MOS1 Negatively Regulates Sugar Responses and Anthocyanin Biosynthesis in Arabidopsis
Abstract
:1. Introduction
2. Results
2.1. mos1 Mutant Was Hypersensitive to Sugar during Early Seedling Development
2.2. Expression of MOS1 Is Induced by Sucrose
2.3. MOS1 Affects the Expression of HKX1 in Response to Sugar
2.4. MOS1 Represses Anthocyanin Biosynthesis Induced by Sugar and High-Light Stress
2.5. MOS1 Affects the Expression of Genes Related to Anthocyanin Biosynthesis in Response to Sugar and High Light
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Plasmid Construction and Generation of Transgenic Plants
4.3. Germination Assay and Root Length Measurement
4.4. GUS Staining
4.5. Measurement of Anthocyanin Content
4.6. RNA Extraction and Quantitative Real-Time PCR Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABGs | anthocyanin biosynthesis genes |
AKIN | SNF1 kinase homolog |
APL3 | Subunit3 of ADP-Glucose Pyrophosphorylase |
ANS | anthocyanidin |
bHLH | basic helix–loop–helix |
bon1 | bonzai1 |
CHI | chalcone isomerase |
CHS | chalcone synthase |
DFR | dihydroflavonol |
F3H | flavanne-3-hydroxylase |
FLS | flavonol synthase |
GUS | β-glucuronidase |
HEX1 | Hexokinases 1 |
HL | high-light |
MAD1 | mitotic arrest deficient1 |
MOS1 | modifier of snc1-1 |
MS | Murashige and Skoog |
PAL | Phenylalanine ammonia lyase |
PAP1 | Purple acid phosphatase 1 |
SNC1 | suppressor of npr1-1, constitutive 1 |
TFs | transcription factors |
TT8 | Transparent testa8 |
References
- Ren, M.; Venglat, P.; Qiu, S.; Feng, L.; Cao, Y.; Wang, E.; Alexander, D.; Chalivendra, S.C.; Logan, D.C.; Mattoo, A.; et al. Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 2012, 24, 4850–4874. [Google Scholar] [CrossRef] [Green Version]
- Solfanelli, C.; Poggi, A.; Loreti, E.; Alpi, A.; Perata, P. Sucrose-specific induction of the Anthocyanin Biosynthetic pathway in Arabidopsis. Plant Physiol. 2006, 140, 637–646. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, L.; Fan, R.; Peng, C.; Sun, H.; Zhu, S.; Wang, X.; Zhang, L.; Zhang, D. Arabidopsis sucrose transporter SUT4 interacts with cytochrome b5-2 to regulate seed germination in response to sucrose and glucose. Mol. Plant 2012, 5, 1029–1041. [Google Scholar] [CrossRef] [Green Version]
- Van den Ende, W. Sugars take a central position in plant growth, development and, stress responses. A focus on apical dominance. Front. Plant Sci. 2014, 5, 313. [Google Scholar] [CrossRef] [Green Version]
- Bolouri Moghaddam, M.R.; Van den Ende, W. Sugars and plant innate immunity. J. Exp. Bot. 2012, 63, 3989–3998. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Jang, J.; Jones, T.; Sheen, J. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc. Natl. Acad. Sci. USA 1998, 95, 10294–10299. [Google Scholar] [CrossRef] [Green Version]
- Rolland, F.; Baena-Gonzalez, E.; Sheen, J. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu. Rev. Plant Biol. 2006, 57, 675–709. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Shang, L.; Chen, X.; Zhang, L.; Jing, H. Tang1, encoding a symplekin_C domain-dontained protein, influences sugar responses in Arabidopsis. Plant Physiol. 2015, 168, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Sheen, J. Dynamic and diverse sugar signaling. Curr. Opin. Plant Biol. 2016, 33, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Moore, B.; Zhou, L.; Rolland, F.; Hall, Q.; Cheng, W.; Liu, Y.; Hwang, I.; Jones, T.; Sheen, J. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 2003, 300, 332–336. [Google Scholar] [CrossRef] [Green Version]
