal Penetration of Ophthalmic IMC-NC Formulations
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANOVA | one-way analysis of variance |
AFM | atomic force microscopy |
AUC0–90min | area under drug concentration–time curve between 0 and 90 min |
BA | bioavailability |
BAC | benzalkonium chloride |
CavME | caveolae-dependent endocytosis |
CME | clathrin-dependent endocytosis |
DDS | Drug-delivery systems |
HPCD | 2-hydroxypropyl-β-cyclodextrin |
IMC | indomethacin |
IMC-MCs | dispersions containing indomethacin microcrystals |
IMC-NCs | indomethacin nanocrystals |
IMC-NC/PLF | in situ gel incorporating indomethacin nanocrystals with PLF-127 |
IMC-NPs | ophthalmic dispersions containing indomethacin nanocrystals |
ISG | in situ gel |
LF | lacrimal fluid |
MC | methylcellulose |
MP | micropinocytosis |
NCs | nanocrystals |
NPs | nanoparticles |
NSAIDs | nonsteroidal anti-inflammatory drugs |
PLF-127 | Pluronic F-127 |
SE | standard error |
References
- Makoid, M.C.; Sieg, J.W.; Robinson, J.R. Corneal drug absorption: An illustration of parallel first-order absorption and rapid loss of drug from absorption depot. J. Pharm. Sci. 1976, 65, 150–152. [Google Scholar] [CrossRef] [PubMed]
- Morrison, P.W.J.; Khutoryanskiy, V.V. Advances in ophthalmic drug delivery. Ther. Deliv. 2014, 5, 1307–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, A. The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Deliv. Rev. 2005, 57, 1595–1639. [Google Scholar] [CrossRef] [PubMed]
- Hughes, P.M.; Olejnik, O.; Chang-Lin, J.-E.; Wilson, C.G. Topical and systemic drug delivery to the posterior segments. Adv. Drug Deliv. Rev. 2005, 57, 2010–2032. [Google Scholar] [CrossRef]
- Järvinen, K.; Järvinen, T.; Urtti, A. Ocular absorption following topical delivery. Adv. Drug Deliv. Rev. 1995, 16, 3–19. [Google Scholar] [CrossRef]
- Al Khateb, K.; Ozhmukhametova, E.K.; Mussin, M.N.; Seilkhanov, S.K.; Rakhypbekov, T.K.; Lau, W.M.; Khutoryanskiy, V.V. In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int. J. Pharm. 2016, 502, 70–79. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Zhou, T.; Zhang, J.; Xia, H.; Li, H.; He, J.; He, S.; Wang, L. Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration. Int. J. Nanomed. 2015, 10, 6027–6237. [Google Scholar] [CrossRef] [Green Version]
- El-Kamel, A.H. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int. J. Pharm. 2002, 24, 47–55. [Google Scholar] [CrossRef]
- Almeida, H.; Amaral, M.H.; Lobao, P.; Sousa Lobo, J.M. In situ gelling systems: A strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov. Today 2014, 19, 400–412. [Google Scholar] [CrossRef]
- Zhu, Q.; Wei, Y.; Li, C.; Mao, S. Inner layer-embedded contact lenses for iontriggered controlled drug delivery. Mater. Sci. Eng. 2018, C93, 36–48. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, C.; Sun, Z.; Zhang, X.; Liang, N.; Mao, S. Inner layer-embedded contact lenses for pH-triggered controlled ocular drug delivery. Eur. J. Pharm. Biopharm. 2018, 128, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Cheng, H.; Huo, Y.; Mao, S. Sustained ophthalmic delivery of highly soluble drug using pH-triggered inner layer-embedded contact lens. Int. J. Pharm. 2018, 544, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Maeno, H.; Gujrati, M.; Schur, R.; Maeda, A.; Maeda, T.; Palczewski, K.; Lu, Z.R. Self-assembly of a multifunctional lipid with core-shell dendrimer DNA nanoparticles enhanced efficient gene delivery at low charge ratios into RPE cells. Macromol. Biosci. 2015, 15, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wang, Y.; Ping, Q.; Xiao, Y.; Huang, X. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J. Control. Release 2009, 137, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Hironaka, K.; Inokuchi, Y.; Fujisawa, T.; Shimazaki, H.; Akane, M.; Tozuka, Y.; Tsuruma, K.; Shimazawa, M.; Hara, H.; Takeuchi, H. Edaravone-loaded liposomes for retinal protection against oxidative stress-induced retinal damage. Eur. J. Pharm. Biopharm. 2011, 79, 119–125. [Google Scholar] [CrossRef]
