The Impact of Controlled Ovarian Stimulation Hormones on the Metabolic State and Endocannabinoid System of Human Cumulus Cells
Abstract
:1. Introduction
2. Results
2.1. Patients’ Data
2.2. Gene Expression Analysis
2.3. FTIRM Analysis
3. Discussion
4. Materials and Methods
4.1. Ethical Approval
4.2. Patient Population and Experimental Design
4.3. CCs Samples Collection and Preparation
4.4. RNA Extraction and cDNA Synthesis
4.5. Real-time Polymerase Chain Reaction
4.6. FTIRM Analysis
4.7. Statistical Analysis
5. Conclusions
- -
- Even if structurally similar, purified and recombinant FSH probably act differently in modulating ovarian functions, since most of the results evidenced different effects on cumulus cells.
- -
- The genes codifying for the endocannabinoid receptors CNR1, CNR2, and TRPV1 are modulated by the type of gonadotropins used for the stimulation. Given their hypothesized role in the nuclear maturation of the oocyte and in the steroidogenic activity of the follicle, these results suggest that the choice of COS formulations may impact the main ovarian functions.
- -
- The genes codifying for the enzymes involved in the endocannabinoid synthesis and degradation are modulated by the type of gonadotropins used for the stimulation. The differences found in CCs from hMG group on the expression of genes involved in AEA production and degradation made it possible to hypothesize an increase in AEA that, given the reduced number of total retrieved oocytes reported in the study, may be detrimental for IVF success rates. Less is known about the role of 2-AG on ovarian functions: the least efficient stimulation protocol (hMG) is characterized by the highest levels of MAGL expression, making it possible to hypothesize a reduced concentration of 2-AG. These results suggest that the modulation of the endocannabinoid system by gonadotropins can involve 2-AG and its decrease may be detrimental to IVF success rates.
- -
- Lipid and glucose metabolism was different, depending on the gonadotropins selected for the stimulation. A decreased fatty acid synthase activity, with consequent decreased fatty acids content, may impair the optimal environment in which oocytes are enclosed, since lipid metabolism provides the energy necessary for protein synthesis during the nuclear maturation of the oocyte. Glucose is internalized by cumulus cells, for its subsequent conversion into pyruvate and oocyte’s utilization; hence, decreased glucose transport and content in cumulus cells negatively affect the oocyte’s maturation and recruitment, as confirmed by the lower number of retrieved oocytes in the rFSH and hMG groups.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Society of Human reproduction and Embryology ART Fact Sheet. Available online: https://www.eshre.eu/Press-Room/Resources.aspx (accessed on 2 February 2020).
- Calhaz-Jorge, C.; De Geyter, C.; Kupka, M.S.; de Mouzon, J.; Erb, K.; Mocanu, E.; Motrenko, T.; Scaravelli, G.; Wyns, C.; Goossens, V.; et al. Assisted reproductive technology in Europe, 2013: Results generated from European registers by ESHRE. Hum. Reprod. 2017, 32, 1957–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, M.; Holzer, H.E.G. Recurrent implantation failure: Gamete and embryo factors. Fertil. Steril. 2012, 97, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Checa, M.A.; Gonzalez-Comadran, M.; Agramunt, S.; Carreras, R. Fertility and Endometriosis. Clin. Obstet. Gynecol. 2017, 60, 497–502. [Google Scholar] [CrossRef]
- Broekmans, F.J.; Fauser, B.C.J.M. Female Infertility. In Endocrinology: Adult and Pediatric; Elsevier: Amsterdam, The Netherlands, 2016; pp. 2260–2274.e4. [Google Scholar]