- Rook, F.; Hadingham, S.; Li, Y.; Bevan, W. Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ. 2006, 29, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Baena-González, E.; Rolland, F.; Thevelein, M.; Sheen, J. A central integrator of transcription networks in plant stress and energy signalling. Nature 2007, 448, 938–942. [Google Scholar] [CrossRef] [PubMed]
- Sheen, J.; Cho, Y.; Baena, E.; Hall, Q.; Rolland, F.; Xiong, Y.; Yoo, S. Sugar and energy sensing and signalling networks in plants. Photosynth. Res. 2007, 91, 134. [Google Scholar]
- Lei, M.; Liu, D. Sucrose regulates plant responses to deficiencies in multiple nutrients. Plant Signal. Behav. 2011, 6, 1247–1249. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef]
- Zhang, C.; Han, L.; Slewinski, L.; Sun, J.; Zhang, J.; Wang, Z.; Turgeon, R. Symplastic phloem loading in poplar. Plant Physiol. 2014, 166, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Rolland, F.; Sheen, J. Sugar sensing and signalling networks in plants. Biochem. Soc. Trans. 2005, 33, 269–271. [Google Scholar] [CrossRef]
- Avonce, N.; Leyman, B.; Mascorro-Gallardo, O.; Van Dijck, P.; Thevelein, M.; Iturriaga, G. The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol. 2004, 136, 3649–3659. [Google Scholar] [CrossRef] [Green Version]
- Srinivasa, S.P.; Watson, N.; Overton, M.C.; Blumer, K.J. Mechanism of RGS4, a GTPase-activating protein for G protein alpha subunits. J. Biol. Chem. 1998, 273, 1529–1533. [Google Scholar] [CrossRef] [Green Version]
- Johnston, A.; Taylor, P.; Gao, Y.; Kimple, J.; Grigston, C.; Chen, J.; Siderovski, P.; Jones, M.; Willard, F. Gtpase acceleration as the rate-limiting step in Arabidopsis protein-coupled sugar signaling. Proc. Natl. Acad. Sci. USA 2007, 104, 17317–17322. [Google Scholar] [CrossRef] [Green Version]
- Hardie, D.G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat. Rev. 2007, 8, 774–785. [Google Scholar] [CrossRef]
- Halford, N.; Hey, S.J. Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem. J. 2009, 419, 47–259. [Google Scholar] [CrossRef] [Green Version]
- Mohannath, G.; Jackel, J.N.; Lee, Y.H.; Buchmann, R.C.; Wang, H.; Patil, V.; Adams, A.K.; Bisaro, D.M. A complex containing SNF1-Related Kinase (SnRK1) and Adenosine kinase in Arabidopsis. PLoS ONE 2014, 9, e87592. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; McCormack, M.; Li, L.; Hall, Q.; Xiang, C.; Sheen, J. Glucose–TOR signalling reprograms the transcriptome and activates meristems. Nature 2013, 496, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, N.; Dejardin, A.; Kleczkowski, A. Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). Biochem. J. 1998, 336, 681–687. [Google Scholar] [CrossRef]
- Schmitz, J.; Heinrichs, L.; Scossa, F.; Fernie, R.; Oelze, L.; Dietz, J.; Rothbart, M.; Grimm, B.; Flügge, I.; Häusler, E. The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high-light intensities. J. Exp. Bot. 2014, 65, 1619–1636. [Google Scholar] [CrossRef]
- Mahmood, K.; Xu, Z.; EI-Kereamy, A.; Casaretto, A.; Rothstein, J. The Arabidopsis transcription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses. Front. Plant Sci. 2016, 7, 1548. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 2010, 54, 733–749. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.; Neufeld, S.; Burkey, O. Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata. New Phytol. 2005, 168, 575–587. [Google Scholar] [CrossRef]