- Gan, L.; Gan, Y.; Zhu, C.; Zhang, X.; Zhu, J. Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine a: In vitro and in vivo results. Int. J. Pharm. 2009, 365, 143–149. [Google Scholar] [CrossRef]
- Hagigit, T.; Abdulrazik, M.; Orucov, F.; Valamanesh, F.; Hagedorn, M.; Lambert, G.; Behar-Cohen, F.; Benita, S. Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye. J. Control. Release 2010, 145, 297–305. [Google Scholar] [CrossRef]
- Ishii, M.; Fukuoka, Y.; Deguchi, S.; Otake, H.; Tanino, T.; Nagai, N. Energy-Dependent Endocytosis is Involved in the Absorption of Indomethacin Nanoparticles in the Small Intestine. Int. J. Mol. Sci. 2019, 20, 476. [Google Scholar] [CrossRef] [Green Version]
- Nagai, N.; Ogata, F.; Yamaguchi, M.; Fukuoka, Y.; Otake, H.; Nakazawa, Y.; Kawasaki, N. Combination with l-Menthol Enhances Transdermal Penetration of Indomethacin Solid Nanoparticles. Int. J. Mol. Sci. 2019, 20, 3644. [Google Scholar] [CrossRef] [Green Version]
- Nagai, N.; Ito, Y.; Okamoto, N.; Shimomura, Y. A nanoparticle formulation reduces the corneal toxicity of indomethacin eye drops and enhances its corneal permeability. Toxicology 2014, 319, 53–62. [Google Scholar] [CrossRef]
- Nagai, N.; Ogata, F.; Otake, H.; Nakazawa, Y.; Kawasaki, N. Energy-dependent endocytosis is responsible for drug transcorneal penetration following the instillation of ophthalmic formulations containing indomethacin nanoparticles. Int. J. Nanomed. 2019, 14, 1213–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, N.; Minami, M.; Deguchi, S.; Otake, H.; Sasaki, H.; Yamamoto, N. An In Situ Gelling System based on Methylcellulose and Tranilast Solid Nanoparticles Enhances Ocular Residence Time and Drug Absorption into the Cornea and Conjunctiva. Front. Bioeng. Biotechnol. 2020, 8, 764. [Google Scholar] [CrossRef] [PubMed]
- Nagai, N.; Umachi, K.; Otake, H.; Oka, M.; Hiramatsu, N.; Sasaki, H.; Yamamoto, N. Ophthalmic In Situ Gelling System containing Lanosterol Nanoparticles Delays Collapse of Lens Structure in Shumiya Cataract Rats. Pharmaceutics 2020, 12, 629. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, H.B.; Bakliwal, S.R.; Pawar, S.P. In-Situ gel: New trends in Controlled and Sustained Drug Delivery System. Int. J. Pharm Tech. Res. 2010, 2, 1398–1408. [Google Scholar]
- Ur-Rehman, T.; Tavelin, S.; Gröbner, G. Effect of DMSO on micellization, gelation and drug release profile of Poloxamer 407. Int. J. Pharm. 2010, 394, 92–98. [Google Scholar] [CrossRef]
- Cafaggi, S.; Russo, E.; Caviglioli, G.; Parodi, B.; Stefani, R.; Sillo, G.; Leardi, R.; Bignardi, G. Poloxamer 407 as a solubilising agent for tolfenamic acid and as a base for a gel formulation. Eur. J. Pharm. Sci. 2008, 35, 19–29. [Google Scholar] [CrossRef]
- Wong, P.T.; Leroueil, P.R.; Smith, D.M.; Ciotti, S.; Bielinska, A.U.; Janczak, K.W.; Mullen, C.H.; Groom, J.V., 2nd; Taylor, E.M.; Passmore, C.; et al. Formulation, high throughput in vitro screening and in vivo functional characterization of nanoemulsion-based intranasal vaccine adjuvants. PLoS ONE 2015, 10, e126120. [Google Scholar] [CrossRef] [Green Version]
- Yan-Yu, X.; Xiao, B.; Jie, S. Preparation of bioadhesive cyclosporine a ocular nanostructured lipid carriers and its ocular distribution in rabbits. Chin. Pharmacol. J. 2012, 47, 1227–1232. [Google Scholar]
- Edsman, K.; Carlfors, J.; Petersson, R. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur. J. Pharm. Sci. 1998, 6, 105–122. [Google Scholar] [CrossRef]