- Rates, T.S. Aging and infertility in women: A committee opinion. Fertil. Steril. 2002, 78, 215–219. [Google Scholar] [CrossRef]
- Broekmans, F.J.; Soules, M.R.; Fauser, B.C. Ovarian Aging: Mechanisms and Clinical Consequences. Endocr. Rev. 2009, 30, 465–493. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Mishra, V. Review: Toxicants in reproductive fluid and in vitro fertilization (IVF) outcome. Toxicol. Ind. Health 2010, 26, 505–511. [Google Scholar] [CrossRef]
- Ehrlich, S.; Williams, P.L.; Missmer, S.A.; Flaws, J.A.; Berry, K.F.; Calafat, A.M.; Ye, X.; Petrozza, J.C.; Wright, D.; Hauser, R. Urinary Bisphenol A Concentrations and Implantation Failure among Women Undergoing in Vitro Fertilization. Environ. Health Perspect. 2012, 120, 978–983. [Google Scholar] [CrossRef] [Green Version]
- Polanski, L.T.; Baumgarten, M.N.; Quenby, S.; Brosens, J.; Campbell, B.K.; Raine-Fenning, N.J. What exactly do we mean by ‘recurrent implantation failure’? A systematic review and opinion. Reprod. Biomed. Online 2014, 28, 409–423. [Google Scholar] [CrossRef] [Green Version]
- Macklon, N.S.; Stouffer, R.L.; Giudice, L.C.; Fauser, B.C.J.M. The Science behind 25 Years of Ovarian Stimulation for in Vitro Fertilization. Endocr. Rev. 2006, 27, 170–207. [Google Scholar] [CrossRef]
- Frydman, R.; Howles, C.M.; Truong, F. A double-blind, randomized study to compare recombinant human follicle stimulating hormone (FSH.; Gonal-F®) with highly purified urinary FSH (Metrodin® HP) in women undergoing assisted reproductive techniques including intracytoplasmic sperm injection. Hum. Reprod. 2000, 15, 520–525. [Google Scholar] [CrossRef] [Green Version]
- Daya, S. Updated meta-analysis of recombinant follicle-stimulating hormone (FSH) versus urinary FSH for ovarian stimulation in assisted reproduction. Fertil. Steril. 2002, 77, 711–714. [Google Scholar] [CrossRef]
- Aboulghar, M.; Saber, W.; Amin, Y.; Aboulghar, M.; Mansour, R.; Serour, G. Prospective, randomized study comparing highly purified urinary follicle-stimulating hormone (FSH) and recombinant FSH for in vitro fertilization/intracytoplasmic sperm injection in patients with polycystic ovary syndrome. Fertil. Steril. 2010, 94, 2332–2334. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.A.; Sbracia, M.; Pacchiarotti, A.; Micara, G.; Linari, A.; Tranquilli, D.; Espinola, S.M.B.; Aragona, C. Urinary follicle-stimulating hormone (FSH) is more effective than recombinant FSH in older women in a controlled randomized study. Fertil. Steril. 2006, 85, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Lenton, E.; Soltan, A.; Hewitt, J.; Thomson, A.; Davies, W.; Ashraf, N.; Sharma, V.; Jenner, L.; Ledger, W.; McVeigh, E. Induction of ovulation in women undergoing assisted reproductive techniques: Recombinant human FSH (follitropin alpha) versus highly purified urinary FSH (urofollitropin HP). Hum. Reprod. 2000, 15, 1021–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, A.F.; Hesham, A.-I.; Salah, Z.; Khaled, M.; Fouad, N.; Ashraf, N.; Hatem, S.; Hamdi, B. A Prospective Comparative Study on IVF Outcomes with Either Purified FSH or Human Menopausal Gonadotrophin in Downregulated Normogonadotrophic Women. Gynecol. Obstet. Invest. 2002, 53, 220–223. [Google Scholar] [CrossRef]
- Fernández-Ruiz, J.; Romero, J.; Ramos, J.A. Endocannabinoids. In Handbook of Experimental Pharmacology; Pertwee, R.G., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 231, ISBN 978-3-319-20824-4. [Google Scholar]
- Di Marzo, V. “Endocannabinoids” and other fatty acid derivatives with cannabimimetic properties: Biochemistry and possible physiopathological relevance. Biochim. Biophys. Acta Lipids Lipid Metab. 1998, 1392, 153–175. [Google Scholar] [CrossRef]