- Nakabayashi, R.; Yonekura-Sakakibara, K.; Urano, K.; Suzuki, M.; Yamada, Y.; Nishizawa, T.; Matsuda, F.; Kojima, M.; Sakakibara, H.; Shinozaki, K.; et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. 2014, 77, 367–379. [Google Scholar] [CrossRef]
- Yin, R.; Messner, B.; Faus-Kessler, T.; Hoffmann, T.; Schwab, W.; Hajirezaei, M.R.; Schäffner, A.R. Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. J. Exp. Bot. 2012, 63, 2465–2478. [Google Scholar] [CrossRef]
- Zhao, D.; Tao, J. Recent advances on the development and regulation of flower color in ornamental plants. Front. Plant Sci. 2015, 6, 261. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.; Kim, J.; Kwon, J.; Jeong, C.; Lee, W.; Lee, D.; Hong, S.; Lee, H. Characterization of Arabidopsis thaliana FLAVONOL SYNTHASE 1 (FLS1)—Overexpression plants in response to abiotic stress. Plant Physiol. Biochem. 2016, 103, 133–142. [Google Scholar] [CrossRef]
- Zheng, T.; Yang, H.; Zhang, L.; Li, T.; Liu, B.; Zhang, D.; Lin, H. Regulation of anthocyanin accumulation via MYB75/HAT1/TPL-mediated transcriptional repression. PLoS Genet. 2019, 15, e1007993. [Google Scholar] [CrossRef]
- Cominelli, E.; Gusmaroli, G.; Allegra, D.; Galbiati, M.; Wade, K.; Jenkins, I.; Tonelli, C. Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J. Plant Physiol. 2008, 165, 886–894. [Google Scholar] [CrossRef]
- Teng, S.; Keurentjes, J.; Bentsink, L.; Smeekens, S. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 2005, 139, 1840–1852. [Google Scholar] [CrossRef] [Green Version]
- Bruggeman, Q.; Prunier, F.; Mazubert, C.; de Bont, L.; Garmier, M.; Lugan, R.; Benhamed, M.; Bergounioux, C.; Raynaud, C.; Delarue, M. Involvement of Arabidopsis hexokinase1 in cell death mediated by myo-inositol accumulation. Plant Cell 2015, 27, 1801–1814. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tessaro, J.; Li, X.; Zhang, Y. Regulation of the expression of plant resistance gene SNC1 by a protein with a conserved BAT2 domain. Plant Physiol. 2010, 153, 1425–1434. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.; Zhang, N.; Hua, J. Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1. Nat. Commun. 2014, 5, 5628. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Wang, Z.; Bao, Z.; Yang, L.; Wu, D.; Shu, X.; Hua, J. MOS1 functions closely with TCP transcription factors to modulate immunity and cell cycle in Arabidopsis. Plant J. 2018, 93, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Aki, T.; Konishi, M.; Kikuchi, T.; Fujimori, T.; Yoneyama, T.; Yanagisawa, S. Distinct modulations of the hexokinase1-mediated glucose response and hexokinase1-independent processes by HYS1/CPR5 in Arabidopsis. J. Exp. Bot. 2007, 58, 3239–3248. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.; Muthuswamy, S.; Meier, I. Functional interaction between the Arabidopsis orthologs of spindle assembly checkpoint proteins MAD1 and MAD2 and the nucleoporin NUA. Plant Mol. Biol. 2012, 79, 203–216. [Google Scholar] [CrossRef]
- Baier, M.; Hemmann, G.; Holman, R.; Corke, F.; Card, R.; Smith, C.; Rook, F.; Bevan, W. Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses. Plant Physiol. 2004, 134, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Jones, M. Atrgs1 function in Arabidopsis thaliana. Method Enzymol. 2004, 389, 338–350. [Google Scholar]
- Németh, K.; Salchert, K.; Putnoky, P.; Bhalerao, R.; Koncz-Kálmán, Z.; Stankovic-Stangeland, B.; Bakό, L.; Mathur, J.; Okrész, L.; Stabel, S.; et al. Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis. Genes Dev. 1998, 12, 3059–3073. [Google Scholar] [CrossRef] [Green Version]