- Kaur, I.P.; Kanwar, M. Ocular preparations: The formulation approach. Drug Dev. Ind. Pharm. 2002, 28, 473–493. [Google Scholar] [CrossRef]
- Kern, T.S.; Miller, C.M.; Du, Y.; Zheng, L.; Mohr, S.; Ball, S.L.; Kim, M.; Jamison, J.A.; Bingaman, D.P. Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Diabetes 2007, 56, 373–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hippalgaonkar, K.; Adelli, G.R.; Hippalgaonkar, K.; Repka, M.A.; Majumdar, S. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: Development, characterization, and in vitro evaluation. J. Ocul. Pharmacol. Ther. 2013, 29, 216–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chetoni, P.; Panichi, L.; Burgalassi, S.; Benelli, U.; Saettone, M.F. Pharmacokinetics and anti-inflammatory activity in rabbits of a novel indomethacin ophthalmic solution. J. Ocul. Pharmacol. Ther. 2000, 16, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Claudio, B.; Barbara, M.; Cateno, P.; Monia, Z.; Fabrizio, G.; Filippo, D. Indomethacin Eyedrops: Effect of Different Formulations on Ocular Pharmacokinetics in Rabbit. ARVO Annu. Meet. Abstr. 2011, 52, 4317. [Google Scholar]
- Thrimawithana, T.R.; Rupenthal, I.D.; Young, S.A.; Alany, R.G. Environment-sensitive polymers for ophthalmic drug delivery. J. Drug Deliv. Sci. Technol. 2012, 22, 117–124. [Google Scholar] [CrossRef]
- Agrawal, A.K.; Das, M.; Jain, S. In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin. Drug Deliv. 2012, 9, 383–402. [Google Scholar] [CrossRef]
- Kim, Y.C.; Shin, M.D.; Hackett, S.F.; Hsueh, H.T.; Lima, E.; Silva, R.; Date, A.; Han, H.; Kim, B.J.; Xiao, A.; et al. Gelling hypotonic polymer solution for extended topical drug delivery to the eye. Nat. Biomed. Eng. 2020. [Google Scholar] [CrossRef]
Formulation | IMC | PLF | MC | BAC | Mannitol | HPCD | Purified Water | Treatment |
---|---|---|---|---|---|---|---|---|
IMC-NPs | 1 g | — | 0.5 g | 0.001 g | 0.1 g | 5 g | 100 g | Bead mill |
IMC-NC/PLF5 | 1 g | 5 g | 0.5 g | 0.001 g | 0.1 g | 5 g | 100 g | Bead mill |
IMC-NC/PLF10 | 1 g | 10 g | 0.5 g | 0.001 g | 0.1 g | 5 g | 100 g | Bead mill |
IMC-NC/PLF15 | 1 g | 15 g | 0.5 g | 0.001 g | 0.1 g | 5 g | 100 g | Bead mill |
Formulation | IMC-NPs | IMC-NC/PLF5 | IMC-NC/PLF10 | IMC-NC/PLF15 |
---|---|---|---|---|
ka (×10−4/min) | 23.7 ± 5.5 | 41.4 ± 7.9 * | 46.8 ± 8.1 * | 18.0 ± 4.8 |
r (min) | 7.34 ± 0.84 | 7.48 ± 0.93 | 7.44 ± 0.85 | 7.56 ± 1.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagai, N.; Isaka, T.; Deguchi, S.; Minami, M.; Yamaguchi, M.; Otake, H.; Okamoto, N.; Nakazawa, Y. In Situ Gelling Systems Using Pluronic F127 Enhance Corneal Permeability of Indomethacin Nanocrystals. Int. J. Mol. Sci. 2020, 21, 7083. https://doi.org/10.3390/ijms21197083
Nagai N, Isaka T, Deguchi S, Minami M, Yamaguchi M, Otake H, Okamoto N, Nakazawa Y. In Situ Gelling Systems Using Pluronic F127 Enhance Corneal Permeability of Indomethacin Nanocrystals. International Journal of Molecular Sciences. 2020; 21(19):7083. https://doi.org/10.3390/ijms21197083
Chicago/Turabian StyleNagai, Noriaki, Takumi Isaka, Saori Deguchi, Misa Minami, Mizuki Yamaguchi, Hiroko Otake, Norio Okamoto, and Yosuke Nakazawa. 2020. "In Situ Gelling Systems Using Pluronic F127 Enhance Corneal Permeability of Indomethacin Nanocrystals" International Journal of Molecular Sciences 21, no. 19: 7083. https://doi.org/10.3390/ijms21197083
APA StyleNagai, N., Isaka, T., Deguchi, S., Minami, M., Yamaguchi, M., Otake, H., Okamoto, N., & Nakazawa, Y. (2020). In Situ Gelling Systems Using Pluronic F127 Enhance Corneal Permeability of Indomethacin Nanocrystals. International Journal of Molecular Sciences, 21(19), 7083. https://doi.org/10.3390/ijms21197083