- Childers, S.R.; Breivogel, C.S. Cannabis and endogenous cannabinoid systems. Drug Alcohol Depend. 1998, 51, 173–187. [Google Scholar] [CrossRef]
- Di Marzo, V.; De Petrocellis, L. Endocannabinoids as regulators of transient receptor potential (TRP) channels: A further opportunity to develop new endocannabinoid-based therapeutic drugs. Curr. Med. Chem. 2010, 17, 1430–1449. [Google Scholar] [CrossRef]
- Pertwee, R.G.; Ross, R.A. Cannabinoid receptors and their ligands. Prostaglandins. Leukot. Essent. Fatty Acids 2002, 66, 101–121. [Google Scholar] [CrossRef]
- Okamoto, Y.; Tsuboi, K.; Ueda, N. Enzymatic formation of anandamide. Vitam. Horm. 2009, 81, 1–24. [Google Scholar] [CrossRef]
- Fezza, F.; De Simone, C.; Amadio, D.; Maccarrone, M. Fatty acid amide hydrolase: A gate-keeper of the endocannabinoid system. Subcell. Biochem. 2008, 49, 101–132. [Google Scholar] [CrossRef] [PubMed]
- Ueda, N.; Tsuboi, K.; Uyama, T.; Ohnishi, T. Biosynthesis and degradation of the endocannabinoid 2-arachidonoylglycerol. BioFactors 2011, 37, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dinh, T.P.; Carpenter, D.; Leslie, F.M.; Freund, T.F.; Katona, I.; Sensi, S.L.; Kathuria, S.; Piomelli, D. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA 2002, 99, 10819–10824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecconi, S.; Rossi, G.; Castellucci, A.; D’Andrea, G.; Maccarrone, M. Endocannabinoid signaling in mammalian ovary. Eur. J. Obstet. Gynecol. 2014, 178, 6–11. [Google Scholar] [CrossRef]
- Maccarrone, M. Endocannabinoids: Friends and foes of reproduction. Prog. Lipid Res. 2009, 48, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Rapino, C.; Battista, N.; Bari, M.; Maccarrone, M. Endocannabinoids as biomarkers of human reproduction. Hum. Reprod. Update 2014, 20, 501–516. [Google Scholar] [CrossRef] [Green Version]
- El-Talatini, M.R.; Taylor, A.H.; Elson, J.C.; Brown, L.; Davidson, A.C.; Konje, J.C. Localisation and function of the endocannabinoid system in the human ovary. PLoS ONE 2009, 4, e4579. [Google Scholar] [CrossRef] [Green Version]
- Agirregoitia, E.; Ibarra-Lecue, I.; Totorikaguena, L.; Mendoza, R.; Expósito, A.; Matorras, R.; Urigüen, L.; Agirregoitia, N. Dynamics of expression and localization of the cannabinoid system in granulosa cells during oocyte nuclear maturation. Fertil. Steril. 2015, 104, 753–760. [Google Scholar] [CrossRef]
- El-Talatini, M.R.; Taylor, A.H.; Konje, J.C. The relationship between plasma levels of the endocannabinoid, anandamide, sex steroids, and gonadotrophins during the menstrual cycle. Fertil. Steril. 2010, 93, 1989–1996. [Google Scholar] [CrossRef]
- Bensinger, S.J.; Tontonoz, P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 2008, 454, 470–477. [Google Scholar] [CrossRef]
- O’Sullivan, S.E. Cannabinoids go nuclear: Evidence for activation of peroxisome proliferator-activated receptors. Br. J. Pharmacol. 2009, 152, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brower, P.T.; Schultz, R.M. Intercellular communication between granulosa cells and mouse oocytes: Existence and possible nutritional role during oocyte growth. Dev. Biol. 1982, 90, 144–153. [Google Scholar] [CrossRef]
- Canipari, R. Oocyte-granulosa cell interactions. Hum. Reprod. Update 2000, 6, 279–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chronowska, E. High-Throughput Analysis of Ovarian Granulosa Cell Transcriptome. BioMed Res. Int. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilchrist, R.B.; Lane, M.; Thompson, J.G. Oocyte-secreted factors: Regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 2008, 14, 159–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthäus, C.; Bird, B.; Miljković, M.; Chernenko, T.; Romeo, M. Infrared and Raman Microscopy in Cell Biology. Methods Cell Biol. 2008, 89, 275–308. [Google Scholar] [CrossRef]