- Bhalerao, P.; Salchert, K.; Bakό, L.; Okrész, L.; Szabados, L.; Muranaka, T.; Machida, Y.; Schell, J.; Koncz, C. Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases. Proc. Natl. Acad. Sci. USA 1999, 96, 5322–5327. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Taylor, P.; Chen, J.; Uhrig, F.; Schnell, J.; Nakagawa, T.; Korth, L.; Jones, M. The plastid protein THYLAKOID FORMATION1 and the plasma membrane g-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell 2006, 18, 1226–1238. [Google Scholar] [CrossRef] [Green Version]
- Rook, F.; Corke, F.; Card, R.; Munz, G.; Smith, C.; Bevan, M.W. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J. 2002, 26, 421–433. [Google Scholar] [CrossRef]
- Hu, D.; Sun, C.; Zhang, Q.; An, J.; You, C.; Hao, Y. Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. PLoS Genet. 2016, 12, e1006273. [Google Scholar] [CrossRef]
- Xu, W.; Grain, D.; Gourrierec, L.; Harscoët, E.; Berger, A.; Jauvion, V.; Scagnelli, A.; Berger, N.; Bidzinski, P.; Kelemen, Z.K.; et al. Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis. New Phytol. 2013, 198, 59–70. [Google Scholar] [CrossRef]
- Viola, I.; Camoirano, A.; Gonzalez, H. Redox-dependent modulation of anthocyanin biosynthesis by the TCP transcription factor TCP15 during exposure to high light intensity conditions in Arabidopsis. Plant Physiol. 2016, 170, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Patricia, L.; Sheen, J. Sugar and hormone connections. Trend. Plant Sci. 2003, 8, 110–116. [Google Scholar]
- Pieterse, M.; Leon-Reyes, A.; Van der Ent, S.; Van Wees, C. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 2009, 5, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Roden, C.; Ingle, A. Lights, rhythms, infection: The role of light and the circadian clock in determining the outcome of plant-pathogen interactions. Plant Cell 2009, 21, 2546–2552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, J. Modulation of plant immunity by light, circadian rhythm, and temperature. Curr. Opin. Plant Biol. 2013, 16, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Harbone, B.; Williams, W. Cheminform abstract: Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, T.; Suzuki, T.; Murata, S.; Nakamura, S.; Hino, T.; Maeo, K.; Tabata, R.; Kawai, T.; Tanaka, K.; Niwa, Y.; et al. Improved Gateway binary vectors: High-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci. Biotechnol. Biochem. 2007, 71, 2095–2100. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Wang, M.; Huang, J.; Yang, L.; Wang, Z.; Wu, D.; Shu, X. MOS1 Negatively Regulates Sugar Responses and Anthocyanin Biosynthesis in Arabidopsis. Int. J. Mol. Sci. 2020, 21, 7095. https://doi.org/10.3390/ijms21197095
Zhang N, Wang M, Huang J, Yang L, Wang Z, Wu D, Shu X. MOS1 Negatively Regulates Sugar Responses and Anthocyanin Biosynthesis in Arabidopsis. International Journal of Molecular Sciences. 2020; 21(19):7095. https://doi.org/10.3390/ijms21197095
Chicago/Turabian StyleZhang, Ning, Maike Wang, Jie Huang, Leiyun Yang, Zhixue Wang, Dianxing Wu, and Xiaoli Shu. 2020. "MOS1 Negatively Regulates Sugar Responses and Anthocyanin Biosynthesis in Arabidopsis" International Journal of Molecular Sciences 21, no. 19: 7095. https://doi.org/10.3390/ijms21197095
APA StyleZhang, N., Wang, M., Huang, J., Yang, L., Wang, Z., Wu, D., & Shu, X. (2020). MOS1 Negatively Regulates Sugar Responses and Anthocyanin Biosynthesis in Arabidopsis. International Journal of Molecular Sciences, 21(19), 7095. https://doi.org/10.3390/ijms21197095