- Baker, M.J.; Trevisan, J.; Bassan, P.; Bhargava, R.; Butler, H.J.; Dorling, K.M.; Fielden, P.R.; Fogarty, S.W.; Fullwood, N.J.; Heys, K.A.; et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 2014, 9, 1771–1791. [Google Scholar] [CrossRef] [Green Version]
- Giorgini, E.; Sabbatini, S.; Rocchetti, R.; Notarstefano, V.; Rubini, C.; Conti, C.; Orilisi, G.; Mitri, E.; Bedolla, D.E.; Vaccari, L. In vitro FTIR microspectroscopy analysis of primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil: A new spectroscopic approach for studying the drug-cell interaction. Analyst 2018, 143, 3317–3326. [Google Scholar] [CrossRef]
- Giorgini, E.; Conti, C.; Ferraris, P.; Sabbatini, S.; Tosi, G.; Rubini, C.; Vaccari, L.; Gioacchini, G.; Carnevali, O. Effects of Lactobacillus rhamnosus on zebrafish oocyte maturation: An FTIR imaging and biochemical analysis. Anal. Bioanal. Chem. 2010, 398, 3063–3072. [Google Scholar] [CrossRef]
- Gioacchini, G.; Giorgini, E.; Vaccari, L.; Ferraris, P.; Sabbatini, S.; Bianchi, V.; Borini, A.; Carnevali, O. A new approach to evaluate aging effects on human oocytes: Fourier transform infrared imaging spectroscopy study. Fertil. Steril. 2014, 101, 120–127. [Google Scholar] [CrossRef]
- Gioacchini, G.; Notarstefano, V.; Sereni, E.; Zacà, C.; Coticchio, G.; Giorgini, E.; Vaccari, L.; Carnevali, O.; Borini, A. Does the molecular and metabolic profile of human granulosa cells correlate with oocyte fate? New insights by Fourier transform infrared microspectroscopy analysis. MHR Basic Sci. Reprod. Med. 2018, 24, 521–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notarstefano, V.; Gioacchini, G.; Byrne, H.J.; Zacà, C.; Sereni, E.; Vaccari, L.; Borini, A.; Carnevali, O.; Giorgini, E. Vibrational characterization of granulosa cells from patients affected by unilateral ovarian endometriosis: New insights from infrared and Raman microspectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 212, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Gallos, I.D.; Eapen, A.; Price, M.J.; Sunkara, S.K.; Macklon, N.S.; Bhattacharya, S.; Khalaf, Y.; Tobias, A.; Deeks, J.J.; Rajkhowa, M.; et al. Controlled ovarian stimulation protocols for assisted reproduction: A network meta-analysis. Cochrane Database Syst. Rev. 2017. [Google Scholar] [CrossRef]
- Assou, S.; Haouzi, D.; Dechaud, H.; Gala, A.; Ferrières, A.; Hamamah, S. Comparative Gene Expression Profiling in Human Cumulus Cells according to Ovarian Gonadotropin Treatments. BioMed Res. Int. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kidder, G.M.; Vanderhyden, B.C. Bidirectional communication between oocytes and follicle cells: Ensuring oocyte developmental competence. Can. J. Physiol. Pharmacol. 2010, 88, 399–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Edani, T.; Assou, S.; Ferrières, A.; Bringer Deutsch, S.; Gala, A.; Lecellier, C.H.; Aït-Ahmed, O.; Hamamah, S. Female aging alters expression of human cumulus cells genes that are essential for oocyte quality. BioMed Res. Int. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Walker, O.S.; Holloway, A.C.; Raha, S. The role of the endocannabinoid system in female reproductive tissues. J. Ovarian Res. 2019, 12, 3. [Google Scholar] [CrossRef]
- Scorticati, C.; Fernandez-Solari, J.; De Laurentiis, A.; Mohn, C.; Prestifilippo, J.P.; Lasaga, M.; Seilicovich, A.; Billi, S.; Franchi, A.; McCann, S.M.; et al. The inhibitory effect of anandamide on luteinizing hormone-releasing hormone secretion is reversed by estrogen. Proc. Natl. Acad. Sci. USA 2004, 101, 11891–11896. [Google Scholar] [CrossRef] [Green Version]
- Oláh, M.; Milloh, H.; Wenger, T. The role of endocannabinoids in the regulation of luteinizing hormone and prolactin release. Mol. Cell. Endocrinol. 2008, 286, S36–S40. [Google Scholar] [CrossRef]
- Sutton-Mcdowall, M.L.; Gilchrist, R.B.; Thompson, J.G. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010, 139, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Joost, H.-G.; Bell, G.I.; Best, J.D.; Birnbaum, M.J.; Charron, M.J.; Chen, Y.T.; Doege, H.; James, D.E.; Lodish, H.F.; Moley, K.H.; et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E974–E976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.; Seok, H.H.; Lee, S.-Y.; Lee, D.R.; Moon, J.; Yoon, T.K.; Lee, W.S.; Lee, K.-A. Correlation between Expression of Glucose Transporters in Granulosa Cells and Oocyte Quality in Women with Polycystic Ovary Syndrome. Endocrinol. Metab. 2014, 29, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3. [Google Scholar] [CrossRef] [Green Version]
- Vaccari, L.; Birarda, G.; Businaro, L.; Pacor, S.; Grenci, G. Infrared Microspectroscopy of Live Cells in Microfluidic Devices (MD-IRMS): Toward a Powerful Label-Free Cell-Based Assay. Anal. Chem. 2012, 84, 4768–4775. [Google Scholar] [CrossRef]
- Morais, C.L.M.; Shore, R.F.; Pereira, M.G.; Martin, F.L. Assessing Binary Mixture Effects from Genotoxic and Endocrine Disrupting Environmental Contaminants Using Infrared Spectroscopy. ACS Omega 2018, 3, 13399–13412. [Google Scholar] [CrossRef]
- Notarstefano, V.; Sabbatini, S.; Conti, C.; Pisani, M.; Astolfi, P.; Pro, C.; Rubini, C.; Vaccari, L.; Giorgini, E. Investigation of human pancreatic cancer tissues by Fourier Transform Infrared Hyperspectral Imaging. J. Biophotonics 2019, 1–10. [Google Scholar] [CrossRef]
- Giorgini, E.; Sabbatini, S.; Conti, C.; Rubini, C.; Rocchetti, R.; Re, M.; Vaccari, L.; Mitri, E.; Librando, V. Vibrational mapping of sinonasal lesions by Fourier transform infrared imaging spectroscopy. J. Biomed. Opt. 2015, 20, 125003. [Google Scholar] [CrossRef]
- Petibois, C.; Déléris, G. Chemical mapping of tumor progression by FT-IR imaging: Towards molecular histopathology. Trends Biotechnol. 2006, 24, 455–462. [Google Scholar] [CrossRef]
- Vileno, B.; Jeney, S.; Sienkiewicz, A.; Marcoux, P.R.; Miller, L.M.; Forró, L. Evidence of lipid peroxidation and protein phosphorylation in cells upon oxidative stress photo-generated by fullerols. Biophys. Chem. 2010, 152, 164–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aryee, A.N.A.; van de Voort, F.R.; Simpson, B.K. FTIR determination of free fatty acids in fish oils intended for biodiesel production. Process Biochem. 2009, 44, 401–405. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Simonova, D.; Karamancheva, I. Application of Fourier Transform Infrared Spectroscopy for Tumor Diagnosis. Biotechnol. Biotechnol. Equip. 2013, 27, 4200–4207. [Google Scholar] [CrossRef]
- Maziak, D.E.; Do, M.T.; Shamji, F.M.; Sundaresan, S.R.; Perkins, D.G.; Wong, P.T.T. Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: An exploratory study. Cancer Detect. Prev. 2007, 31, 244–253. [Google Scholar] [CrossRef]
- Talari, A.C.S.; Martinez, M.A.G.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2017, 52, 456–506. [Google Scholar] [CrossRef]
Group | Age | BMI | FSH | AMH | Average Retrieved Oocytes | % Immature Oocytes | % Mature Oocytes |
---|---|---|---|---|---|---|---|
uFSH (N. 10) | 35.60 ± 3.20 | 24.91 ± 1.83 | 6.53 ± 1.83 | 2.62 ± 1.64 | 7.90 ± 2.42 | 21.80% | 78.20% |
rFSH (N. 18) | 36.22 ± 4.90 | 23.82 ± 2.09 | 6.21 ± 2.09 | 2.12 ± 1.03 | 5.61 ± 3.22 * | 18.01% | 81.99% |
hMG (N. 14) | 37.57 ± 2.95 | 23.88 ± 1.21 | 5.78 ± 1.48 | 1.85 ± 0.93 | 5.53 ± 2.99 * | 21.87% | 78.13% |
Gene | Forward Primer (5′–3′) | Reverse Primer (5′–3′) | Accession Number |
---|---|---|---|
ACTB | GCAGAAGGAGATCACATCCCTGGC | CATTGCCGTCACCTTCACCGTTC | NM_001101.5 |
RPL13A | TCTGGAGGACTGTAAGAGGTATGC | AGACGCACAATCTTGAGAGCAG | NM_012423.3 |
TRPV1 | GACTTCAAGGCTGTCTTCATCATCC | CAGGGAGAAGCTCAGGGTGCGC | NM_018727.5 |
CNR1 | CCACTCCCGCAGCCTCCG | ATCAGGCAAAACGCCACCAC | NM_001160226.1 |
CNR2 | GGTGACAGAGATAGCCAATG | GCCAATGAACAGGTATGAGG | NM_001841.2 |
NAPE-PLD | CAGTAGAACAGTGTGTACGTAGAAG | CACTTCTAGAATGATACCCAAACTC | NM_001122838.1 |
FAAH | TATGAGACTGACAACTATACCATGC | CACGAAATCACCTTTGAAGTTCTGT | NM_001441.2 |
DAGL | GTGCCATCCGACATCATTGC | GCGGAGCATCTCTTGTGAAT | NM_006133.2 |
MAGL | ATGCAGAAAGACTACCCTGGGC | TTATTCCGAGAGAGCACGC | NM_001003794.2 |
PPARα | CTGGAAGCTTTGGCTTTACG | GTTGTGTGACATCCCGACAG | NM_001001928.2 |
FASN | CAGAGCAGCCATGGAGGAG | TAGAGCCCCGCCTTCCAG | NM_004104.4 |
GLUT1 | TGGCATCAACGCTGTCTTCT | AGCCAATGGTGGCATACACA | NM_006516.2 |
GLUT9 | TCCAGAGGGGCATGAAAACTC | CGAGCAGGACCAGTCCAATTT | NM_001001290.1 |
Wavenumber | Vibrational Mode and Biochemical Assignment | References |
~2960 | Asymmetric stretching vibration of CH3 groups (lipids) | [62,63] |
~2925 | Asymmetric stretching vibration of CH2 groups (lipids) | [62,63] |
~1741, ~1716 | Stretching vibration of C = O moieties (triglycerides and fatty acids) | [64,65] |
~1655, ~1545 | Amide I and II bands (proteins) | [62] |
~1464, ~1398 | Bending modes of methyl and methylene groups in lipids’ and proteins’ side chains | [66] |
~1169 | Stretching vibration of C-O moieties of carbohydrates | [66] |
~1053 | Stretching vibration of C-OH groups in carbohydrates | [67,68] |
~1116 | Symmetric stretching vibrations of P-O-C moieties | [69] |
~1238, ~1088 | Asymmetric and symmetric stretching vibrations of PO2- groups (phosphates) | [69] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Notarstefano, V.; Gioacchini, G.; Giorgini, E.; Montik, N.; Ciavattini, A.; Polidori, A.R.; Candela, F.A.; Vaccari, L.; Cignitti, M.; Carnevali, O. The Impact of Controlled Ovarian Stimulation Hormones on the Metabolic State and Endocannabinoid System of Human Cumulus Cells. Int. J. Mol. Sci. 2020, 21, 7124. https://doi.org/10.3390/ijms21197124
Notarstefano V, Gioacchini G, Giorgini E, Montik N, Ciavattini A, Polidori AR, Candela FA, Vaccari L, Cignitti M, Carnevali O. The Impact of Controlled Ovarian Stimulation Hormones on the Metabolic State and Endocannabinoid System of Human Cumulus Cells. International Journal of Molecular Sciences. 2020; 21(19):7124. https://doi.org/10.3390/ijms21197124
Chicago/Turabian StyleNotarstefano, Valentina, Giorgia Gioacchini, Elisabetta Giorgini, Nina Montik, Andrea Ciavattini, Anna Rita Polidori, Fulvia Antonia Candela, Lisa Vaccari, Maurizio Cignitti, and Oliana Carnevali. 2020. "The Impact of Controlled Ovarian Stimulation Hormones on the Metabolic State and Endocannabinoid System of Human Cumulus Cells" International Journal of Molecular Sciences 21, no. 19: 7124. https://doi.org/10.3390/ijms21197124
APA StyleNotarstefano, V., Gioacchini, G., Giorgini, E., Montik, N., Ciavattini, A., Polidori, A. R., Candela, F. A., Vaccari, L., Cignitti, M., & Carnevali, O. (2020). The Impact of Controlled Ovarian Stimulation Hormones on the Metabolic State and Endocannabinoid System of Human Cumulus Cells. International Journal of Molecular Sciences, 21(19), 7124. https://doi.org/10.3390/ijms21197124